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Abstract. In this paper, we consider a variational inequalities with
Lipschitz continuous pseudo-monotone operators. Quite a number of
operational research problems in applications can be stated in this
form. We propose new variant of mirror descent method (mirror-prox
algorithm) for solving the variational inequalities. This method can
be interpreted as the modification of two-step L. D. Popov algorithm
with the projection onto the feasible set in the sense of Bregman di-
vergence. Our method, like other mirror descent schemes, can effecti-
vely take into account the structure of the feasible set of the problem.
The main theoretical result is the proof of the theorem about the
convergence of the method. Several preliminary numerical experi-
ments have been also performed to illustrate the convergence of the
method.
Keywords: Variational inequality, Bregman divergence, Mirror-Prox
Algorithm, Convergence.

Резюме. В статтi розглядаються варiацiйнi нерiвностi з лiпши-
цевими та псевдомонотонними операторами. Велика кiлькiсть ва-
жливих прикладних задач дослiдження операцiй може бути сфор-
мульована у цiй формi. Для розв’язання варiацiйних нерiвностей
пропонується новий метод типу дзеркального спуску (дзеркально-
проксимальний алгоритм). Метод можна проiнтерпретувати як
модифiкацiю алгоритму Попова з використанням проектування
на допустиму множину у розумiннi вiдстанi Брегмана. Основний
теоретичний результат — теорема про збiжнiсть методу. Також
наведено результати декiлькох чисельних експериментiв.
Ключовi слова: варiацiйна нерiвнiсть, вiдстань Брегмана, дзер-
кально-проксимальний алгоритм, збiжнiсть.
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1. Introduction

There are a lot of interesting and actual problems in operation research
that can be written in the form of variational inequalities. The solving of
the last is the actively developing field of applied nonlinear analysis [1–9].
There are currently a lot of methods to solve variational inequalities, includi-
ng projection type methods, i.e. using a metric projection onto the feasible
set [1, 3, 10–13]. It’s known that in the saddle point search, Nash equilibri-
um problems the convergence of the most simple projection method requires
strengthened monotonicity conditions [1]. In the case of non-compliance there
are several approaches. One of them is a regularization of the original problem
in order to give it the desired property. In extra-gradient type methods fi-
rst proposed by G. M. Korpelevich [13] the convergence is achieved without
the modification of problems. The study of these methods was performed in
many papers [14–24]. In 2011, the authors in [16, 17] have replaced the second
projection onto any closed convex set in the extra-gradient method by one onto
a half-space and proposed the subgradient extra-gradient method for variational
inequalities in Hilbert spaces, see also [23, 24].

In 1980, L. D. Popov [25] proposed very interesting modification of Arrow-
Hurwicz scheme for approximation of saddle points of convex-concave functions
in Euclidean space. Let X and Y are closed convex subset of Euclidean spaces
Rd and Rp, respectively, and L : X×Y → R be a differentiable convex-concave
function. Then, the method [25] approximation of saddle points of L on X ×Y
can be written as 

x1 , x̄1 ∈ X , y1 , ȳ1 ∈ Y , λ > 0,
xn+1 = PX (xn − λL′

1(x̄n, ȳn)) ,
yn+1 = PY (yn + λL′

2(x̄n, ȳn)) ,
x̄n+1 = PX (xn+1 − λL′

1(x̄n, ȳn)) ,
ȳn+1 = PY (yn+1 + λL′

2(x̄n, ȳn)) ,

where PX and PY are metric projection onto X and Y , respectively, L′
1 and L′

2

are partial derivatives. Under some suitable assumptions, L.D. Popov proved
the convergence of this method. In recent works [26,27] proved the convergen-
ce of this algorithm for variational inequalities with monotone and Lipschitz
operators in infinite-dimensional Hilbert space, and proposed some modificati-
ons of this algorithm.

Euclidean distance and projection were used in all these methods. And often
this does not allow to take into account the structure of feasible sets and solve
problems effectively. A possible solution to the situation is a more flexible
selection of the distance for projection onto the feasible set. One of the first
successful implementations of this strategy is the work of L. M. Bregman [28]
proposed a cyclic non-Euclidean projection method for finding a common point
of convex sets. This work has opened the wide scientific field in mathematical
programming and nonlinear analysis.

