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Abstract. The paper presents results of numerical experiments of
finding a nearest pair of points lying on two nonintersecting smooth
curves in Euclidean space, i.e., two points on the curves with mini-
mum distance between them. Mathematical model that proposed is
based on solving motion equations describing dynamics of interacti-
ng material points. The examples of method application to the some
spatial curves are given.
Keywords: smooth curves, nearest pair, algorithm, Hamilton equati-
on.

Анотацiя. В роботi представлено результати чисельних експе-
риментiв з пошуку найближчої пари точок, якi лежать на двох
гладких кривих, що не перетинаються в евклiдовому просторi,
тобто двох точок на кривих з мiнiмальною вiдстанi мiж ними.
Запропонована математична модель основана на розв’язку рiв-
нянь руху, якi описують динамiку взаємодiї матерiальних точок.
Наведено приклади застосування методу до деяких просторових
кривих.
Ключовi слова: гладкi кривi, найближча пара, алгоритм, рiв-
няння Гамiльтона.

1. Notation and problem statement

Let A, B — subsets of Euclidean space Rn. The search for the closest pairs or
calculate the minimum distance between the elements of this sets is the popular
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optimization problem

find a0 ∈ A, b0 ∈ B : ∥a0 − b0∥ = min
a∈A, b∈B

∥a− b∥. (1)

The effective solve of problem (1) is a key element in many applications (for
example, when creating route planners for robotics). Therefore, it is natural
that many investigators paid attention to the problem (1) for different classes
of sets [1–8].

We consider the problem (1) for two nonintersecting smooth curves in R3

x⃗(α) = (x1(α), x2(α), x3(α)) , y⃗(β) = (y1(β), y2(β), y3(β)) ,

where radius vectors x⃗, y⃗ : R → R3 — continuously differentiable vector functi-
ons of scalar parameters α, β.

A minimization problem has a form

∥x⃗(α)− y⃗(β)∥ → min
α, β

.

2. Mathematical model

In the paper [7] we propose a method for solving this problem that uses
a model of physical interaction of material points with a potential energy of
general form.

Hamilton motion equations for our mathematical model are

α̇ = 1
∥x⃗ ′

α∥2
pα
mα
,

β̇ = 1
∥y⃗ ′

β∥2
pβ
mβ
,

ṗα = p2α
mα

⟨x⃗ ′
α,x⃗

′′
α ⟩

∥x⃗ ′
α∥4

+ 1
r
∂U
∂r ⟨r⃗, x⃗

′
α⟩ − λpα,

ṗβ =
p2β
mβ

⟨y⃗ ′
β ,y⃗

′′
β ⟩

∥y⃗ ′
β∥4

− 1
r
∂U
∂r ⟨r⃗, y⃗

′
β⟩ − λpβ,

(2)

where r⃗(α, β) = y⃗(β)−x⃗(α) — radius vector between two points on given curves;
r = ∥r⃗∥, mα > 0, mβ > 0, α, β, pα, pβ — independent variables (coordinates
and impulses); λ — positive constant.
Examples with analytical solution. Any two curves in plane are suitable
for test the method, if we can easy find an analytical solution.

Let one of curves be a parabola symmetric respect to y axis and passing
through the origin, and second one the line in xy plane that does not intersect
parabola {

y = ax2, a > 0;
y = bx+ c.

(3)

Lets construct a tangent line to parabola that simultaneously parallel to the
line. Then drop a perpendicular from tangency point to our line. Obviously
that distance between tangency point and point of projection is the minimum
distance.

First get the tangency point as a solution of quadratic equation

ax2 − bx− c = 0, (4)
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where

x1,2 =
b±

√
b2 + 4ac

2a
. (5)

Two roots x1 ̸= x2 means that parabola and line are crossed that corresponds
to b2 + 4ac > 0.

We search for the tangency point with only one root, i.e. x1 = x2, that
corresponds to b2 + 4ac = 0 or c = − b2

4a .
When roots are absent or all them imaginary then the line is parallel to the

tangent line, i.e. k2 + 4ab < 0.
Then for the tangency point we have

c = − b2

4a
. (6)

For (3) the radius vectors have the form{
x⃗ = (α, bα+ c, 0);
y⃗ = (β, aβ2, 0).

(7)

Respectively r⃗ = y⃗ − x⃗ = (β − α, aβ2 − bα− c, 0). Then

r2 = (β − α)2 + (aβ2 − bα− c)2 (8)

and have equation

∂(r2)

∂α
= −baβ2 − β + α(b2 + 1) + bc = 0. (9)

From (9) the projection of the tangency point on the line is

α0 =
β + baβ2 − bc

1 + b2
. (10)

Similarly

∂(r2)

∂β
= (1 + 2abβ)α− 2a2β3 − (1− 2ac)β = 0. (11)

Solution for β0 get from (11) after substitution α0
β = b

2a ;

β = b+
√
b2+4ac
2a ;

β = −−b+
√
b2+4ac
2a .

