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Ðåçþìå. Âèêîðèñòîâó¹òüñÿ ñëàáî-íåëiíiéíà ìîäàëüíà òåîðiÿ Íàðiìàíî-
âà-Ìîiñ¹¹âà äëÿ àíàëiçó óñòàëåíèõ ðåçîíàíñíèõ õâèëü â âåðòèêàëüíîìó
öèëiíäðè÷íîìó ðåçåðâóàði, ÿêèé ðóõà¹òüñÿ ïåðiîäè÷íî ç ÷àñòîòîþ, áëèçü-
êîþ äî ïåðøî¨ âëàñíî¨ ÷àñòîòè êîëèâàííÿ ðiäèíè.
Abstract. A weakly-nonlinear Narimanov-Moiseev type modal theory is
used to analyse steady-state resonant waves in an upright circular tank which
moves periodically with the forcing frequency close to the lowest natural slosh-
ing frequency.

1. Introduction
The upright circular tank is relevant for spacecraft applications, the pressure-

suppression pools of Boiling Water Reactors, storage tanks, Tuned Liquid
Dampers, o�shore towers, and basins of the aqua-cultural engineering. Res-
onant sloshing due to harmonic excitations of the tank was extensively studied,
theoretically and experimentally, in [1,3,4,6]. For the longitudinal tank forcing,
steady-state planar (in the excitation plane), swirling and irregular (chaotic)
waves were detected [1, 4, 6] when the forcing frequency is close to the lowest
natural sloshing frequency. A review on sloshing due to parametric (vertical) ex-
citations is given in [3]. However, the above-mentioned industrial applications
deal, normally, with the coupled rigid tank-and-sloshing dynamics when the
tank performs complex three-dimensional motions which unnecessarily occur
in either meridional plane or vertical direction. This causes an interest to ana-
lytical studies on the resonant steady-state sloshing due to a three-dimensional
periodic tank excitation that are done in the present paper by employing the
weakly-nonlinear modal system [7].

2. Statement of the problem
An inviscid incompressible contained liquid with irrotational �ows sloshes

in an upright circular rigid tank with radius r0. The tank performs small-
magnitude prescribed periodic sway, surge, roll, and pitch motions which are
described by the r0-scaled generalised coordinates η1(t) and η2(t) (horizontal
tank motions) and angular perturbations η4(t) and η5(t) (see, �gure 1). The
yaw cannot excite sloshing within the framework of the inviscid potential �ow
model but the heave is not considered. All geometric and physical parameters
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Fig. 1. The time-dependent liquid domain Q(t) con�ned by
the free surface Σ(t) and the wetted tank surface S(t). The
free-surface evolution is considered in the tank-�xed coordinate
system Oxyz whose coordinate plane Oxy coincides with the
mean (hydrostatic) free surface Σ0 and Oz is the symmetry axis.
Small-magnitude periodic tank motions are governed by the gen-
eralised coordinates η1(t) (surge), η4(t) (roll), η2(t) (sway), and
η5(t) (pitch). The mean free surface Σ0 is perpendicular to Oz

are henceforth considered scaled by r0. We introduce a small parameter 0 <
ε ¿ 1 characterising the periodic forcing, i.e. ηi(t) = O(ε), i = 1, 2, 4, 5.

Figure 1 shows the time-dependent liquid domain Q(t) with the free surface
Σ(t) (governed by the single-valued function z = ζ(r, θ, t)) and the wetted tank
surface S(t). The liquid �ow is determined by the velocity potential Φ(r, θ, z, t).
The unknowns, ζ and Φ, are de�ned in the tank-�xed Cartesian (equivalent
cylindrical) non-inertial coordinate system; they can be found from either the
corresponding free-surface problem or its equivalent variational formulation.
The latter formulation facilitates the multimodal method, which employs the
Fourier-type representations of ζ and Φ in which the time-dependent coe�cients
are interpreted as generalised coordinates and velocities. The representations
are normally based on the natural sloshing modes which are the eigenfunctions
of the spectral boundary problem

