SYMMETRIC POLYNOMIALS AND HOLOMORPHIC FUNCTIONS ON INFINITE DIMENSIONAL SPACES

I.V. CHERNEGA

Abstract

A survey of general results about spectra of uniform algebras of symmetric holomorphic functions and algebras of symmetric analytic functions of bounded type on Banach spaces is given.

Keywords: polynomials and analytic functions on Banach spaces, symmetric polynomials, spectra of algebras.

1. Symmetric Polynomials on Rearrangement-Invariant Function Spaces

Let X, Y be Banach spaces over the field \mathbb{K} of real or complex numbers. A mapping $P: X \rightarrow$ Y is called an n-homogeneous polynomial if there exists a symmetric n-linear mapping $A: X^{n} \rightarrow Y$ such that for all $x \in X P(x)=A(x, \ldots, x)$.

A polynomial of degree n on X is a finite sum of k-homogeneous polynomials, $k=0, \ldots, n$. Let us denote by $\mathcal{P}\left({ }^{n} X, Y\right)$ the space of all n-homogeneous continuous polynomials $P: X \rightarrow Y$ and by $\mathcal{P}(X, Y)$ the space of all continuous polynomials.

It is well known ([13], XI §52) that for $n<\infty$ any symmetric polynomial on \mathbb{C}^{n} is uniquely representable as a polynomial in the elementary symmetric polynomials $\left(G_{i}\right)_{i=1}^{n}, G_{i}(x)=$ $\sum_{k_{1}<\cdots<k_{i}} x_{k_{1}} \ldots x_{k_{i}}$.

Symmetric polynomials on ℓ_{p} and $L_{p}[0,1]$ for $1 \leq p<\infty$ were first studied by Nemirovski and Semenov in [16]. In [11] González, Gonzalo and Jaramillo investigated algebraic bases of various algebras of symmetric polynomials on so called rearrangement-invariant function spaces, that is spaces with some symmetric structure. Up to some inessential normalisation, the study of rearrangement-invariant function spaces is reduced to the study of the following three cases:

1. $I=\mathbb{N}$ and the mass of every point is one;
2. $I=[0,1]$ with the usual Lebesgue measure;
3. $I=[0, \infty)$ with the usual Lebesgue measure.

We shall say that σ is an automorphism of I, if it ia a bijection of I, so that both σ and σ^{-1} are measurable and both preserve measure. We denote by $\mathcal{G}(I)$ the group of all automorphisms of I. If $X(I)$ is a rearrangement-invariant function space on I and $f \in X(I)$, then f is a real-valued measurable function on I and $f \circ \sigma \in X(I)$ for all $\sigma \in X(I)$. Also, there is an equivalent norm on $X(I)$ verifying that

$$
\|f \circ \sigma\|=\|f\|
$$

for all $\sigma \in \mathcal{G}(I)$ and all $f \in X(I)$. We always consider $X(I)$ endowed with this norm.
Following [16], we say that a polynomial P on $X(I)$ is symmetric if

$$
P(f \circ \sigma)=P(f)
$$

for all $\sigma \in \mathcal{G}(I)$ and all $f \in X(I)$.
In the same way, if \mathcal{G}_{0} is a subgroup of $\mathcal{G}(I)$, a polynomial is said to be \mathcal{G}_{0}-invariant if $P(f)=$ $P(f \circ \sigma)$ for all $\sigma \in \mathcal{G}_{0}$ and all $f \in X(I)$.

Let $X(I)$ be a rearrangement-invariant function space on I and consider the set

$$
\mathcal{J}(X)=\left\{r \in \mathbb{N}: X(I) \subset L_{r}(I)\right\}
$$

Note that if $\mathcal{J}(X) \neq$ we can consider, for each $r \in \mathcal{J}(X)$, the polynomials

$$
P_{r}(f)=\int_{I} f^{r}
$$

These are well-defined symmetric polynomials on $X(I)$ and we will call them the elementary symmetric polynomials on $X(I)$.

1.1. Symmetric Polynomials on Spaces with a Symmetric Basis

Let $X=X(\mathbb{N})$ be a Banach space with a symmetric basis $\left\{e_{n}\right\}$. A polynomial P on X is symmetric if for every permutation $\sigma \in \mathcal{G}(\mathbb{N})$

$$
P\left(\sum_{i=1}^{\infty} a_{i} e_{i}\right)=P\left(\sum_{i=1}^{\infty} a_{i} e_{\sigma(i)}\right)
$$

We consider the finite group $\mathcal{G}_{n}(\mathbb{N})$ of permutations of $\{1, \ldots, n\}$ and the σ-finite group $\mathcal{G}_{0}(\mathbb{N})=$ $\cup_{n} \mathcal{G}_{n}(\mathbb{N})$ as subgroups of $\mathcal{G}(\mathbb{N})$. By continuity, a polynomial is symmetric if and only if it $\mathcal{G}_{0}(\mathbb{N})$-invariant. Indeed, if P is $\mathcal{G}_{0}(\mathbb{N})$-invariant and $\sigma \in \mathcal{G}(\mathbb{N})$,

$$
P\left(\sum_{i=1}^{\infty} a_{i} e_{i}\right)=\lim _{n \rightarrow \infty} P\left(\sum_{i=1}^{n} a_{i} e_{i}\right)=\lim _{n \rightarrow \infty} P\left(\sum_{i=1}^{n} a_{i} e_{\sigma(i)}\right)=P\left(\sum_{i=1}^{\infty} a_{i} e_{\sigma(i)}\right) .
$$

