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THE BEST M-TERM TRIGONOMETRIC APPROXIMATIONS
OF CLASSES OF (¢, 5)-DIFFERENTIABLE PERIODIC

MULTIVARIATE FUNCTIONS IN THE SPACE Lgl

K. V.SHval

PE3IOME. BceranoBiieHO OpsaikoBi OIiHKY HafKpamux M —4IeHHUX TPUTOHO-
MeTPUYHUAX HAOJIMKEeHb MepioguIHmX (QyHKINI Dg’ y mpoctopi Lg, 1 < g < 2.
BukopucroByioun ozep:kaHi pe3yabTaTh, BCTAHOBJIEHO IOPSIKOBI CITiBBiIHO-
MIEHHS IUX BEJINTHH [T KJIaciB Lg,r

ABSTRACT. Obtained here are the order estimates of the best M—term
trigonometric approximations of periodic functions DZ in the space Lg,1 <
q < 2. The results are applied to establish the order estimates of the same
quantities for classes Lg,r

1. INTRODUCTION
Let us introduce all necessary denotations and give a definition of the ap-
proximative characteristic to investigate.
Let Ly (mq), 1 < g < 00, — be the space of functions f, 2r—periodic by each
variable, with the finite norm

1l = 7]l = (<2w>—d / If(fr)l"dw) " l<g<os,

[l e ra) = [[flloo = esssup | ()],

xTETY

where x = (x1,...,24) is the element of Euclidean space R?, d > 1, and mg =
d

[I [—m, 7). Suppose further that for the functions f € Ly (m4) the condition
j=1

™
/f(x)da:j =0, j=1,d,

holds.

Let us consider the Fourier series for the function f € Ly (7q)

S Fkyeten,

kezd

Key words. The best trigonometric approximations; Bernoulli kernel; order estimates;
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where

F (k) = (@m) / (e 160 gt

are the Fourier coefficients of the function f, (k,x) = kix1 + ... + kqzg.
Let v;(-) # 0 be arbitrary functions of the natural argument, §; € R, j =
1,d. Assume that the series

where Z4 = (Z\ {0})?, are the Fourier series of some summable on 7y function.
Following O. I. Stepanets [1, c. 25|, (see also [2, c¢. 132]), let us call it (¢, 5)—

derivative of the function f and denote it as fg’ . A set of functions f, for which
(1, B)—derivatives exist, is denoted as LE.

If the condition Hfg()“ <1, 1 <p<oo, holds then f € Lgp.
p 9.

The article deals with the best M—term trigonometric approximations of the
functions Dg whose Fourier series are written in a form

d .
S TT v (g Fismtseiteo)
kezdj=1
Note that if ¢; (|k;]) = |k;| ™7, r; > 0, k; € Z\{0}, j = 1,d, D} is a multi-
variate analogue of the Bernoulli kernel (see, e.g., [3, c. 31]).
Each of the functions f € LZ , can be presented in a form of convolution

f@) = (¢4 DY) (2) = 2m)* [ ol - DD} (00, (1)
Tq
where [|¢|l, <1, and the function ¢(-) almost everywhere coincides with fg).

As an apparatus of the approximation we will use trigonometric polynomials
of the form
P(Oa;z) = Y epe'™,
kel

where 0/ is an arbitrary set of M different vectors k = (ki, ... kq) and ¢ € C.
For f € Ly (mq), 1 < g < 00, the quantity

ex(f)g=int in |£() = P (@) o )

is called the best M—term trigonometric approximation of the function f. And
the quantity

exr(fg=inf [ f() = > Fk)e®] (3)

0
M kE@]u q
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is called the best orthogonal trigonometric approximation of the function f. It
is obvious that the relation

en(f), < er(f)y 1<q< o0, (4)
holds. If F' C L, is some functional class then denote
em(F)q = supen(f)g (5)
fer
and, accordingly,
ear(F)q = sup exz(f)q. (6)
feF

The quantity (2) appeared at first in the paper of S. B. Stechkin [4] in
formulating an absolute convergence criterion for orthogonal series. Later the
quantity (5) for classes of periodic functions of one and many variables was
investigated in the papers of V. N. Temlyakov |3], [5-7|, E. S. Belinskii [8-10,12],
A. S. Romanyuk [13-20], A. S. Fedorenko [21-23], N. M. Konsevych [24, 25],
V. V. Shkapa [26] and others.

The quantities (3) and (6) were considered by E. S. Belinskii (see, e.g., [12]),
and later their exploration was further developed in the works of many authors.
The detailed bibliography can be found in [20,27].