∇2ϕ = 0 in Q0,
∂ϕ

∂n
= 0 on S0,

∂ϕ

∂n
= κϕ on Σ0,

∫

Σ0

ϕdS = 0 (1)

in the mean (hydrostatic) liquid domain Q0 con�ned by the mean free surface
Σ0 and the wetted tank surface S0. The r0-scaled problem (1) has the analytical
solution [4]

ϕMi(r, z, θ) = RMi(r)ZMi(z) cosMθ
sinMθ , M = 0, . . . ; i = 1, . . . , (2a)

RMi(r) = αMiJM (kMir), ZMi(z) =
cosh(kMi(z + h))

cosh(kMih)
, (2b)

where JM (·) is the Bessel functions of the �rst kind, the radial wave numbers
kMi are determined byR′M,i(r1) = 0 and the normalising multipliers αMi follow
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from the orthogonality condition

λ(Mi)(Mj) =
∫ 1

r1

rRMi(r)RMj(r) dr = δij , i, j = 1, . . . , (3)

where δij is the Kronecker delta. The eigenvalues κMi and the natural sloshing
frequencies σMi read as

κMi = kMi tanh(kMih) and σ2
Mi = κMi ḡ/r0 = κMi g, (4)

respectively, where ḡ is the dimensional gravity acceleration.
Dealing with a small-amplitude angular tank motion requires the linearised

Stokes-Joukowski potentials Ω0i(r, z, θ), i = 1, 2, 3 which are harmonic func-
tions satisfying the Neumann boundary conditions

∂Ω01

∂n
= −(znr − rnz) sin θ,

∂Ω02

∂n
= (znr − rnz) cos θ,

∂Ω03

∂n
= 0 (5)

on Σ0 and the wetted tank surface S0, where nr and nz are the outer nor-
mal components in the r- and z- directions. This implies Ω01 = −F (r, z)
sin θ, Ω02 = F (r, z) cos θ, Ω03 = 0, where

F (r, z) = rz +
∞∑

n=1

−2Pn

k1n
R1n(r)

sinh(k1n(z + 1
2h))

cosh(1
2k1nh)

,

Pn =
∫ 1

r1

r2R1n(r) dr.

(6)

When adopting (2a) and (6), the aforementioned Fourier (modal) represen-
tation takes the form [7]

ζ(r, θ, t) =
Iθ,Ir∑

M,i

RMi(r) cos(Mθ) pMi(t) +
Iθ,Ir∑

m,i

Rmi(r) sin(mθ) rmi(t), (7a)

Φ(r, θ, z, t) = η̇1(t) r cos θ + η̇2(t) r sin θ+

+ F (r, z)[−η̇4(t) sin θ + η̇5(t) cos θ]+

+
Iθ,Ir∑

M,i

RMi(r)ZMi(z) cos(Mθ) PMi(t)+

+
Iθ,Ir∑

m,i

Rmi(r)Zmi(z) sin(mθ) Rmi(t),

(7b)

Iθ, Ir → ∞. Here and further, all capital summation letters imply changing
from zero to Iθ but the lower case indices mean changing from one to either Iθ

or Ir.
In the modal representation (7), pMi and rmi play the role of the sloshing-

related generalised coordinates but PMi and Rmi are the corresponding gen-
eralised velocities. Using the Bateman-Luke variational formulation makes it
possible to derive the Euler-Lagrange equations with respect to the generalised
coordinates and velocities. The procedure is described in [7] where the latter
equations are explicitly written down in both fully- and weakly-nonlinear forms.
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The weakly-nonlinear equations are constructed in [7] adopting the Narimanov-
Moiseev asymptotic relations

p11 ∼ r11 = O(ε1/3), p0j ∼ p2j ∼ r2j = O(ε2/3),

r1(j+1) ∼ p1(j+1) ∼ p3j ∼ r3j = O(ε), j = 1, 2, . . . , Ir; Ir →∞ (8)
(see, an extensive discussion on what these relations mean for axisymmetric
tanks in [5]). The equations take the form

p̈11 + σ2
11p11 + d1p11

(
p̈11p11 + r̈11r11 + ṗ2

11 + ṙ2
11

)