Recall that a sequence $\left\{x_{n}\right\}$ is said to have a lower p-estimate for some $p \geq 1$, if there is a constant $C>0$ such that

$$
C\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p} \leq\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|
$$

for all $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
Note that $X \subset \ell_{r}$ if and only if the basis has a lower r-estimate, and therefore we have in this case

$$
\mathcal{J}(X)=\left\{r \in \mathbb{N}:\left\{e_{n}\right\} \quad \text { has a lower r-estimate }\right\}
$$

Now we define

$$
n_{0}(X)=\inf \mathcal{J}(X)
$$

where we understand that the infimum of the empty set is ∞. The elementary symmetric polynomials are then

$$
P_{r}\left(\sum_{i=1}^{\infty} a_{i} e_{i}\right)=\sum_{i=1}^{\infty} a_{i}^{r}
$$

where $r \geq n_{0}(X)$.
Theorem 1.1. [11] Let X be a Banach space with a symmetric basis e_{n}, let P be a symmetric polynomial on X and consider $k=\operatorname{deg} P$ and $N=n_{0}(X)$.

1. If $k<N$, then $P=0$.
2. If $k \geq N$, then there exists a real polynomial q of several real variables such that

$$
P\left(\sum_{i=1}^{\infty} a_{i} e_{i}\right)=q\left(\sum_{i=1}^{\infty} a_{i}^{N}, \ldots, \sum_{i=1}^{\infty} a_{i}^{k}\right)
$$

for every $\sum_{i=1}^{\infty} a_{i} e_{i} \in X$.

1.2. Symmetric Polynomials on $X[0,1]$ and $X[0, \infty)$

Let $X[0,1]$ be a separable rearrangement-invariant function space on $[0,1]$. Note that the set $\mathcal{J}(X)$ is never empty since we always have $X[0,1] \subset L_{1}[0,1]$.

We define

$$
n_{\infty}(X)=\sup \left\{r \in \mathbb{N}: X[0,1] \subset L_{r}[0,1]\right\}
$$

Therefore the elementary symmetric polynomials on $X[0,1]$ are

$$
P_{r}(f)=\int_{0}^{1} f^{r}
$$

for each integer $r \leq n_{\infty}(X)$.
Theorem 1.2. [11] Let $X[0,1]$ be a separable rearrangement-invariant function space on $[0,1]$ and consider the index $n_{\infty}(X)$ as above. Let P be a $\mathcal{G}_{0}[0,1]$-invariant polynomial on $X[0,1]$ and let $k=$ $\operatorname{deg} P$. Then there exists a real polynomial q in several real variables such that

$$
P(f)=q\left(\int_{0}^{1} f, \ldots, \int_{0}^{1} f^{m}\right)
$$

for all $f \in X$, where $m=\min \left\{n_{\infty}(X), k\right\}$.
Theorem 1.3. [11] Let $X[0, \infty)$ be a separable rearrangement-invariant function space, let P be a $\mathcal{G}_{0^{-}}$ invariant polynomial on $X[0, \infty)$ and consider $k=\operatorname{deg} P$. Let n_{0} and n_{∞} be defined as above.

1. If either $n_{0}>n_{\infty}$, or $k<n_{0} \leq \infty$, then $P=0$.
2. If $n_{0} \leq n_{\infty}$ and $n_{0} \leq k$, then there is a real polynomial q in several real variables such that

$$
P(f)=q\left(\int_{0}^{\infty} f^{n_{0}}, \ldots, \int_{0}^{\infty} f^{m}\right)
$$

where $m=\min \left\{n_{\infty}, k\right\}$.

2. Uniform Algebras of Symmetric Holomorphic Functions

Let X be a Banach sequence space with a symmetric norm, that is, for all permutations σ : $\mathbb{N} \rightarrow \mathbb{N}$, and $x=\left(x_{n}\right) \in B$ also $\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}, \ldots\right) \in B$, where B is an open unit ball.

A holomorphic function $f: B \rightarrow \mathbb{C}$ is called symmetric if for all $x \in B$ and all permutations $\sigma: \mathbb{N} \rightarrow \mathbb{N}$, the following holds:

$$
f\left(x_{1}, \ldots, x_{n}, \ldots\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}, \ldots\right)
$$

Our interest throughout this section will be in the set

$$
\mathcal{A}_{u s}(B)=\{f: B \rightarrow \mathbb{C} \mid f \text { is holomorphic, uniformly continuous, and symmetric on } B\}
$$

The following result is straightforward.
Proposition 2.1. [4] $\mathcal{A}_{u s}(B)$ is a unital commutative Banach algebra under the supremum norm. Each function $f \in \mathcal{A}_{\text {us }}(B)$ admits a unique (automatically symmetric) extension to \bar{B}.

Let us give some examples of $\mathcal{A}_{\mu s}(B)$ when B is the open unit ball of some classical Banach spaces X.
Example 2.2. $X=c_{0}$.
Theorem 2.3. [5] Let $P: c_{0} \rightarrow \mathbb{C}$ be an n-homogeneous polynomial and $\varepsilon>0$. Then there is $N \in \mathbb{N}$ and an n-homogeneous polynomial $Q: \mathbb{C}^{N} \rightarrow \mathbb{C}$ such that for all $x=\left(x_{1}, \ldots, x_{N}, x_{N+1}, \ldots\right) \in B$, $\left|P(x)-Q\left(x_{1}, \ldots, x_{N}\right)\right|<\varepsilon$.
Corollary 2.4. [4] For all $n \in \mathbb{N}, n \geq 1$, the only n-homogeneous symmetric polynomial $P: c_{0} \rightarrow \mathbb{C}$ is $P=0$.