The mirror descent method was proposed in the late 70-ies of the last century
by A. S. Nemirovski and D. B. Yudin for solving convex optimization problems
[29]. Since then the method has been widely used for solving large-scale problems
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[30–32]. For problems with constraints this method can be interpreted as a
variant of the subgradient projection method when projecting is understood in
the sense of Bregman divergence (Bregman distance) [32]. The mirror descent
method allows to take into account the structure of feasible set of optimization
problems. For example, for the probability simplex we can use the Kullback-
Leibler divergence that is the Bregman divergence built on negative entropy.
And then we have explicitly calculated projection operator on the simplex [32].
Versions of the mirror descent method for solving variational inequalities and
saddle problems based on the Korpelevich extra-gradient algorithm are studied
in [2, 30, 33–35]. These includes also stochastic methods [30,34].

In this paper we study a new version of the mirror descent method for
solving variational inequalities with Lipschitz continuous and pseudo-monotone
operators based on the two-step L. D. Popov algorithm [25–27].

The remainder of the paper is organized as follows. In Sect. 2 we formulate the
problem and introduce all necessary constructions. In Sect. 3 we propose a new
variant of mirror descent method (mirror-prox algorithm) for the variational
inequalities and consider several versions for solving more specific problems. The
convergence behavior of the proposed algorithm is studied in Sect. 4. In Sect.
5 we perform several numerical experiments to illustrate the computational
performance of the proposed algorithm. Finally, Sect. 6 contains concluding
remark.

2. Preliminaries
For any finite-dimensional real vector space E, we denote by E∗ its dual. We

denote the value of a linear function a ∈ E∗ at b ∈ E by (a, b). Let ∥·∥ denote
some norm on E (not necessary Euclidean) and ∥·∥∗ denote the norm on E∗,
which is dual to ∥·∥

∥a∥∗ = max {(a, b) : ∥b∥ = 1} .
Let C be a nonempty subset of space E, A be a operator, that acts from E

to E∗. Consider the variational inequality problem:

find x ∈ C such that (Ax, y − x) ≥ 0 ∀ y ∈ C. (1)

The set of solutions of the problem (1) is denoted S.
Assume that the following conditions are satisfied:

• the set C ⊆ E is convex and closed;
• operator A : E → E∗ is pseudo-monotone and Lipschitz continuous

with a constant L > 0 on C;
• the set S is nonempty.

Remark 1. Recall, that operator A on the set C is called pseudo-monotone if
for all x, y ∈ C from (Ax, y − x) ≥ 0 follows (Ay, y − x) ≥ 0 [1].

Consider, so-called, dual variational inequality [1]:

find x ∈ C such that (Ay, y − x) ≥ 0 ∀ y ∈ C. (2)

The set of solutions of (2) we will denote as Sd. Inequality (2) sometimes is
called weak or dual formulation of (1), and solutions of (2) – weak solutions
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of (1) [1]. Indeed, if A is pseudo-monotone we have that S ⊆ Sd. With our
conditions we have that Sd = S. Particularly, the set S is convex and closed [1].

We will set the construction necessary for algorithm formulation. Let function
φ : E → R = R ∪ {+∞} satisfies the condition [34]:

• φ is continuous and convex on C. Particularly, the set

Co = {x ∈ C : ∂φ (x) ̸= ∅}
is nonempty;

• φ is regular on Co, i.e. subdifferential ∂φ on the set Co has continuous
selector ∇φ;

• function φ is strongly convex with respect to the chosen norm ∥·∥ with
constant of strong convexity σ > 0:

φ (a) ≥ φ (b)− (∇φ (b) , a− b) +
σ

2
∥a− b∥2 ∀a ∈ C , b ∈ Co.

Remark 2. Such functions are called «distance generating functions» [34].

Remark 3. The minimization problem

(a, y) + φ (y) → min
y∈C

, a ∈ E∗,

has only one solution that lies in Co.

The Bregman divergence associated with φ is defined as

d (a, b) = φ (a)− φ (b)− (∇φ (b) , a− b) ∀a ∈ C , b ∈ Co.