+ d2 [r11(p̈11r11 − r̈11p11) + 2ṙ11(ṗ11r11 − ṙ11p11)]

+
Ir∑

j=1

[
d

(j)
3 (p̈11p2j + r̈11r2j + ṗ11ṗ2j + ṙ11ṙ2j) + d

(j)
4 (p̈2jp11 + r̈2jr11)

+d
(j)
5 (p̈11p0j + ṗ11ṗ0j) + d

(j)
6 p̈0jp11

]
= −(η̈1 − gη5 − S1η̈5)κ11P1, (9a)

r̈11 + σ2
11r11 + d1r11

(
p̈11p11 + r̈11r11 + ṗ2

11 + ṙ2
11

)

+ d2 [p11(r̈11p11 − p̈11r11) + 2ṗ11(ṙ11p11 − ṗ11r11)]

+
Ir∑

j=1

[
d

(j)
3 (p̈11r2j − r̈11p2j + ṗ11ṙ2j − ṗ2j ṙ11) + d

(j)
4 (r̈2jp11 − p̈2jr11)

+d
(j)
5 (r̈11p0j + ṙ11ṗ0j) + d

(j)
6 p̈0jr11

]
= −(η̈2 + gη4 + S1η̈4)κ11P1; (9b)

p̈2k + σ2
2kp2k + d7,k(ṗ2

11 − ṙ2
11) + d9,k(p̈11p11 − r̈11r11) = 0, (10a)

r̈2k + σ2
2kr2k + 2d7,kṗ11ṙ11 + d9,k(p̈11r11 + r̈11p11) = 0, (10b)

p̈0k + σ2
0kp0k + d8,k(ṗ2

11 + ṙ2
11) + d10,k(p̈11p11 + r̈11r11) = 0; (10c)

p̈3k + σ2
3kp3k + d11,k

[
p̈11(p2

11 − r2
11)− 2p11r11r̈11

]

+ d12,k

[
p11(ṗ2

11 − ṙ2
11)− 2r11ṗ11ṙ11

]

+
Ir∑

j=1

[
d

(j)
13,k(p̈11p2j − r̈11r2j) + d

(j)
14,k(p̈2jp11 − r̈2jr11)

+d
(j)
15,k(ṗ2j ṗ11 − ṙ2j ṙ11)

]
= 0, (11a)

r̈3k + σ2
3kr3k + d11,k

[
r̈11(p2

11 − r2
11) + 2p11r11p̈11

]

+ d12,k

[
r11(ṗ2

11 − ṙ2
11) +2p11ṗ11ṙ11]

+
Ir∑

j=1

[
d

(j)
13,k(p̈11r2j + r̈11p2j) + d

(j)
14,k(p̈2jr11 + r̈2jp11)

+d
(j)
15,k(ṗ2j ṙ11 + ṙ2j ṗ11)

]
= 0, k = 1, ..., Ir; (11b)
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p̈1n + σ2
1np1n + d16,n(p̈11p

2
11 + r11p11r̈11) + d17,n(p̈11r

2
11 − r11p11r̈11)

+ d18,np11(ṗ2
11 + ṙ2

11) + d19,n(r11ṗ11ṙ11 − p11ṙ
2
11)

+
Ir∑

j=1

[
d

(j)
20,n(p̈11p2j + r̈11r2j) + d

(j)
21,n(p11p̈2j + r11r̈2j)

+d
(j)
22,n(ṗ11ṗ2j + ṙ11ṙ2j) + d

(j)
23,np̈11p0j + d

(j)
24,np11p̈0j + d

(j)
25,nṗ11ṗ0j

]

= −(η̈1 − gη5 − Snη̈5)κ1n Pn, (12a)

r̈1n + σ2
1nr1n + d16,n(r̈11r

2
11 + r11p11p̈11) + d17,n(r̈11p

2
11 − r11p11p̈11)