Since any function $f \in \mathcal{A}_{u s}(B)$ can be uniformly approximated on B by finite sums of symmetric homogeneous polynomials, it follows that $\mathcal{A}_{u s}(B)$ consists of just the constant functions when B is the open unit ball of c_{0}.
Example 2.5. [4] $X=\ell_{p}$ for some $p, 1 \leq p<\infty$.
The linear $(n=1)$ case. Let $\varphi \in \ell_{p}^{*}$ be a symmetric 1-homogeneous polynomial on ℓ_{p}; that is, φ is a symmetric continuous linear form. Since φ can be regarded as a point $\left(y_{1}, \ldots, y_{m}, \ldots\right) \in \ell_{p}^{*}$ and since $y_{j}=\varphi\left(e_{1}\right)$ for all j, we see that $y_{1}=\ldots=y_{m}=\ldots$. Therefore, the set of symmetric linear forms φ on ℓ_{1} consists of the 1 -dimensional space $\{b(1, \ldots, 1, \ldots) \mid b \in \mathbb{C}\}$. For $p>1$, the above shows that there are no non-trivial symmetric linear forms on ℓ_{p}.

The quadratic $(n=2)$ case. Let $P: \ell_{p} \rightarrow \mathbb{C}$ be a symmetric 2-homogeneous polynomial, and let $A: \ell_{p} \times \ell_{p} \rightarrow \mathbb{C}$ be the unique symmetric bilinear form associated to P, using the polarization formula and $P(x)=A(x, x)$ for all $x \in \ell_{p}$. Now, $P\left(e_{1}\right)=P\left(e_{j}\right)$ for all $j \in \mathbb{N}$. Moreover,

$$
\begin{aligned}
P\left(e_{1}+e_{2}\right) & =A\left(e_{1}+e_{2}, e_{1}+e_{2}\right)=A\left(e_{1}, e_{1}\right)+2 A\left(e_{1}, e_{2}\right)+A\left(e_{2}, e_{2}\right) \\
& =P\left(e_{1}\right)+2 A\left(e_{1}, e_{2}\right)+P\left(e_{2}\right)
\end{aligned}
$$

and likewise

$$
P\left(e_{j}+e_{k}\right)=P\left(e_{j}\right)+2 A\left(e_{j}, e_{k}\right)+P\left(e_{k}\right)
$$

for all j and $k \in \mathbb{N}$. Therefore $A\left(e_{j}, e_{k}\right)=A\left(e_{1}, e_{2}\right)$.
So, for all N,

$$
P\left(x_{1}, \ldots, x_{N}, 0,0, \ldots\right)=a \sum_{j=1}^{N} x_{j}^{2}+b \sum_{j \neq k} x_{j} x_{k}
$$

where $a=P\left(e_{1}\right)$ and $b=A\left(e_{j}, e_{k}\right)$.
From this, we can conclude, that for $X=\ell_{1}$, the space of symmetric 2-homogeneous polynomials on $\ell_{1}, \mathcal{P}_{s}\left({ }^{2} \ell_{1}\right)$, is 2 -dimensional with basis $\left\{\sum_{j} x_{j}^{2}, \sum_{j \neq k} x_{j} x_{k}\right\}$. On the other hand, the corresponding space $\mathcal{P}_{s}\left({ }^{2} \ell_{2}\right)$ of symmetric 2 -homogeneous polynomials on ℓ_{2}, is 1-dimensional with basis $\left\{\sum_{j} x_{j}^{2}\right\}$. For $1<p<2, \mathcal{P}_{s}\left({ }^{2} \ell_{p}\right)$ is also the one-dimensional space generated by $\sum_{j} x_{j}^{2}$, while $\mathcal{P}_{s}\left({ }^{2} \ell_{p}\right)=\{0\}$ for $p>2$.

This argument can be extended to all n and all p, and we can conclude that for all n, p, the space of symmetric n-homogeneous polynomials on $\ell_{p}, \mathcal{P}_{s}\left({ }^{n} \ell_{p}\right)$, is finite dimensional. Consequently, since for all $f \in \mathcal{A}_{u s}(B)$, f is a uniform limit of symmetric n-homogeneous polynomials, we have reasonably good knowledge about the functions in $\mathcal{A}_{u s}(B)$. So we can say that $\mathcal{A}_{u s}(B)$, for B the open unit ball of an ℓ_{p} space, is a "small" algebra.

2.1. The Spectrum of $\mathcal{A}_{u s}(B)$

Recall that the spectrum (or maximal ideal space) of a Banach algebra \mathcal{A} with identity e is the set $\mathcal{M}(\mathcal{A})=\{\varphi: \mathcal{A} \rightarrow \mathbb{C} \quad \mid \varphi$ is a homomorphism and $\quad \varphi(e)=1\}$. We recall that if $\varphi \in \mathcal{M}(\mathcal{A})$, then φ is automatically continuous with $\|\varphi\|=1$. Moreover, when we consider it as a subset of \mathcal{A}^{*} with the weak-star topology, $\mathcal{M}(\mathcal{A})$ is compact.