(12)

From (6) follows that last two roots are imaginary. Then

β0 =
b

2a
(13)
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and corresponding functions are

x⃗ ′
α = (1, b, 0);
y⃗ ′
β = (1, 2aβ, 0);

x⃗ ′′
α = (0, 0, 0);
y⃗ ′′
β = (0, 2a, 0);

x⃗ ′ 2
α = ⟨x⃗ ′

α, x⃗
′
α⟩ = 1 + b2;

⟨x⃗ ′
α, x⃗

′′
α⟩ = 0;

y⃗ ′ 2
β = ⟨y⃗ ′

β, y⃗
′
β⟩ = 1 + 4a2β2;

⟨y⃗ ′
β, y⃗

′′
β ⟩ = 4a2β;

|x⃗ ′
α|4 = ⟨x⃗ ′

α, x⃗
′
α⟩2 = (1 + b2)2;

|y⃗ ′
β|4 = ⟨y⃗ ′

β, y⃗
′
β⟩2 = (1 + 4a2β2)2;

r⃗ = y⃗(β)− x⃗(α) = (β − α, aβ2 − bα− c, 0);
⟨r⃗, r⃗ ⟩ = (β − α)2 + (aβ2 − bα− c)2;

r =
√

(β − α)2 + (aβ2 − bα− c)2;
⟨r⃗, x⃗ ′

α⟩ = (β − α) + abβ2 − b2α− cb;
⟨r⃗, y⃗ ′

β⟩ = (β − α) + 2aβ(aβ2 − bα− c).

(14)

Let the masses and coefficients of friction for material points be{
mα = mβ = m;
λ = γ/m.

(15)

Potential energy of spring it derivative and force
U = κ r2

2 ;
∂U
∂r = κr;

Fr = −∂U(r)
∂r = −κr.

(16)

From (2) with (14), (15), (16) we have
α̇ = pα

m ;

β̇ = 1
(1+4a2β2)

pβ
m ;

ṗα = 2κ(β − α)− γ pα
m ;

ṗβ = 4a2β
(1+4a2β2)2

p2β
m − 2κ(β − α+ 2aβ(aβ2 − bα− c))− γ

pβ
m .

(17)

3. Features of algorithm implementation

When we go to the minimum there are two interesting points: a local mini-
mum and a point of turn.

That points have three key characteristics.
Let the minimum be set by an interval with indices i, i− 1, i− 2. Similarly,

the point of turn be set by an interval with indices k, k− 1, k− 2. It is evident
that k > i.

Thus we have a neighborhood that include the minimum if next conditions
are fulfillment

if (ri−1 − ri−2) < 0 and (ri − ri−1) > 0 then
isMin := 1. {set flag of minimum that was passed}
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Further, motion will continue by inertia until the velocity falls to zero at a
point of turn. Under action of gravity the movement will start in the opposi-
te direction, that is, again to minimum. Such oscillatory process can reduces
amplitude only due to the presence of frictional force. So the number of such
iterations depends on the coefficient of friction γ.

Remark 1. Potential (16) automatically reduces the speed when draw near
the minimum of distance or a points of turn. This is due to the next factors,
namely:

1) due to the nature of the force of attraction and
2) due to the friction force.
Therefore it is important to be able to distinguish these points in the calculati-

on process.
When system enters in oscillation process for fixing the turning point we

have conditions
if (rk−1 − rk−2) > 0 and (rk − rk−1) < 0 then
ReverCount := ReverCount+ 1; {counter of a point of turn}
isMin := 0. {remove the flag of the minimum}

As a criterion for stopping it is logical to use the speed at the minimum
point.

But there are two material points and two corresponding velocities vectors

| ˙⃗x(α)|+ | ˙⃗y(β)| = |v⃗(α)|+ |v⃗(β)| = ∥x⃗ ′
αα̇∥+ ∥y⃗ ′

ββ̇∥. (18)

On other hand distance between points r(t) and also speed of it change are
scalar functions. So, as a criterion for stopping we choose∣∣∣∣∆r∆t

∣∣∣∣ < ε. (19)

Remark 2. Despite the fact that the step of integration according to the
curve parameter is constant, the step value for the ∆x⃗i = v⃗(ti)∆t coordinates
is automatically adjusted by changing the speed.

Remark 3. To improve the efficiency of the method we do not exclude the
control of parameter (2) in the turn points. But we do not use it to see how the
method works in its pure form.

4. Numerical experiments
Let’s first see how the method behaves when changing the coefficient of

friction in examples that have an analytic solution.
Set the friction coefficient too large is not a good idea, because it slows down

the search for a minimum and can lead to a stop in small cavities on the way
to the minimum. Therefore, determining the satisfactory coefficient of friction
is an important task.
First example. Let consider the curves from our example a = 2;

b = 2.5;
c = −1.

(20)
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Tab. 1. Numerical solutions1) of the system (17) with
ε = 1 · 10−6 and ∆t0 = 0.5 for (20), (21), (22), where stop
condition is (19).