+ d18,nr11(ṗ2
11 + ṙ2

11) + d19,n(p11ṗ11ṙ11 − r11ṗ
2
11)

+
Ir∑

j=1

[
d

(j)
20,n(p̈11r2j − r̈11p2j) + d

(j)
21,n(p11r̈2j − r11p̈2j)

+d
(j)
22,n(ṗ11ṙ2j − ṙ11ṗ2j) + d

(j)
23,nr̈11p0j + d

(j)
24,nr11p̈0j + d

(j)
25,nṙ11ṗ0j

]

= −(η̈2 + gη4 + Snη̈4)κ1nPn, n = 2, ..., Ir. (12b)

They couple all generalised coordinates up to the O(ε)-order as Ir → ∞;
rkl ∼ pkl = o(ε), k ≥ 4 and, therefore, are neglected. The hydrodynamic
coe�cients of (9)�(12) are functions of the nondimensional liquid depth h. The
system needs either initial or periodicity condition that determines transient
and steady-state solutions, respectively.

3. Steady-state (periodic) resonant solutions
Applicability of (9)�(12) for studying the steady-state (periodic) waves re-

quires that
� the generalised coordinates ηi(t), i = 1, 2, 4, 5, are the given 2π/σ-perio-

dic functions,

ηi(t) = η
(0)
ia +

∞∑

k=1

[
η

(k)
ia cos(kσt) + µ

(k)
ia sin(kσt)

]
, η

(k)
ia ∼ µ

(k)
ia = O(ε), (13)

where σ is the circular forcing frequency; the lowest-order harmonic com-
ponent should not be zero, i.e.

∑

i=1,2,4,5

|η(1)
ia |+ |µ(1)

ia | 6= 0; (14)

� the forcing frequency σ is close to the lowest natural sloshing frequency
σ11 so that the so-called Moiseev detuning condition

σ̄2
11 − 1 = O(ε2/3), σ̄11 = σ11/σ (15)

is satis�ed;
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� there are no resonance ampli�cations of pmj , rmj , m j 6= 1 that implies
m− σ̄1k ≥ O(1), σ̄mi = σmi/σ, m, k ≥ 2;

σ̄2
0i − 4 ∼ σ̄2

2i − 4 ∼ σ̄2
3i − 9 ∼ σ̄2

1(i+1) − 9 ≥ O(1), i ≥ 1;
(16)

the second row means that there is no the so-called secondary resonance
[2].

Our goal consists of constructing an asymptotic periodic solution of (9)�(12)
and (13). The right-hand sides of (9) are

σ2P1κ11

∞∑

k=1

[
(kη

(k)
1a − (kS1 − g/σ2)η(k)

5a ) cos(kσt)

+ (kµ
(k)
1a − (kS1 − g/σ2)µ(k)

5a ) sin(kσt)
]
,

σ2P1κ11

∞∑

k=1

[
(kη

(k)
2a + (kS1 − g/σ2)η(k)

4a ) cos(kσt)

+ (kµ
(k)
2a + (kS1 − g/σ2)µ(k)

4a ) sin(kσt)
]
.

Because of (15), neglecting the higher-order terms, o(ε), allows for replacing
g/σ2 → g/σ2

11 and, therefore, amplitudes of the �rst Fourier harmonics are

εx = P1κ11(η
(1)
1a − (S1 − g/σ2

11)η
(1)
5a ),

ε̄x = P1κ11(µ
(1)
1a − (S1 − g/σ2

11)µ
(1)
5a ),

ε̄y = P1κ11(η
(1)
2a + (S1 − g/σ2

11)η
(1)
4a ),

εy = P1κ11(µ
(1)
2a + (S1 − g/σ2

11)µ
(1)
4a ).