We will examine $\mathcal{M}\left(\mathcal{A}_{u s}(B)\right)$ when $B=B_{\ell_{p}}$. The most obvious element in $\mathcal{M}\left(\mathcal{A}_{u s}(B)\right)$ is the evaluation homomorphism δ_{x} at a point x of \bar{B} (recalling that since the functions in $\mathcal{A}_{u s}(B)$ are uniformly continuous, they have unique continuous extensions to \bar{B}). Of course, if $x, y \in B$ are such that y can be obtained from x by a permutation of its coordinates, then $\delta_{x}=\delta_{y}$. It is natural to wonder whether $\mathcal{M}\left(\mathcal{A}_{u s}(B)\right)$ consists of only the set of equivalence classes $\left\{\delta_{\tilde{x}} \mid x \in \bar{B}\right\}$, where $x \sim y$ means that x and y differ by a permutation.

Example 2.6. [1,4]
For every $n \in \mathbb{N}$ define $F_{n}: B \rightarrow \mathbb{C}$ by $F_{n}(x)=\sum_{j=1}^{\infty} x_{j}^{n}$. To simplify, we take $B=B_{\ell_{2}}$ (so that F_{n} will be defined only for $n \geq 2$). It is known that the algebra generated by $\left\{F_{n} \mid n \geq 2\right\}$ is dense in $\mathcal{A}_{u s}(B)$. For each $k \in \mathbb{N}$, let

$$
v_{k}=\frac{1}{\sqrt{k}}\left(e_{1}+\ldots+e_{k}\right)
$$

It is routine that each v_{k} has norm 1 , that $\delta_{v_{k}}\left(F_{2}\right)=1$ for all $k \in \mathbb{N}$, and that for all $n \geq 3$,

$$
\delta_{v_{k}}\left(F_{n}\right)=F_{n}\left(v_{k}\right)=\frac{1}{(\sqrt{k})^{n}} k \rightarrow 0 \text { as } k \rightarrow \infty .
$$

Since $\mathcal{M}\left(\mathcal{A}_{u s}(B)\right)$ is compact, the set $\left\{\delta_{v_{k}} \mid k \in \mathbb{N}\right\}$ has an accumulation point $\varphi \in \mathcal{M}\left(\mathcal{A}_{u s}(B)\right)$. It is clear that $\varphi\left(F_{2}\right)=1$ and $\varphi\left(F_{n}\right)=0$ for all $n \geq 3$. It is not difficult to verify that $\varphi \neq \delta_{x}$ for every $x \in \bar{B}$. This construction could be altered slightly, by letting $v_{k}=\frac{1}{\sqrt{k}}\left(\alpha_{1} e_{1}+\ldots+\alpha_{k} e_{k}\right)$, where each $\left|\alpha_{j}\right| \leq 1$. Thus, with this method we give a small number of additional homomorphisms in $\mathcal{M}\left(\mathcal{A}_{u s}(B)\right)$ that do not correspond to point evaluations.

It should be mentioned that it is not known whether $\mathcal{M}\left(\mathcal{A}_{u s}\left(B_{\ell_{p}}\right)\right)$ contains other points. However, in [1] was given a different characterization of $\mathcal{M}\left(\mathcal{A}_{u s}\left(B_{\ell_{p}}\right)\right)$. In order to do this, we first simplify our notation by considering only $B_{\ell_{1}}$. For each $n \in \mathbb{N}$, define $\mathcal{F}^{n}: B_{\ell_{1}} \rightarrow \mathbb{C}^{n}$ as
follows:

$$
\mathcal{F}^{n}(x)=\left(F_{1}(x), \ldots, F_{n}(x)\right)=\left(\sum_{j} x_{j}, \ldots, \sum_{j} x_{j}^{n}\right)
$$

Let $D_{n}=\mathcal{F}^{n}\left(B_{\ell_{1}}\right)$, and let $\left[D_{n}\right]$ be the polynomially convex hull of D_{n} (see, e.g., [12]). Let

$$
\Sigma_{1}=\left\{\left(b_{i}\right)_{i=1}^{\infty} \in \ell_{\infty}:\left(b_{i}\right)_{i=1}^{n} \in\left[D_{n}\right], \text { for all } n \in \mathbb{N} .\right\}
$$

In other words, Σ_{1} is the inverse limit of the sets [D_{n}], endowed with the natural inverse limit topology.
Theorem 2.7. $[1,4] \Sigma_{1}$ is homeomorphic to $\mathcal{M}\left(\mathcal{A}_{u s}\left(B_{\ell_{1}}\right)\right)$.
The analogous results, and the analogous definitions, are valid for Σ_{p} and $\mathcal{M}\left(\mathcal{A}_{u s}\left(B_{\ell_{p}}\right)\right)$.
The basic steps in the proof of Theorem 2.7 are as follows: First, since the algebra generated by $\left\{F_{n} \mid n \geq 1\right\}$ is dense in $\mathcal{A}_{u s}\left(B_{\ell_{1}}\right)$, each homomorphism $\varphi \in \mathcal{M}\left(\mathcal{A}_{u s}\left(B_{\ell_{1}}\right)\right)$ is determined by its behavior on $\left\{F_{n}\right\}$. Next, every symmetric polynomial P on ℓ_{1} can be written as $P=$ $Q \circ \mathcal{F}^{n}$ for some $n \in \mathbb{N}$ and some polynomial $Q: \mathbb{C}^{n} \rightarrow \mathbb{C}$. Finally, to each $\left(b_{i}\right) \in \Sigma_{1}$, one associates $\varphi=\varphi_{\left(b_{i}\right)}: \mathcal{A}_{u s}\left(B_{\ell_{1}}\right) \rightarrow \mathbb{C}$ by $\varphi(P)=Q\left(b_{1}, \ldots, b_{n}\right)$. This turns out to be a well-defined homomorphism, and the mapping $\left(b_{i}\right) \in \Sigma_{1} \rightsquigarrow \varphi_{\left(b_{i}\right)} \in \mathcal{M}\left(\mathcal{A}_{u s}\left(B_{\ell_{1}}\right)\right)$ is a homeomorphism.