N γ/κ n2) n
3)
T/2 r ∥∆r∥4) ∥∆x⃗ ∥4) ∥∆y⃗ ∥4)

1 0.04 184 88 8.124180 · 10−2 8.671 · 10−8 8.392 · 10−5 3.468 · 10−5

2 0.05 123 59 8.124401 · 10−2 2.297 · 10−6 2.262 · 10−4 3.827 · 10−4

3 0.06 113 54 8.124191 · 10−2 1.980 · 10−7 1.242 · 10−4 5.499 · 10−5

4 0.07 99 46 8.124173 · 10−2 2.084 · 10−8 5.832 · 10−5 1.299 · 10−7

5 0.08 87 40 8.124171 · 10−2 8.551 · 10−10 5.862 · 10−7 1.111 · 10−5

6 0.09 75 33 8.124186 · 10−2 1.460 · 10−7 9.357 · 10−4 1.016 · 10−3

7 0.10 58 23 8.124820 · 10−2 6.487 · 10−6 5.810 · 10−3 6.419 · 10−3

1) Calculations were carried out in MatLab R2016b.
2) Total number of steps to the minimum.
3) Total number of half-periods (for movement between poi-
nts of turns).
4) Denotement: ∥∆r∥ = ∥r − ra∥; ∥∆x⃗ ∥ = ∥x⃗ −
x⃗ a ∥; ∥∆y⃗ ∥ = ∥y⃗ − y⃗ a ∥.

Initial conditions in (17) 
α(0) = 0.9;
β(0) = 0.5;
pα(0) = 0;
pβ(0) = 0.

(21)

System parameters  m = 1;
κ = 5;
γ/κ ∈ (0.04 . . . 0.1).

(22)

The analytical solution for this experiment can be find from (7), (10), (13)
β0 =

b
2a = 0.625;

α0 =
β0+baβ2

0−bc
1+b2

= 0.700431;

x⃗ a = (0.700431, 0.7510776, 0);
y⃗ a = (0.625, 0.78125, 0);
ra = 8.124171 · 10−2.

(23)

Second example. Formally the radius-vectors in the first example are spatial,
but actually they are on a plane. Therefore, let’s consider an example with
ellipses [8] {

x⃗ = (3 · sin(α), 5 · cos(α), 0);
y⃗ = (3 · sin(β), 5 · cos(β), 7− 3.75 · cos(β)). (24)
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Tab. 2. Numerical solutions1) of the system (24) with ε =
1 · 10−6 and ∆t0 = 0.5 for (25), (26), where stop condition
is (19).

N γ/κ n2) n
3)
T/2 r ∥∆r∥4) ∥∆x⃗ ∥4) ∥∆y⃗ ∥4)

1 0.2 36 8 3.25 2.191 · 10−7 5.234 · 10−4 5.111 · 10−4

2 0.3 27 6 3.25 6.391 · 10−8 8.421 · 10−4 3.011 · 10−4

3 0.4 19 2 3.25 7.811 · 10−8 9.380 · 10−4 4.241 · 10−4

4 0.5 18 1 3.25 8.512 · 10−9 3.101 · 10−4 1.350 · 10−4

5 0.6 19 0 3.25 7.593 · 10−8 9.053 · 10−4 4.816 · 10−4

1) Calculations were carried out in MatLab R2016b.
2) Total number of steps to the minimum.
3) Total number of half-periods (for movement between poi-
nts of turns).
4) Denotement: ∥∆r∥ = ∥r − ra∥; ∥∆x⃗ ∥ = ∥x⃗ −
x⃗ a ∥; ∥∆y⃗ ∥ = ∥y⃗ − y⃗ a ∥.

Position of ellipsies were chosen so that solution is obvious. Then for (2),
initial conditions 

α(0) = 3.0;
β(0) = 5.0;
pα(0) = 2.0;
pβ(0) = −2.5

(25)

and parameters  m = 1;
κ = 5;
γ/κ ∈ (0.2 . . . 0.6).

(26)

Where the analytical solution x⃗ a = (0, 5, 0);
y⃗ a = (0, 5, 3.25);
ra = 3.25.

5. Conclusions
In the framework of the physical analogy and Lagrange-Hamilton formalism

motion equations of two material points that lie on two given curves respecti-
vely are deduced. Such approach allows us to use arbitrary potentials in motion
equations including the typical physical potentials that depend only the di-
stance between the material points. The minimum distance between the curves
is the solution of this equations. The arguments for using harmonic potential are
given. It is evident that approach based on the Lagrangian-Hamilton formali-
sm also allows us to find a minimum distance not only between the curves
in 3-dimensional space, but for the surfaces of various dimensions in multi-
dimensional Euclidean spaces. For this purpose we must assume an internal
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coordinates of a surface embed in a multidimensional Euclidean space as the
generalized coordinates of mechanical system with the potential energy. Such
a generalization will be the subject of our next publication.

The work was carried out with support of the State Fund for Fundamental
Research of Ukraine (project № F74/24921) and the Ministry of Education and
Science of Ukraine (project № 0116U004777).
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