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ABSTRACT. In this paper necessary and sufficient conditions are
given for solvability of Lyapunov-Sylvester operator equations. We
explain how to solve these equations by the methods of convex pro-
gramming. Our purpose is to investigate some properties of stochastic
differential equations in Hilbert spaces. These objects arise in di-
verse areas of applied mathematics as models for various natural
phenomena, in particular, the evolution of complex systems with
infinitely many degrees of freedom. It is not trivial to carry over the
results concerning stochastic differential equations in finite-dimensio-
nal spaces to the infinite dimensional case.

KEYWORDS: Lyapunov-Sylvester operator equations, stochastic di-
fferential equation, Hilbert space.

PEBIOME. ¥ poboti HaBeieHo HEOOXiHI Ta JOCTATHI yMOBU PO3B A3~
HHs oriepaTopHoro piBustaHs JIsmynoBa-Cinbsectpa. O6rpyHTOBaHO
3aCTOCYBaHHS METO/IIB OIIYKJIOI'O ITpOTrpaMyBaHHS JIjis PO3B’si3yBaH-
Hsl TAKUX PIBHSIHbB.

KJIFOYOBI CJIOBA: oneparopse piBusinHs JIsmynoBa-CinbBecTpa, cTo-
xacTraHe audepeHIiagbie PIBHAHHASA, TiIb0epTiB TpoCTip.

INTRODUCTION

We investigate of some properties of Ito-Skorohod stochastic differential
equations in Hilbert spaces. In particular, we are interested in solvability of
Lyapunov-Sylvester operator equations. Existence of a solution to such an
equation provides stability of certain system of Ito-Skorohod stochastic di-
fferential equation in a Hilbert space [3].
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1. MAIN RESULT

Let X be a separable Hilbert space with the inner product (z,y) and the
norm |x|. We investigate the stochastic differential equation

dX; = X Adt + l; <XtBdek(t) + /U Ck(u)Xtﬂk(dt, du)) (1)

defined on a fixed filtered probability space. Here A, By and Cj(u) are some
unbounded linear operators defined on a dense set D in X satisfying

Z |Bpz|> < 0o and Z | (u)z]? < oo

k>1 k>1

for xeD; Wi (-), Wa(:), ... are independent Wiener processes; U (-, -), Da(, "), ..
are independent centered Poisson measures. Furthermore, it is assumed that X
is independent of {Wy, k = 1,2,...} and {5, i = 1,2,...}. We are interested
in the case when equation (1) has a solution with finite second moment. By a
solution to (1) is meant a strong operator process X; such that, for z € D, Xz
has a stochastic differential obtained by the application of the right-hand side
of (1) to z

A'H+HA+Y (B;;HBk + / C’Z(u)HCk(u)Hk(du)) =—G. (2
E>1 U
In the following we shall use an approach based on the methods of convex
programming. Instead of dealing with the Lyapunov-Sylvester operator equati-
on we shall solve an equivalent optimization problem.
Define the objective function

(po(H) = _)\min (—A*H — HA—-

- S (BLHEL -~ Jy GOm0 ) ). )
Hel,

E = {H : Amin(I{) > 07 )\max < 1}) (4)
where A\pin(+) and A\pax(+) are lower and upper bound of the operator spectrum
respectively.

Now we consider the optimization problem

H* = arg min ¢ (H). (5)
HelL

Lemma 1. Optimization problem (5) has a solution.
Proof. Let L be the intersection of the set of positive semidefinite operators
and the ball of radius 1. Note that L is a compact set. The function ¢o(H)
is continuous and attains its minimal value by the Weierstrass theorem. The
proof of Lemma 1 is complete.