Remark 4. Consider two main examples. If φ (·) = 1
2 ∥·∥

2
2, where ∥·∥2 is Eucli-

dean norm, we will have d (x, y) = 1
2 ∥x− y∥22. For probability simplex

Sm =

{
x ∈ Rm : xi ≥ 0,

m∑
i=1

xi = 1

}
and negative Boltzmann-Shannon entropy φ (x) =

∑m
i=1 xi lnxi (it is strongly

convex with respect to the ℓ1-norm on Sm) we obtain Kullback-Leibler di-
vergence (KL-divergence)

d (x, y) =

m∑
i=1

xi ln
xi
yi
, x ∈ Sm, y ∈ ri (Sm) .

Also it is performed useful 3-point identity [32]:

d (a, c) = d (a, b) + d (b, c) + (∇φ (b)−∇φ (c) , a− b) . (3)

From strong convexity φ we can estimate

d (a, b) ≥ σ

2
∥a− b∥2 ∀a ∈ C, b ∈ Co. (4)

Suppose, that we have an ability to solve effectively following strongly convex
minimization problems:

πx (a) = argmin
y∈C

{− (a, y − x) + d(y, x)} ∀a ∈ E∗, x ∈ Co.
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The point πx (a) in Euclidean case coincides with Euclidean metric projection

PC (x+ a) = argmin
y∈C

∥y − (x+ a)∥2 .

For probability simplex case Sm and KL-divergence we have [32]

πx (a) =

(
x1e

a1∑m
j=1 xje

aj
,

x2e
a2∑m

j=1 xje
aj
, . . . ,

xme
am∑m

j=1 xje
aj

)
, a ∈ Rm, x ∈ ri (Sm) .

Operator πx : E∗ → Co is called prox mapping.

3. The Algorithm

Let us describe the Mirror-Prox Algorithm for problems (1).

Algorithm 1. Mirror-Prox Algorithm for Variational Inequalities

Choose initial points x1 ∈ Co, y1 ∈ C, and number λ > 0. Generate the
sequence of elements xn, yn using iterative scheme

xn+1 = πxn (−λAyn) ,
yn+1 = πxn+1 (−λAyn) .

The rule how to choose the parameter λ we will specify in the next section.

Remark 5. If φ (·) = 1
2 ∥·∥

2
2, then Algorithm 1 takes the form [25,26,40,42]:{
xn+1 = PC (xn − λAyn) ,
yn+1 = PC (xn+1 − λAyn) .

We will show several specific versions of Algorithm 1.
Consider the variational inequality on the probability simplex:

find x ∈ Sm such that (Ax, y − x) ≥ 0 ∀ y ∈ Sm.

If we choose KL-divergence we obtain the next version of Algorithm 1:
xn+1
i =

xni exp(−λ(Ayn)i)∑m
j=1 x

n
j exp(−λ(Ayn)j)

, i = 1, . . . ,m,

yn+1
i =

xn+1
i exp(−λ(Ayn)i)∑m

j=1 x
n+1
j exp(−λ(Ayn)j)

, i = 1, . . . ,m,

where (Ayn)i ∈ R is i-th coordinate of vector Ayn ∈ Rm, λ > 0.
In network equilibrium problems, machine learning and game theory we have

to work with variational inequalities with direct products of scaled simplex’s

C =

p∏
k=1

rkSmk
⊆ R

∑p
k=1mk ,

where rkSmk
= {x ∈ Rmk : xi ≥ 0,

∑mk
i=1 xi = rk}, rk > 0, i.e. with problems

find x ∈
p∏

k=1

rkSmk
such that (Ax, y − x) ≥ 0 ∀ y ∈

p∏
k=1

rkSmk
. (5)
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From separable function

φ (x) =

p∑
k=1

φk (xk) =

p∑
k=1

mk∑
i=1

xk,i
rk

ln
xk,i
rk

,

where x = (x1, . . . , xp) =

x1,1, . . . , x1,m1︸ ︷︷ ︸
x1

, . . . , xp,1, . . . , xp,mp︸ ︷︷ ︸
xp

 ∈ R
∑p

k=1mk ,

we build Bregman divergence on
∏p
k=1 rkSmk

:

d (x, y) =

p∑
k=1

dk (xk, yk) =

p∑
k=1

mk∑
i=1

xk,i
rk

ln
xk,i
yk,i

.