2.2. The Spectrum of $\mathcal{A}_{u s}(B)$ in the Finite Dimensional Case

Let us turn to $\mathcal{A}_{u s}(B)$, where B is the open unit ball of \mathbb{C}^{n}, endowed with a symmetric norm. Because of finite dimensionality, $\mathcal{A}_{\text {us }}(B)=\mathcal{A}_{s}(B)$, where $\mathcal{A}_{s}(B)$ is the Banach algebra of symmetric holomorphic functions on B that are continuous on \bar{B}.

Unlike the infinite dimensional case, the following result holds.
Theorem 2.8. [1,4] Every homomorphism $\varphi: \mathcal{A}_{s}(B) \rightarrow \mathbb{C}$ is an evaluation at some point of \bar{B}.
We describe below the main ideas in the proof of this result.
Proposition 2.9. $[1,4]$ Let $C \subset \mathbb{C}^{n}$ be a compact set. Then C is symmetric and polynomially convex if and only if C is polynomially convex with respect to only the symmetric polynomials.

In other words, C is symmetric and polynomially convex if and only if

$$
C=\left\{z_{0} \in \mathbb{C}^{n}:\left|P\left(z_{0}\right)\right| \leq \sup _{z \in C}|P(z)|, \text { for all symmetric polynomials } P\right\}
$$

For $i \in \mathbb{N}$, let

$$
R_{i}(x)=\sum_{1 \leq k_{1} \leq \ldots \leq k_{i} \leq n} x_{k_{1}} \cdots x_{k_{j}}
$$

Proposition 2.10. [1, 4] Let B be the open unit ball of a symmetric norm on \mathbb{C}^{n}. Then the algebra generated by the symmetric polynomials R_{1}, \ldots, R_{n} is dense in $\mathcal{A}_{s}(B)$.
Lemma 2.11. (Nullstellensatz for symmetric polynomials)[1,4] Let P_{1}, \ldots, P_{m} be symmetric polynomials on \mathbb{C}^{n} such that

$$
\operatorname{ker} P_{1} \cap \cdots \cap \operatorname{ker} P_{m}=\varnothing
$$

Then there are symmetric polynomials Q_{1}, \ldots, Q_{m} on \mathbb{C}^{n} such that

$$
\sum_{j=1}^{m} P_{j} Q_{j} \equiv 1
$$

To prove Theorem 2.8, let us consider the symmetric polynomials $P_{1}=R_{1}-\varphi\left(R_{1}\right), \ldots, P_{m}=$ $R_{m}-\varphi\left(R_{m}\right)$. If $\operatorname{ker} P_{1} \cap \cdots \cap \operatorname{ker} P_{m}=\varnothing$, then Lemma 2.11 implies that there are symmetric polynomials Q_{1}, \ldots, Q_{m} on \mathbb{C}^{n} such that $\sum_{j=1}^{m} P_{j} Q_{j} \equiv 1$. This is impossible, since $\varphi\left(P_{j} Q_{j}\right)=0$. Therefore, there exists some $x \in \mathbb{C}^{n}$ such that $P_{j}(x)=0$ for all j, which means $\varphi\left(R_{j}\right)=R_{j}(x)$ for all j. By Proposition 2.10, $\varphi(P)=P(x)$, for all symmetric polynomials $P: \mathbb{C}^{n} \rightarrow \mathbb{C}$.

So, for all such $P,|\varphi(P)|=|P(x)| \leq\|P\|$. This means that x belongs to the symmetrical polynomial convex hull of \bar{B}. Since \bar{B} is symmetric and convex, it is symmetrically polynomially convex (by Proposition 2.9). Thus $x \in \bar{B}$.

3. The Algebra of Symmetric Analytic Functions on ℓ_{p}

Let us denote by $\mathcal{H}_{b s}\left(\ell_{p}\right)$ the algebra of all symmetric analytic functions on ℓ_{p} that are bounded on bounded sets endowed with the topology of the uniform convergence on bounded sets and by $\mathcal{M}_{b s}\left(\ell_{p}\right)$ the spectrum of $\mathcal{H}_{b s}\left(\ell_{p}\right)$, that is, the set of all non-zero continuous complex-valued homomorphisms.

3.1. The Radius Function on $\mathcal{M}_{b s}\left(\ell_{p}\right)$

Following [3] we define the radius function R on $\mathcal{M}_{b s}\left(\ell_{p}\right)$ by assigning to any complex homomorphism $\phi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ the infimum $R(\phi)$ of all r such that ϕ is continuous with respect to the norm of uniform convergence on the ball $r B_{\ell_{p}}$, that is $|\phi(f)| \leq C_{r}\|f\|_{r}$. Further, we have $|\phi(f)| \leq\|f\|_{R(\phi)}$.