(17)

Here, εx and ε̄x appear in the front of cosσt and sinσt and imply the forcing
components in the Ox direction, but ε̄y and εy correspond to the cosσt and
sinσt harmonics along the Oy axis. Because of (14), rotating the Oxy frame
around Oz can always help getting the non-zero �rst-harmonic forcing com-
ponent along Ox, i.e. ε2x + ε̄2x 6= 0. Furthermore, the periodicity condition is
de�ned within to an arbitrary phase shift and one can assume, without loss of
generality, that

εx > 0, ε̄x = 0. (18)
Henceforth, we follow the Bubnov-Galerking procedure [2] by posing the

lowest-order asymptotic solution component
p11(t) = a cos(σt)+ ā sin(σt)+O(ε), r11(t) = b̄ cos(σt)+b sin(σt)+O(ε), (19)

where a, ā, b̄, and b are of O(ε1/3). The second- and third-order generalised
coordinates can be found from (10) and (11), (12), respectively. This gives, in
particular,

p0k(t) = s0k(a2 + ā2 + b2 + b̄2)

+ s1k

[
(a2 − ā2 − b2 + b̄2) cos(2σt) + 2(aā + bb̄) sin(2σt)

]
+ o(ε), (20a)
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p2k(t) = c0k(a2 + ā2 − b2 − b̄2)

+ c1k

[
(a2 − ā2 + b2 − b̄2) cos(2σt) + 2(aā− bb̄) sin(2σt)

]
+ o(ε), (20b)

r2k(t) = 2c0k(ab̄ + bā)

+ 2c1k

[
(ab̄− bā) cos(2σt) + (ab + āb̄) sin(2σt)

]
+ o(ε),

(20c)

where

s0k = 1
2

(
d10,k − d8,k

σ̄2
0k

)
, s1k =

d10,k + d8,k

2(σ̄2
0k − 4)

, σ̄0k =
σ0k

σ
,

c0k = 1
2

(
d9,k − d7,k

σ̄2
2k

)
, c1k =

d9,k + d7,k

2(σ̄2
2k − 4)

, σ̄2k =
σ2k

σ
.

(21)

Substituting (19) and (20) into (9) and gathering the �rst harmonic terms,
cosσt and sinσt, lead to the solvability (secular) equations




1© : a
[
(σ̄2

11 − 1) + m1(a2 + ā2 + b̄2) + m3b
2
]
+ (m1 −m3)āb̄b = εx,

2© : b
[
(σ̄2

11 − 1) + m1(b2 + b̄2 + ā2) + m3a
2
]
+ (m1 −m3)āab̄ = εy,

3© : ā
[
(σ̄2

11 − 1) + m1(a2 + ā2 + b2) + m3b̄
2
]
+ (m1 −m3)ab̄b = 0,

4© : b̄
[
(σ̄2

11 − 1) + m1(b2 + b̄2 + a2) + m3ā
2
]
+ (m1 −m3)āab = ε̄y

(22)

with respect to a, ā, b̄ and b. The coe�cients m1 and m3 are computed by the
formulas

m1 = −1
2d1 +

Ir∑

j=1

[
c1j

(
1
2d

(j)
3 − 2d

(j)
4

)

+ s1j

(
1
2d

(j)
5 − 2d

(j)
6

)
− s0jd

(j)
5 − c0jd

(j)
3

]
,

(23a)

m3 = 1
2d1 − 2d2 +

Ir∑

j=1

[
c1j

(
3
2d

(j)
3 − 6d

(j)
4

)

+ s1j

(
−1

2d
(j)
5 + 2d

(j)
6

)
− s0jd

(j)
5 + c0jd

(j)
3

]
.

(23b)

After �nding a, ā, b̄ and b from (22), the second- and third-order components
of the asymptotic solution are fully determined. Coe�cients in this solution as
well as m1 and m3 in (22) are functions of h, r1 and the forcing frequency σ.
Utilising (15) shows that the latter dependence can be neglected by substituting
σ = σ11 into the corresponding expressions. Dependence on σ remains only in
the (σ̄2