Algorithm 1 for variational inequality (5) with such choose of Bregman di-
vergence takes the form:

xn+1
k,i = rk

xnk,i exp(−λrk(Ayn)k,i)∑mk
j=1 x

n
k,j exp(−λrk(Ayn)k,j)

, k = 1, . . . , p, i = 1, . . . ,mk,

yn+1
k,i = rk

xn+1
k,i exp(−λrk(Ayn)k,i)∑mk

j=1 x
n+1
k,j exp(−λrk(Ayn)k,j)

, k = 1, . . . , p, i = 1, . . . ,mk,

where (Ayn)k,i –
(∑k−1

t=1 mt + i
)
-th coordinate of vector Ayn ∈ R

∑p
k=1mk , λ >

0.
Notice, that if for some n ∈ N the equality is fulfilled

xn+1 = xn = yn (6)

then yn ∈ S and the following stationarity condition holds xk = yk = yn for all
k ≥ n. Indeed, the equality xn+1 = πxn (−λAyn) means that

(Ayn, y − xn+1) + λ−1 (∇φ (xn+1)−∇φ (xn) , y − xn+1) ≥ 0 ∀y ∈ C.

From (6) we have that (Ayn, y − yn) ≥ 0 ∀y ∈ C, i.e. yn ∈ S.
Further, we assume that for all numbers n ∈ N the condition (6) doesn’t hold.

In the following section the convergence of the sequences (xn), (yn) generated
by the Algorithm 1 is proved.

4. Main Results

We start the analysis of the convergence with the proof of important inequali-
ty for sequences (xn) and (yn), generated by the Algorithm 1.

Lemma 1. Let sequences (xn), (yn) be generated by the Algorithm 1, and let
z ∈ S. Then, we have

d (z, xn+1) ≤ d (z, xn)−
(
1−

(
1 +

√
2
) λL
σ

)
d (yn, xn)−

−
(
1−

√
2
λL

σ

)
d (xn+1, yn) +

λL

σ
d (xn, yn−1) . (7)
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Proof. We have (using twice the identity (3))

d(z, xn+1) = d(z, xn)− d(xn+1, xn) + (∇φ(xn+1)−∇φ(xn), xn+1 − z) =

= d(z, xn)− d(xn+1, yn)− d(yn, xn)−
− (∇φ(yn)−∇φ (xn) , xn+1 − yn) + (∇φ (xn+1)−∇φ (xn) , xn+1 − z) . (8)

From definition of points xn+1 and yn it follows that

λ (Ayn, z − xn+1) + (∇φ (xn+1)−∇φ (xn) , z − xn+1) ≥ 0, (9)

λ (Ayn−1, xn+1 − yn) + (∇φ (yn)−∇φ (xn) , xn+1 − yn) ≥ 0. (10)
Using inequalities (9), (10) for estimation in (8), we obtain

d (z, xn+1) ≤ d (z, xn)− d (xn+1, yn)− d (yn, xn) +

+λ {(Ayn−1, xn+1 − yn) + (Ayn, z − xn+1)} =

= d (z, xn)− d (xn+1, yn)− d (yn, xn) +

+λ {(Ayn−1 −Ayn, xn+1 − yn) + (Ayn, z − yn)} . (11)

Operator A is pseudo-monotone, so (Ayn, z − yn) ≤ 0. Using this inequality in
(11), we get

d (z, xn+1) ≤ d (z, xn)− d (xn+1, yn)− d (yn, xn) +

+λ (Ayn−1 −Ayn, xn+1 − yn) . (12)

Now we will estimate the term λ (Ayn−1 −Ayn, xn+1 − yn). We have

λ (Ayn−1 −Ayn, xn+1 − yn) ≤ λ ∥Ayn−1 −Ayn∥∗ ∥xn+1 − yn∥ ≤
≤ λL ∥yn−1 − yn∥ ∥xn+1 − yn∥ ≤

≤ λL

{
1

2
√
2
∥yn−1 − yn∥2 +

1√
2
∥xn+1 − yn∥2

}
≤

≤ λL

2
√
2

{√
2 ∥yn−1 − xn∥2 +

(
2 +

√
2
)
∥xn − yn∥2

}
+
λL√
2
∥xn+1 − yn∥2 =

≤ λL

2
∥yn−1 − xn∥2 + λL

1 +
√
2

2
∥xn − yn∥2 +

λL√
2
∥xn+1 − yn∥2 .(13)

Here we used elementary inequalities

ab ≤ ε2

2
a2 +

1

2ε2
b2 , (a+ b)2 ≤

√
2a2 +

(
2 +

√
2
)
b2.