As in the non symmetric case, we obtain the following formula for the radius function
Proposition 3.1. [6] Let $\phi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ then

$$
\begin{equation*}
R(\phi)=\underset{n \rightarrow \infty}{\limsup }\left\|\phi_{n}\right\|^{1 / n} \tag{3.1}
\end{equation*}
$$

where ϕ_{n} is the restriction of ϕ to $\mathcal{P}_{s}\left({ }^{n} \ell_{p}\right)$ and $\left\|\phi_{n}\right\|$ is its corresponding norm.
Proof. To prove (3.1) we use arguments from [3, 2.3. Theorem]. Recall that

$$
\left\|\phi_{n}\right\|=\sup \left\{\left|\phi_{n}(P)\right|: P \in \mathcal{P}_{s}\left({ }^{n} \ell_{p}\right) \text { with }\|P\| \leq 1\right\}
$$

Suppose that

$$
0<t<\limsup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{1 / n}
$$

Then there is a sequence of homogeneous symmetric polynomials P_{j} of degree $n_{j} \rightarrow \infty$ such that $\left\|P_{j}\right\|=1$ and $\left|\phi\left(P_{j}\right)\right|>t^{n_{j}}$. If $0<r<t$, then by homogeneity,

$$
\left\|P_{j}\right\|_{r}=\sup _{x \in r B_{\ell_{p}}}\left|P_{j}(x)\right|=r^{n_{j}}
$$

so that

$$
\left|\phi\left(P_{j}\right)\right|>(t / r)^{n_{j}}\left\|P_{j}\right\|_{r},
$$

and ϕ is not continuous for the $\left\|\|_{r}\right.$ norm. It follows that $R(\phi) \geq r$, and on account of the arbitrary choice of r we obtain

$$
R(\phi) \geq \limsup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{1 / n}
$$

Let now be $s>\limsup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{1 / n}$ so that $s^{m} \geq\left\|\phi_{m}\right\|$ for m large. Then there is $c \geq 1$ such that $\left\|\phi_{m}\right\| \leq c s^{m}$ for every m. If $r>s$ is arbitrary and $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ has Taylor series expansion $f=\sum_{n=1}^{\infty} f_{n}$, then

$$
r^{m}\left\|f_{m}\right\|=\left\|f_{m}\right\|_{r} \leq\|f\|_{r}, \quad m \geq 0
$$

Hence

$$
\left|\phi\left(f_{m}\right)\right| \leq\left\|\phi_{m}\right\|\left\|f_{m}\right\| \leq \frac{c s^{m}}{r^{m}}\|f\|_{r}
$$

and so

$$
\|\phi(f)\| \leq c\left(\sum \frac{s^{m}}{r^{m}}\right)\|f\|_{r}
$$

Thus ϕ is continuous with respect to the uniform norm on $r B$, and $R(\phi) \leq r$. Since r and s are arbitrary,

$$
R(\phi) \leq \limsup _{n \rightarrow \infty}\left\|\phi_{n}\right\|^{1 / n}
$$

3.2. An Algebra of Symmetric Functions on the Polydisk of ℓ_{1}

Let us denote

$$
\mathbb{D}=\left\{x=\sum_{i=1}^{\infty} x_{i} e_{i} \in \ell_{1}: \sup _{i}\left|x_{i}\right|<1\right\}
$$

It is easy to see that \mathbb{D} is an open unbounded set. We shall call \mathbb{D} the polydisk in ℓ_{1}.
Lemma 3.2. [6] For every $x \in \mathbb{D}$ the sequence $\mathcal{F}(x)=\left(F_{k}(x)\right)_{k=1}^{\infty}$ belongs to ℓ_{1}.
Proof. Let us firstly consider $x \in \ell_{1}$, such that $\|x\|=\sum_{i=1}^{\infty}\left|x_{i}\right|<1$ and let us calculate $\mathcal{F}(x)=$ $\left(F_{k}(x)\right)_{k=1}^{\infty}$. We have

$$
\begin{aligned}
\|\mathcal{F}(x)\| & =\sum_{k=1}^{\infty}\left|F_{k}(x)\right|=\sum_{k=1}^{\infty}\left|\sum_{i=1}^{\infty} x_{i}^{k}\right| \leq \sum_{k=1}^{\infty} \sum_{i=1}^{\infty}\left|x_{i}\right|^{k} \\
& \leq \sum_{k=1}^{\infty}\left(\sum_{i=1}^{\infty}\left|x_{i}\right|\right)^{k}=\sum_{k=1}^{\infty}\|x\|^{k}=\frac{\|x\|}{1-\|x\|}<\infty .
\end{aligned}
$$

In particular, $\left\|\mathcal{F}\left(\lambda e_{k}\right)\right\|=\frac{|\lambda|}{1-|\lambda|}$ for $|\lambda|<1$.
If x is an arbitrary element in \mathbb{D}, pick $m \in \mathbb{N}$ so that $\sum_{i=m+1}^{\infty}\left|x_{i}\right|<1$. Put $u=x-\left(x_{1}, \ldots, x_{m}, 0 \ldots\right)$ and and notice that $F_{k}(x)=F_{k}\left(x_{1} e_{1}\right)+\cdots+F_{k}\left(x_{m} e_{m}\right)+F_{k}(u)$ with $\left\|x_{k} e_{k}\right\|<1, k=1, \ldots, m$ as well as $\|u\|<1$. Also, $\left\|\mathcal{F}\left(x_{k} e_{k}\right)\right\| \leq \frac{\|x\|_{\infty}}{1-\|x\|_{\infty}}$. Hence,

$$
\|\mathcal{F}(x)\|=\left\|\sum_{k=1}^{m} \mathcal{F}\left(x_{k} e_{k}\right)+\mathcal{F}(u)\right\| \leq \sum_{k=1}^{m}\left\|\mathcal{F}\left(x_{k} e_{k}\right)\right\|+\|\mathcal{F}(u)\|<\infty
$$