Now we can reformulate a criterion of asymptotic stability in the mean
square.
Theorem 1. System (1) is asymptotically stable in the mean square if, and only
if, there exists operator Hy which is a solution to problem (5) for vo(Hp) < 0.
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Further, we investigate the structure and the domain of function po(H).
Lemma 2. The function po(H) is convez. B
Proof. The function Ap;y is concave because H € L. Therefore, for an arbitrary

£€(0,1)
Po(€H + (1 — ©)H2) = — Ay [ —A(EHy + (1 - € H)—
(€t + (1= M)A~ T (Bileth + (1~ )i~
- Gilu(et + (1 - ) Cu(wu(a) )| =
— i [ CAEH; — A*(1— €)Hy — EH1A — (1 — €)HoA—

-2 (BZ§H1Bk — Bi(1— &) HoBy—

k>1
—fC'k VEH O (u) g (du) gC’k §)H2C'k(u)ﬂk(du))] =
— —Amin [f(—A*Hl CHA- Y <B;H13k— (6)
i>1

— fC;(u)Hle(u)Hk(du)) + (1 — f) ( — A*Hy — Hy A—
U

- 5 (Bims - [ CiHaCu(w Muan) ) )| <

k>1

< —&in [ —A*H —HiA- )] <BZHlBk;—
E>1

- fC’Z(u)Hle(u)Hk(du)>} — (1 — E)Amin |: — A*HQ — HQA—

i
S (BkHQBk [ C (W) HaCi(u )Hk(du)>] -
k>1
= 5@0(H1) (1 —&)po(Hz).

The proof of Lemma 2 is complete.

Lemma 3.The set L defined in (4) is convex.

Proof. This follows from the fact that the set L is the intersection of a convex
cone of positive semidefinite operators and the ball of radius 1.

Definition 1. We call
(Hy, Hp) = > hishi, (7)
i>1 5>1

inner product of operators {Hi, Hy} C L where H; = {h}j}, Hy = {h?j},
i, > 1.
Definition 2. The operator ® satisfying

@(H) — ¢(Ho) = (P(p(Hy)), H — Hoy)

is called generalized gradient of the convex function p(H) at point Hy € L.
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Definition 3. The set of operators ® which are generalized gradients of
a function p(H) at point Hy € L is called gradient set (notation G,[H]).
Theorem 2. The generalized gradient of the function

900(H> = _>\min <A*H — HA— ( )
B 8

- (B HBk—fC* YHC),(u )Hk(du))>, Hel

k>1

at the point Hy € L is determined by the operator
® =A{ei}t, i = —Ynm| — A Dy — Ay A-

- Z (BZA’L]B]{J fc Aljck( )Hk(du)))ymlm Z?] = 1a2>"-7

k>1

(9)

where A;; is an infinite matriz such that 1 is located at the intersection
of the ith row and the jth column, while the other elements are 0, Ymin @S
a unit vector such that the quadratic form

( A*Hy— HyA =) (BkHOBk — /Ck ) HoCly(u )Hk(du))>

k>1

attains minimal value.
Proof. Plainly, there is the equality of symmetric positive semi-definite
operators

Amm[ —A*H—-HA-Y (B*HBk fc* VHCi( )nk(du))} -

k>1
vi= k>1
Further,
wo(H) — o(Ho) = —Amin( — A*H — HA— 3" (B HB),—

k>1

— [ C(w) HCy (u) T (dur)) ) 4 Aunin ( — A*Ho — HyA—
U

- 2 (BiHoBi = [ Cilw HoGu(w)lk(dw) ) =
= min {y" - ATH — HA— Y (B{HB, (10)
=1 k>1

—ka HC’k( Mg (du) ))y} + mm {y ATHO — HoA—

k>1

Assume that the first summand of (10) attains the minimal value at
the unit sphere when y = y;, and the second summand does so when
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Y = Ymin- We have
SOO(H) - SDO(HO) = —?ff( —A"H - HA — Z (BZHB—

k>1

— f C* HCk )Hk(du)))yl + yfnin( — A*HO — H()A—
— > (BiHoBy — f C:(u) HoClp () T () ) Yomin =

k>1

=y;(—A"H—HA- k;(B*HBk fc* )JH Co(u) g, (du)) ) y1+
+ypn(— ATH — HA — k;l(B*HBk— fc* )H Cip(w)IT,(dr) ) ) Yomin—
_ymm[ A*(H — Ho) — (H — Ho)A — Z(B;(H_HO)Bk_

k>1

—JCZ(U)(H — Ho)Cr(u) g (dw)) | Yrmin.