After estimation the norms in (13) using inequality (4), we obtain

λ (Ayn−1 −Ayn, xn+1 − yn) ≤
λL

σ
d (xn, yn−1) +

+
λL

σ

(
1 +

√
2
)
d (yn, xn) +

λL

σ

√
2d (xn+1, yn) . (14)

Applying (14) in (12), we have

d (z, xn+1) ≤ d (z, xn)− d (xn+1, yn)− d (yn, xn)+

+λLσ−1d (xn, yn−1) + λLσ−1
(
1 +

√
2
)
d (yn, xn) + λLσ−1

√
2d (xn+1, yn) ≤
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≤ d (z, xn)−
(
1− λLσ−1

√
2
)
d (xn+1, yn)−

−
(
1− λLσ−1

(
1 +

√
2
))

d (yn, xn) + λLσ−1d (xn, yn−1) ,

i.e. the inequality (7). �
To prove the convergence we need next elementary fact.

Lemma 2. Let non-negative sequences (an), (bn) such that

an+1 ≤ an − bn.

Then exists the limit limn→∞ an ∈ R and
∑∞

n=1 bn < +∞.

Now we can formulate the main result.

Theorem 1. Let C ⊆ E is nonempty convex closed set, operator A : E → E∗

is pseudo-monotone and Lipschitz continuous with a constant L > 0 and S ̸= ∅.
Assume that λ ∈

(
0,
(√

2− 1
)
σ
L

)
. Then sequences (xn), (yn), that generated by

the Algorithm 1, converge to the solution z̄ ∈ C of the problem (1).

Proof. Let z ∈ S. Assume
an = d (z, xn) + λLσ−1d (xn, yn−1) ,

bn =
(
1− λLσ−1

(
1 +

√
2
))

(d (yn, xn) + d (xn+1, yn)) .

The inequality (7) takes the form

an+1 ≤ an − bn.

Then from Lemma 2 we can conclude, that it exists the limit

lim
n→∞

(
d (z, xn) + λLσ−1d (xn, yn−1)

)
and

∞∑
n=1

(
1− λLσ−1

(
1 +

√
2
))

(d (yn, xn) + d (xn+1, yn)) < +∞.

Wherefrom we obtain

lim
n→∞

d (yn, xn) = lim
n→∞

d (xn+1, yn) = 0 (15)

and convergence of sequence (d (z, xn)) for all z ∈ S. From (15) follows

lim
n→∞

∥yn − xn∥ = lim
n→∞

∥xn+1 − yn∥ = 0 (16)

and naturally
lim
n→∞

∥xn+1 − xn∥ = 0. (17)

From inequality
d (z, xn) ≥

σ

2
∥z − xn∥2

and (16) follows that sequences (xn), (yn) are bounded.
Consider the subsequence (xnk

), which converges to some point z̄ ∈ C. Then
from (16) follows that ynk

→ z̄ and xnk+1 → z̄. Show that z̄ ∈ S. We have

(Aynk
, y − xnk+1)+

1

λ
(∇φ (xnk+1)−∇φ (xnk

) , y − xnk+1) ≥ 0 ∀y ∈ C. (18)
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Passing to the limit (18) taking into account (17), we get

(Az̄, y − z̄) ≥ 0 ∀y ∈ C,

i.e. z̄ ∈ C.
Now we show that xn → z̄ (then from ∥xn − yn∥ → 0 it will follow that also

yn → z̄). It is known, that the limit

lim
n→∞

d (z̄, xn) = lim
n→∞

{φ (z̄)− φ (xn)− (∇φ (xn) , z̄ − xn)}

exists. Because the lim
n→∞

d (z̄, xnk
) = 0, so lim

n→∞
d (z̄, xn) = 0. Wherefrom we

have ∥xn − z̄∥ → 0. �
Remark 6. If σ = 1, so we can use the scheme:{

xn+1 = πxn
(
− 1

3LAyn
)
,

yn+1 = πxn+1

(
− 1

3LAyn
)
.

5. Computational experiments
This section studies the numerical behavior of Algorithm 1 on a test problem

which is related to the PageRank computation.
Consider the optimization problem on the probability simplex SN ⊆ RN :

find x ∈ SN such that ∥Ax− x∥∞ = min
ζ∈SN

∥Aζ − ζ∥∞, (19)

with a N ×N column-stochastic matrix A and the ℓ∞-norm ∥ · ∥∞.
We use game approach proposed in [36, 37] for original PageRank problem.