Note that \mathcal{F} is an analytic mapping from \mathbb{D} into ℓ_{1} since $\mathcal{F}(x)$ can be represented as a convergent series $\mathcal{F}(x)=\sum_{k=1}^{\infty} F_{k}(x) e_{k}$ for every $x \in \mathbb{D}$ and \mathcal{F} is bounded in a neighborhood of zero (see [9], p. 58).
Proposition 3.3. [6] Let $g_{1}, g_{2} \in \mathcal{H}_{b}\left(\ell_{1}\right)$. If $g_{1} \neq g_{2}$, then there is $x \in \mathbb{D}$ such that $g_{1}(\mathcal{F}(x)) \neq$ $g_{2}(\mathcal{F}(x))$.
Proof. It is enough to show that if for some $g \in \mathcal{H}_{b}\left(\ell_{1}\right)$, we have $g(\mathcal{F}(x))=0 \forall x \in \mathbb{D}$, then $g(x) \equiv 0$.

Let $g(x)=\sum_{n=1}^{\infty} Q_{n}(x)$ where $Q_{n} \in \mathcal{P}\left({ }^{n} \ell_{1}\right)$ and

$$
Q_{n}\left(\sum_{n=1}^{\infty} x_{i} e_{i}\right)=\sum_{k_{1}+\ldots+k_{n}=n} \sum_{i_{1}<\ldots<i_{n}} q_{n, i_{1} \ldots i_{n}} x_{i_{1}}^{k_{1}} \ldots x_{i_{n}}^{k_{n}}
$$

For any fixed $x \in \mathbb{D}$ and $t \in \mathbb{C}$ such that $t x \in \mathbb{D}$, let $g(\mathcal{F}(t x))=\sum_{j=1}^{\infty} t^{j} r_{j}(x)$ be the Taylor series at the origin. Then

$$
\sum_{n=1}^{\infty} Q_{n}(\mathcal{F}(t x))=g(\mathcal{F}(t x))=\sum_{j=1}^{\infty} t^{j} r_{j}(x)
$$

Let us compute $r_{m}(x)$. We have

$$
\begin{equation*}
r_{m}(x)=\sum_{\substack{k<m \\ k_{1} i_{1}+\ldots k_{n} i_{n}=m}} q_{k, i_{1} \ldots i_{n}} F_{i_{1}}^{k_{1}}(x) \ldots F_{i_{n}}^{k_{n}}(x) \tag{3.2}
\end{equation*}
$$

It is easy to see that the sum on the right hand side of (3.2) is finite.
Since $g(\mathcal{F}(x))=0$ for every $x \in \mathbb{D}$, then $r_{m}(x)=0$ for every m. Further being F_{1}, \ldots, F_{n} algebraically independent $q_{k, i_{1} \ldots i_{n}}=0$ in (3.2) for an arbitrary $k<m, k_{1} i_{1}+\ldots+k_{n} i_{n}=m$. As this is true for every m then $Q_{n} \equiv 0$ for $n \in \mathbb{N}$. So $g(x) \equiv 0$ on ℓ_{1}.

Let us denote by $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ the algebra of all symmetric analytic functions which can be represented by $f(x)=g(\mathcal{F}(x))$, where $g \in \mathcal{H}_{b}\left(\ell_{1}\right), x \in \mathbb{D}$. In other words, $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ is the range of the one-to-one composition operator $C_{\mathcal{F}}(g)=g \circ \mathcal{F}$ acting on $\mathcal{H}_{b}\left(\ell_{1}\right)$. According to Proposition 3.3 the correspondence $\Psi: f \mapsto g$ is a bijection from $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ onto $\mathcal{H}_{b}\left(\ell_{1}\right)$. Thus we endow $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ with the topology that turns the bijection Ψ an homeomorphism. This topology is the weakest topology on $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ in which the following seminorms are continuous:

$$
q_{r}(f):=\|(\Psi(f))\|_{r}=\|g\|_{r}=\sup _{\|x\|_{\ell_{1} \leq r} \leq}|g(x)|, \quad r \in \mathbb{Q}
$$

Note that Ψ is a homomorphism of algebras. So we have proved the following proposition:
Proposition 3.4. [6] There is an onto isometric homomorphism between the algebras $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ and $\mathcal{H}_{b}\left(\ell_{1}\right)$.
Corollary 3.5. [6] The spectrum $\mathcal{M}\left(\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})\right)$ of $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ can be identified with $\mathcal{M}_{b}\left(\ell_{1}\right)$. In particular, $\ell_{1} \subset \mathcal{M}\left(\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})\right)$, that is, for arbitrary $z \in \ell_{1}$ there is a homomorphism $\psi_{z} \in \mathcal{M}\left(\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})\right)$, such that $\psi_{z}(f)=\Psi(f)(z)$.

The following example shows that there exists a character on $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$, which is not an evaluation at any point of \mathbb{D}.