11 − 1)-quantity of (22).
Calculations show that (16) is ful�lled for fairy deep liquid depths, 1.2 . h,

and the conditions
O(1) = m1 < 0 and O(1) = m1 + m3 > 0 (24)

are satis�ed. This means, in particular, that m3 > 0 and m1 6= m3.
One can follow [2] to study the stability of the asymptotic solution by using

the linear stability analysis and the multi-timing technique. For this purpose,
we introduce the slowly varying time τ = ε2/3σt/2 (the order ε2/3 is chosen to
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match the lowest asymptotic terms in the multi-timing technique), the Moiseev
detuning (15), and express the in�nitesimally perturbed solution

p11 = (a + α(τ)) cos σt + (ā + ᾱ(τ)) sin σt + o(ε1/3),

r11 = (b̄ + β̄(τ)) cos σt + (b + β(τ)) sin σt + o(ε1/3),
(25)

where a, ā, b and b̄ are known and α, ᾱ, β and β̄ are their relative perturbations
depending on τ . Inserting (25) into the Narimanov-Moiseev modal equations,
gathering terms of the lowest asymptotic order and keeping linear terms in
α, ᾱ, β and β̄ lead to the following linear system of ordinary di�erential equa-
tions

dc
dτ

+ Cc = 0, (26)

where c = (α, ᾱ, β, β̄)T and the matrix C has the elements

c11 = −[2aām1 + (m1 −m3) bb̄];

c12 = −[(σ̄2
11 − 1) + m1(a2 + 3ā2 + b2) + m3 b̄2],

c13 = −[2ābm1 + (m1 −m3) ab̄]; c14 = −[2āb̄m3 + (m1 −m3) ab],

c21 = (σ̄2
11 − 1) + m1(3a2 + ā2 + b̄2) + m3 b2; c22 = 2aām1 + (m1 −m3) bb̄,

c23 = 2abm3 + (m1 −m3) āb̄; c24 = 2ab̄m1 + (m1 −m3) āb,

c31 = 2m1 ab̄ + (m1 −m3) bā; c32 = 2m3 āb̄ + (m1 −m3) ab,

c33 = 2m1 bb̄ + (m1 −m3) aā; c34 = (σ̄2
11 − 1) + m1(b2 + 3b̄2 + a2) + m3 ā2,

c41 = −[2m3 ab + (m1 −m3) āb̄]; c42 = −[2āb m1 + (m1 −m3) ab̄],

c43 = −[(σ̄2
11 − 1) + m1(3b2 + b̄2 + ā2) + m3 a2];

c44 = −[2bb̄ m1 + (m1 −m3) aā].

The instability of the asymptotic solution can be evaluated by studying (26).
Its fundamental solution depends on the eigenvalue problem det[λE + C] = 0,
where E is the identity matrix. Computations give the following characteristic
polynomial

λ4 + c1λ
2 + c0 = 0, (27)

where c0 is the determinant of C and c1 is a complicated function of the elements
of C. As discussed in [2], the stability requires c0 > 0, c1 > 0 and c2

1 − 4c0 > 0.
When at least one of the inequalities is not ful�lled, the steady-state wave
regime associated with the dominant amplitudes a, ā, b and b̄ is not stable.

4. Classification of steady-state (periodic) solutions
The steady-state (periodic) sloshing can be classi�ed by analysing the lowest-

order component (19) which gives the dominant wave contribution. The lowest-
order amplitudes a, ā, b and b̄ follow from the secular system (22) which does
not involve the super-harmonic components from (13). This means that the
resonant sloshing regimes are, within to the higher-order terms, the same as if
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the tank performs the arti�cial horizontal harmonic motions
(κ11P1) η1(t) = εx cosσt,

(κ11P1) η2(t) = ε̄y cosσt + εy sinσt, η4(t) = η5(t) = 0
(28)

that de�ne, by accounting for (18), either longitudinal (εy = 0) or elliptic
(rotary) (εy 6= 0) harmonic tank motion. The latter occurs along the trajectory

ε2y + ε̄2y
ε2x

x2 + y2 − 2
ε̄y

εx
xy = ε2y. (29)