Using representation

∥Ax− x∥∞ = max
y∈B1

(y,Ax− x) , B1 =
{
y ∈ RN : ∥x∥1 ≤ 1

}
,

we transform the optimization problem (19) to the form of a saddle point
problem:

min
x∈SN

max
y∈B1

(y,Ax− x) = max
y∈B1

min
x∈SN

(y,Ax− x) . (20)

Saddle point problem (20) is equivalent to the variational inequality

find x ∈ SN , y ∈ B1 such that (A∗y − y, ζ − x) +

+(x−Ax, η − y) ≥ 0 ∀ ζ ∈ SN ∀ η ∈ B1. (21)

For solving the problem (21) we apply the Algorithm 1. In this case it takes
the form 

xn+1 = πSN
xn (λ (E −A∗) ηn) ,

yn+1 = πB1
yn (λ (A− E) ζn) ,

ζn+1 = πSN
xn+1

(λ (E −A∗) ηn) ,

ηn+1 = πB1
yn+1

(λ (A−E) ζn) ,

where πSN
x : RN → SN , πB1

y : RN → B1 are suitable prox mappings, λ > 0.
For the ℓ1-ball B1 we used only the Euclidean distance (Euclidean setti-

ng). For probability simplex SN we used Euclidean distance or KL-divergence
(Entropy setting). Column-stochastic matrices dimensionality 100 × 100,
1000 × 1000 and 2000 × 2000 are generated randomly. The projections onto
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Fig. 1. ∆n and # iter for N = 100, Euclidean–Euclidean,
elapsed time 0.26 sec

Fig. 2. ∆n and # iter for N = 100, Entropy–Euclidean,
elapsed time 0.25 sec

the simplex and ℓ1-ball are implemented by the efficient algorithm [38]. The
starting points x1, y1, ζ1 and η1 are chosen as (1/N, 1/N, ..., 1/N).

To illustrate the numerical behavior of Algorithm 1, we have performed
experiments for number of iterations (# iter). Figs. 1–6 describe the behavior
of

∆n = ∥Aζn − ζn∥∞
generated by Algorithm 1 for various stepsizes λ. In these figures, the y-axes
represent for value of ∆n while the x-axes are for number of iterations.

All programs are implemented on a Asus Laptop Intel(R) Pentium(R) CPU
B980 @ 2.40GHz 2.40 GHz, RAM 4.00 GB (using Code::Blocks environment
on C++ language).
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Fig. 3. ∆n and # iter for N = 1000, Euclidean–Euclidean,
elapsed time 26.682 sec

Fig. 4. ∆n and # iter for N = 1000, Entropy–Euclidean,
elapsed time 26.238 sec

6. Conclusion

In this paper we propose new variant of mirror descent method (mirror-
prox algorithm) for solving the variational inequalities with pseudo-monotone
operators. This method can be interpreted as the modification of two-step
L. D. Popov algorithm with the projection on the feasible set in the sense
of Bregman divergence. Our method, like other mirror descent schemes, can
effectively take into account the structure of the feasible set of the problem. The
main theoretical result is the proof of the theorem about the convergence of the
method. Several preliminary numerical experiments have been also performed
to illustrate the convergence of the method.
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Fig. 5. ∆n and # iter for N = 2000, Euclidean–Euclidean,
elapsed time 104.461 sec

Fig. 6. ∆n and # iter for N = 2000, Entropy–Euclidean,
elapsed time 103.510 sec

In one of the future work we plan to consider a randomized version of Algori-
thm 1 and carry out the corresponding convergence analysis. It will help to have
a progress in using this variant the mirror descent method for solving variational
inequalities of huge size. Randomized versions of the mirror descent method,
based on the extra-gradient algorithm are studied in [30,34].

Also it is interesting to obtain similar results for the equilibrium programmi-
ng problems [39–42].

In conclusion we note that, in our opinion, the proposed Algorithm is promi-
sing for the further investigation and can be used in practical applications.

This research is supported by the Ministry of Education and Science of
Ukraine (project 0116U004777) and grant of the State Fund For Fundamental
Research (President’s of Ukraine grant, project F74/24921).
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