The results of the article are formulated in order-relation terms. So, further
for the quantities A and B under the notation A < B we will understand the
existance of a positive constant C; such that A < CyB. If the conditions A < B
and B < A hold then we write A < B. All constants in order relations can
depend only on the parameters that are in the definitions of class and metric

in which the approximation is carried out, and on the dimension of the space
R,

2. AUXILIARY STATEMENTS
To formulate and prove the results of the article some notations and auxiliary
statements will be needed.
Let D be a set of functions 9(-) of natural argument that satisfy the condi-
tions
1) ¥(-) are positive and nonincreasing;

l
2) 3M > 0 such that Vi € N ) < M.

Note that to the indicated set of functions belong, in particular, functions
(k) = K7, w(lk]) = [kl 0 (k[ + 1), r > 0, k € Z\{0}, a € R and
others.

Further, let us put into conformity to each vector s = (51,---,84), 85 €
NU{O},j: 1,d, a set
:{k: ki,... kd [287 ] ‘k|<23ﬂ ':1,d},

where [] is the whole part, and for f € L; ( ) put
kep(s )
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where f(k) are the Fourier coefficients of this function. Note that the unifica-
tions of "blocks" p(s), (s,1) =81+ ...+ 84 <n, n €N, form a set @, that is
called "step-hyperbolic cross" [3, c. 7|. The quantity of points in this set is of
the order 2"n?~! [3, c. 70].
The following propositions hold.
Proposition 7. [27] Let 1 < g < o0, ¥; € D, 8; € R, j = 1,d, and, besides,
1
there exists € > 0 such that 1; (|k;|) \kj|175+5 are nonincreasing. Then for all

natural M and n that satisfy the condition M = 2"n%t the following relations
hold

q)(n)Ml‘5(logM)Z(dfl)(%%) < et (D‘ﬁ”) <
q
<<\Il(n)M17%(logM)2(d_l)( ;)7
@(n)Ml_%(logM)Q(dil)Gi%) <<6M<Lg ) <

1 1
< ()M (log a2V (E3)
where

®(n) = min Hw] 2%), U(n)= max Hw 2%7).

(s,1) —n (s 1)—n

Proposition 8. [3, c. 28] For an  arbitrary  function f € Ly(mq),
1< qg<p<oo, holds

”f”g > Z 10 (f, )HZ ] 2(5,1)(%_%)?

To make further speculations we need one more relation which follows from
a more general result of S. N. Nikolskii (see, e.g., |28, c. 25]).

Proposition 9. For all functions f € Ly(mq),1 < g < oo, holds

em(f), = mf sup /f

]\{ PELJ‘ 0M

1P| <1

where L*(0ar) is a set of functions that is orthogonal to the subset of trigono-
metric polynomials with the numbers of harmonics from the set 0,7, and %—l—%
1.

3. THE BEST M-TERM TRIGONOMETRIC APPROXIMATIONS
The following statement holds.

Theorem 1. Let 1 < ¢ <2, 9; € D, Bj € R, j = 1,d, and, besides, there

1
exists € > 0 such that v; (|k;|) ]kj\1_5+€ are nonincreasing. Then for arbitrary
natural M and n that satisfy condition M = 2"n*"1, we have the estimate

()M (log M)2 D (72) « ey (Dg’) <
q
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< W(n)M~F (log )PV (i73) (7)
where
d d
%(n) = min [T ¢ @), ¥(n) = max [Tv; ).
SN ST

Proof. The upper estimate follows from (4) and proposition 7, that is
emMm (Dg) < 6*/[ (Dg) <
q q

(it
< ‘P(n)Ml_é(logM)Q(d 1)(‘1 2>, I1<g<2 (8)
Let us go to the establishment of the lower estimate in (7). For the given
M let us choose n so that the relation M =< 2"n?"! holds. Note that the

consideration of the case 8 = 0 is sufficient to receive a corresponding estimate.
Let

d
DY (z) = Dz)p(a:) = 2dz Z H”L/Jj (kj) cos kjxj,
s kept(s)j=1
where pT(s) = {k = (k1,...,ka) : [2971] <k;j <2%, j=1,d}.By S we de-

note a set of vectors s € N, such that (s,1) = n and [6a N pT(s)] < 5 [pT ()|
hold. Then, using proposition 8 (if p = 2), we get

h=|[D50) =P o) >

5, (Dw(.) — PO .)) HZ : 2(8’1)(531)‘1) >

> <§s:

>>2”(%*5) Z (55<Dw(')_P(0M§'))HZ 7>>

(s,1)=n

1
a9\ q

> 2050 (] S0 (000 - P )

s€S ||kept(s) 9

Further, according to the Parseval equality, we can write

Q|

2\ 5

d
1 2"(570) S0 X ([ TTwky) >

seS \kept(s) \Jj=1

Q=

q

d
s 9"(57%) > (S [Tos@9)| 292 ] >
sesS :nj:1

s 2" o) (2"5;5[); >
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1 1 n d—1 1) d-1
> "D om)2ins = om)2(71)n% 9)
So, taking into account that M =< 2"n?~! from (9) we receive

1

em (Dg)q > @(n)Ml_%(log M)Q(d_l)(g_a, l<g<2. (10)

The lower estimate is proven. The relation (7) follows from (8) and (10).
The theorem is proven.

RenE'k 2. In the case ¥ (|kj|) = |k;| "7, r; >1— %, 1<¢q<2, k; € Z\{0},
Jj =1,d, corresponding results were obtained by E. S. Belinskii [8, 9].

Further, by using the lower estimate established in theorem 1, we get es-
timates of the best M—term trigonometric approximations for the classes of
functions Lg 1

The theorem holds.

Theorem 2. Let 1 < q < 2, 1; € D, 3; € R, j = 1,d, and, besides, there

1
exists € > 0 such that v; (|k;|) |k:j|1_5—~_‘E are nonincreasing. Then for arbitrary
natural M and n that satisfy condition M = 2"n%=1, the relation holds

11

1 1
< \I/(n)Ml_é(log M)Q(d_l)(g_f).
Proof. The upper estimate follows from the relation (4) and the already

known result for the best orthogonal trigonometric approximations. Given
proposition 7 we get

eMm <Lz’1>q < ety (szl)q <

1 — i_1
< W) M og M2 IE) 1 < g <o
Let us obtain the lower estimate. By virtue of proposition 9 and (1) we can
write

em (ng) = sup ienf sup f(m)Pg(x)dx =
T rerLy, M PyeLt(Om), |7
I1PY <1

= sup inf  sup / (277)_d/g0(t)D§(az—t)dt Pg’(x)dx .
el <108 prepigy), k4

1PY <1

Td

Now we are going to verify the conditions of the Fubini theorem (see, e.g., [30, c.
336]) for an integral on the right side of (12). Let us consider the integral

/ (1) / DY — )P (n)da | d. (13)

Td
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Since Dg) €Ly, 1 <qg<oo,and Pg’ € Ly, then using the Holder’s inequality
we get

[ pite-vriee < o], 4],

and then for an arbltrary function ¢ € Ly the integral (13) is convergent.
After changing the order of integration in (12) we receive

em <Lg’1)q = sup inf  sup /go(t)x

0
||‘10H1<1 M PgELL(GA[),ﬂ_d

1Py [l <1

x | (2m)~¢ / DY(x — )P} (v)dw | dt.

Using first the Holder’s inequality (if p = 1, p’ = o0) and then proposition 9
we get

M(LZJ =inf  sup (2m)~ D¢ (x —t)P w( ydz|| >
’ 01” P¢ELL OM
[e.9]
HP;"HQ/Q
>inf  sup (2m)~ Dw (x —1t)P, ( )dx| =

O PYeL-(0u),
I1PY [l <1

_ —d ¥
= (2m) %enm (Dﬁ>q.
By virtue of theorem 7 we can write
1 _ 1_1
en (Lgl) > @(n)M' 1 (log M)* oG 2), l<g<2.
/g
The lower estimate and consequently theorem 2 is proven.

Remark 3. The corresponding statement if ¢; (|k;]) = |k;|~"7, r; > 1 — %,
1< q<2, kj € Z\{0}, j =1,d, was formulated by A.S. Romanyuk [17].

4. CONCLUSIONS

The paper continues investigation of the approximative characteristics that
where considered earlier by Temlyakov V. N., Stepanets A.I., Romanyuk A.S.
and other mathematicians. Many results for the best M term and orthogonal
trigonometric approximations of classes of functions By 5, W5, H are already
obtained. Note that the great attention was paid to classes of functlons of one
variable. Nevertheless the problem of estimation of the best M-term approxi-
mations of classes L?l of multivariate (1, #)-differentiable functions remained
unsolved until now. We have obtained order relations of the quantities eps(f)q
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for the concrete functions Dg, that are of interest themselves. And besides, by
using established results, we have written down the order relations for classes
LY.
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