For the longitudinal tank motions (εy = 0), one can rotate the Oxy frame
around Oz to get the arti�cial tank vibrations by (28) occurring along the
Ox axis. The forcing amplitudes become then εx > 0 and ε̄y = εy = 0 and
the secular system (22) has only two analytical solutions well known from, for
example, [4]. The �rst solution implies the so-called planar steady-state wave
(ā = b̄ = b = 0). The nonzero lowest-order amplitude parameter a is governed
by

a
[
(σ̄2

11 − 1) + m1a
2
]

= εx. (30)
This solution is characterised by the zero transverse wave component, namely,
rmi(t) ≡ 0. The second solution corresponds to swirling whose longitudinal
(a 6= 0) and transverse (b 6= 0) amplitude parameters come from the system





a
[
(σ̄2

11 − 1) + (m1 + m3)a2
]

=
m1

m1 −m3
εx,

b2 = −(σ̄2
11 − 1) + m3a

2

m1
> 0.

(31)

Why the solution ā = b̄ = 0, ab 6= 0 is called swirling is discussed in [4].
When the arti�cial horizontal harmonic motions occur along an elliptic tra-

jectory (εy 6= 0), rotating the Oxy frame around Oz helps superposing Ox with
the major axis of the ellipse. This new position of the Oxy frame implies that

ε̄y = 0, 0 < εy ≤ εx 6= 0 (32)

in (22). The following equalities

ā · 1©− a · 3© = b̄ · 2©− b · 4©
= (m1 −m3)[aā(b̄2 − b2) + b̄b(ā2 − a2)] = āεx = b̄εy,

(33a)

b̄ · 1©− a · 4© = ā · 2©− b · 3©
= (m1 −m3)[bā(b̄2 − a2) + b̄a(ā2 − b2)] = b̄εx = āεy,

(33b)

b · 1©− a · 2© = (m1 −m3)(a2 − b2)(ab− āb̄) = bεx − aεy (33c)
can then be treated as solvability conditions of (22).

When 0 < εy < εx, the homogeneous linear system (33a)�(33b) with respect
to ā and b̄ has only trivial solution ā = b̄ = 0. Equation (33c) shows then
that a b 6= 0 (and a 6= b) and, therefore, the only nonzero amplitudes a and b
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always determine swirling. The amplitudes are governed by (22) which can be
rewritten in the equivalent form





b
[
(m1 −m3)b2 +

(εx

a
− (m1 −m3)a2

)]
= εy,

(σ̄2
11 − 1) =

εx

a
−m1a

2 −m3b
2, a 6= 0.

(34)

The �rst equality is a depressed cubic with respect to b whose coe�cient at
the linear term is a function of a. The second equality computes the forcing
frequency, σ/σ11 (σ̄2

11−1), as a function of a and b. A numerical procedure may
suggest varying a in an admissible range, solving the depressed cubic (�nding
b = b(a)), and computing σ/σ11 as a function a and b = b(a). When solving
the depressed cubic, one should check for the discriminant

∆ = −4
(

εx

a (m1 −m3)
− a2

)3

− 27
(

εy

m1 −m3

)2

, 0 < εy < εx. (35)

Cartano's theorem says that, (i) if ∆ > 0, then there are three distinct real
roots for b, (ii) if ∆ = 0, then the equation has at least one multiple root and
all its roots are real, and (iii) if ∆ < 0, then the equation has one real root and
two nonreal complex conjugate roots.

When considering ∆ as a function of a, a simple analysis shows that, if
m1 − m3 < 0, there exists only a negative real root a∗ < 0 of ∆(a∗) = 0 so
that ∆(a) > 0 for a < a∗ and 0 < a (three real solutions) but ∆(a) < 0 for
a∗ < a < 0 (a unique real solution). Analogously, if m1 −m3 > 0, there exists
only a positive real root a∗ > 0 of ∆(a∗) = 0 so that ∆(a) > 0 for a < 0 and
a∗ < a but ∆(a) < 0 for 0 < a < a∗.