Since the quadratic form
y* ( —A"H-HA->" (B;;HBk - /og(u)ﬂok(u)nk(du)»y
k>1 7
attains its minimum at y;, then
—y;(— A*H — HA - 2 (BiHBy, — fc* )H Co(u)j,(du)) )1+
+yiin(— A*H — HA — Z (B HBk—fO* )H Cip(u)Ili(du)) ) Yumin > 0.

E>1
It follows that

wo(H) — vo(Ho) > —yin( — A*(H — Hp) — (H — Ho)A—
— S (Bp(H — Hy)By, — fo* )(H — Ho)Cr(u) Ty (du)) ) Y.~ (11)

k>1
Any operator H — H can be represented as

H—Hy=D > (h~

i>1 j7>1

Indeed,
~Yuin (= A*(H — Ho) — (H — Ho)A = 3 (Bi(H — Hy) By~
k>1

—gcii(u)(H — Ho)C(u)IL(dw) ) ) Ymin =
= —Ynin| = A2 Y (hig — B A = D0 37 (hij — B A A—

i>15>1 i>15>1
— 2 (B X0 Yo (hyy — ) Ay Bi—
k>1 i>15>1
[{ ; ;( hgj)AijCk(u)Hk(du))]ymin =
i>1j>
=3 3 { = Y (= ATA; — AjjA = 3 (BiAi; Br—
i>15>1 k=1
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/C* VHCh(u )Hk(du>>ymln hij — ZZ%J i

i>1 j>1
According to Definition 2 we have
wo(H) — SOO(HO) > <cI>,H - H0>7
where
(I) = {Qp’lj}7 gpl] - yHllH( - A*A AUA_
— Z (BZAngk fO Az]Ok( ) (du)))ymin'

k>1
The proof of Theorem 2 is complete.
Now we replace problem (5) by a problem of unconditional minimizati-
on by virtue of introducing the Lagrange function

L(H,B) = po(H) + pro1(H) + Bapa(H), f1 >0, B2 > 0. (12)

Here, o1(H) = —Auin(H), p2(H) = Amax(H) — 1. Since the functions
wo(H), p1(H), p2(H) are convex, we have a problem of convex program-
ming.

Theorem 3. A point Hy € L is a solution to problem (5) if, and only
if, there exists a vector (BY,83), such that the the triple (Hy, BY,39) is a
saddle point of Lagrange function (12) on the set

Lx{B >0, B >0}

The proof is a consequence of the Kuhn-Tucker theorem.

Denote by G, [H] the gradient set of the fuction ¢ (H) at point Hy and
® = {¢;;},1,j > 1 the set of operators with elements ¢}; = —2]; Ay
Let G, [H| be the gradient set of the function ypo(H) at point Hy, where

= {e} i, = Ln, ¢ = =2l AijTmax, and T, Tmax are unit
vectors at which the quadratic form 27 Hz attains minimum and maxi-
mum value, respective.

The linear combination
GLH] = Guo[H] + p1Gy, [H] + B2Goy, [H]

is a gradient set of the Lagrange function L(H, 3). With this at hand the
theorem can be reformulated in terms of the generalized gradients.
Theorem 4. Hy € L is a solution to problem (5) if, and only if, there
exist vector (B, 3), such that the gradient set

GLH] = Gy [H] + B1Gy, [H] + BoG,[H]
contains zero operator, i.e., 0 € Gr(H).
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Thus, when solving optimization problem (5) to build gradient and set

it to check for zero operator Hy, where the generalized gradient becomes
zero, gives the solution of the problem (5).
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