When ε̄y = 0, εy = εx 6= 0 (arti�cial rotary harmonic motions of the tank),
equations (33a) and (33b) are unable to derive that ā and b̄ are zeros but
deduce, instead, ā = b̄ = c. The latter makes 3© ≡ 4© in (22). By taking the
sum 1© + 2© and the di�erence 1© − 2©, we transform (22) to the form





(a + b)
{
(σ̄2

11 − 1) + m1(a2 + b2)+
+(3m1 −m3)c2 − (m1 −m3)ab

}
= 2ε,

(a− b)
[
(σ̄2

11 − 1) + m1(a2 + b2)+
+(m1 + m3)c2 + (m1 −m3)ab

]
= 0,

c
[
(σ̄2

11 − 1) + m1(a2 + b2) + (m1 + m3)c2 + (m1 −m3)ab
]

= 0,

(36)

in which the two homogeneous equations contain identical expressions in the
square bracket. These expressions are multiplied by (a− b) and c, respectively.

We adopt a+ = 1
2(a + b), a− = 1

2(a − b) instead of a and b. When both a−
and c are zeros, we arrive at

ā = b̄ = 0, a+ = a = b, a+

[
(σ̄2

11 − 1) + (m1 + m3)a2
+

]
= ε (37)

which imply rotary (circular swirling) waves characterised by equal longitu-
dinal (along Ox) and transverse (along Oy) amplitude components, p11(t) =
a+ cos(σt)+O(ε), r11(t) = a+ sin(σt)+O(ε). The rotary waves are co-directed
with the rotary tank motion.
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When either a− 6= 0 or c 6= 0, the square bracket expression of (36) must be
zero. This makes the second and third equalities of (36) automatically satis�ed
and, therefore, three amplitude parameters a+, a− and c should be found from
the two equalities





a+

[
(σ̄2

11 − 1) + 4m1a
2
+

]
= − m1 + m3

2(m1 −m3)
ε,

a2
− + c2 = −(σ̄2

11 − 1) + (3m1 −m3)a2
+

(m1 + m3)
> 0,

(38)

which de�ne the following lowest-order steady-state solution component
p11(t) = (a+ + a−) cos(σt) + c sin(σt) + O(ε),

r11(t) = (a+ − a−) sin(σt) + c cos(σt) + O(ε).
(39)

The amplitude a+ can be found from the �rst equation of (38) but the am-
plitudes a− and c are not uniquely de�ned. Only the sum a2− + c2 can be
found for any �xed pair (σ̄2

11, a+) from the �rst cubic equation. This de�nes
a manifold a+ = a+(σ/σ11), a2− + c2 = F (σ/σ11, a+) in the four-dimensional
space (σ/σ11, a+, a−, c). Numerical analysis of the solution (39) shows that it
is unstable on the aforementioned manifold due to c0 = 0 in the characteristic
equation (27).

When c = 0, system (38) de�nes the three-dimensional response curves a+ =
a+(σ/σ11), a− = a−(σ/σ11) which implies the solution

p11(t) = (a+ + a−) cos(σt) + O(ε), r11(t) = (a+ − a−) sin(σt) + O(ε) (40)

which has the same form as for the elliptically-excited swirling with εy < εx.

5. Conclusions
By using the Narimanov-Moiseev type modal theory [7], the steady-state

(periodic) resonant waves in an upright circular cylindrical tank with a fairly
deep liquid depth are analysed when the tank performs an arbitrary small-
magnitude sway-surge-pitch-roll periodic motion. The forcing frequency is close
to the lowest natural sloshing frequency. The analysis shows that, within to
the higher-order terms, the resonant sloshing is the same as that due to either
longitudinal or elliptic/rotary horizontal harmonic tank motions. The longitu-
dinal case is well known from the literature. Planar (in the excitation plane)
and swirling waves were established and described. In the present paper, the
cases of elliptic and rotary excitations are studied to show that they always
lead to swirling, which can be either co- or counter-directed with respect to the
forcing direction. The co-directed wave converts then to the rotary wave regime
when the elliptic forcing tends to the rotary one. The e�ective frequency range
of the stable counter-directed swirling becomes unstable in this limit case.
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