Example 3.6. [6] Let us consider a sequence of real numbers $\left(a_{n}\right), 0 \leq\left|a_{n}\right|<1$ such that $\left(a_{n}\right) \in$ $\ell_{2} \backslash \ell_{1}$ and that the series $\sum_{n=1}^{\infty} a_{n}$ conditionally converges to some number C. Despite $\left(a_{n}\right) \notin$ ℓ_{1}, evaluations on $\left(a_{n}\right)$ are determined for every symmetric polynomial on ℓ_{1}. In particular, $F_{1}\left(\left(a_{n}\right)\right)=C, F_{k}\left(\left(a_{n}\right)\right)=\sum a_{n}^{k}<\infty$ and $\left\{F_{k}\left(\left(a_{n}\right)\right)\right\}_{k=1}^{\infty} \in \ell_{1}$. So $\left(a_{n}\right)$ "generates" a character on $\mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$ by the formula $\varphi(f)=\Psi(f)\left(\mathcal{F}\left(\left(a_{n}\right)\right)\right)$.

Since $\left(a_{n}\right) \in \ell_{2}$, then $F_{k}\left(\left(a_{\pi(n)}\right)\right)=F_{k}\left(\left(a_{n}\right)\right), k>1$. Notice that there exists a permutation on the set of positive integers, π, such that $\sum_{n=1}^{\infty} a_{\pi(n)}=C^{\prime} \neq C$. For such a permutation π we may do the same construction as above and obtain a homomorphism φ_{π} "generated by evaluation at $\left(a_{\pi(n)}\right) ", \varphi(f)=\Psi(f)\left(\mathcal{F}\left(\left(a_{\pi(n)}\right)\right)\right)$.

Let us suppose that there exist $x, y \in \mathbb{D}$ such that $\varphi(f)=f(x)$ and $\varphi_{\pi}(f)=f(y)$ for every function $f \in \mathcal{H}_{s}^{\ell_{1}}(\mathbb{D})$. Since $\varphi\left(F_{k}\right)=\varphi_{\pi}\left(F_{k}\right), k \geq 2$, then by [1] Corollary 1.4, it follows that there is a permutation of the indices that transforms the sequence x into the sequence y. But this cannot be true, because $F_{1}(x)=\varphi\left(F_{1}\right) \neq \varphi_{\pi}\left(F_{1}\right)=F_{1}(y)$. Thus, at least one of the homomorphisms φ or φ_{π} is not an evaluation at some point of \mathbb{D}.

Note that the the homomorphism "generated by evaluation at $\left(a_{n}\right)$ " is a character on $\mathcal{P}_{s}\left(\ell_{1}\right)$ too, but we do not know whether this character is continuous in the topology of uniform convergence on bounded sets.

3.3. The Symmetric Convolution

Recall that in [3] the convolution operation " $*$ " for elements φ, θ in the spectrum, $\mathcal{M}_{b}(X)$, of $\mathcal{H}_{b}(X)$, is defined by

$$
\begin{equation*}
(\varphi * \theta)(f)=\varphi(\theta(f(\cdot+x))), \text { where } f \in \mathcal{H}_{b}(X) \tag{3.3}
\end{equation*}
$$

In [6] we have introduced the analogous convolution in our symmetric setting.
It is easy to see that if f is a symmetric function on ℓ_{p}, then, in general, $f(\cdot+y)$ is not symmetric for a fixed y. However, it is possible to introduce an analogue of the translation operator which preserves the space of symmetric functions on ℓ_{p}.

Definition 3.7. [6] Let $x, y \in \ell_{p}, x=\left(x_{1}, x_{2}, \ldots,\right)$ and $y=\left(y_{1}, y_{2}, \ldots,\right)$. We define the intertwining of x and $y, x \bullet y \in \ell_{p}$, according to

$$
x \bullet y=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots,\right)
$$

Let us indicate some elementary properties of the intertwining.
Proposition 3.8. [6] Given $x, y \in \ell_{p}$ the following assertions hold.
(1) If $x=\sigma_{1}(u)$ and $y=\sigma_{2}(v), \sigma_{1}, \sigma_{2} \in \mathcal{G}$, then $x \bullet y=\sigma(u \bullet v)$ for some $\sigma \in \mathcal{G}$.
(2) $\|x \bullet y\|^{p}=\|x\|^{p}+\|y\|^{p}$.
(3) $F_{n}(x \bullet y)=F_{n}(x)+F_{n}(y)$ for every $n \geq p$.

Proposition 3.9. [6] If $f(x) \in \mathcal{H}_{b s}\left(\ell_{p}\right)$, then $f(x \bullet y) \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ for every fixed $y \in \ell_{p}$.

Proof. Note that $x \bullet y=x \bullet 0+0 \bullet y$ and that the map $x \mapsto x \bullet 0$ is linear. Thus the map $x \mapsto x \bullet y$ is analytic and maps bounded sets into bounded sets, and so is its composition with f. Moreover, $f(x \bullet y)$ is obviously symmetric. Hence it belongs to $\mathcal{H}_{b s}\left(\ell_{p}\right)$.

The mapping $f \mapsto T_{y}^{s}(f)$ where $T_{y}^{s}(f)(x)=f(x \bullet y)$ will be referred as to the intertwining operator. Observe that $T_{x}^{s} \circ T_{y}^{s}=T_{x \bullet y}^{s}=T_{y}^{s} \circ T_{x}^{s}$: Indeed, $\left[T_{x}^{s} \circ T_{y}^{s}\right](f)(z)=T_{x}^{s}\left[T_{y}^{s}(f)\right](z)=$ $\left.T_{y}^{s}(f)(z \bullet x)=f((z \bullet x) \bullet y)\right)=f(z \bullet(x \bullet y))$, since f is symmetric.

Proposition 3.10. [6] For every $y \in \ell_{p}$, the intertwining operator T_{y}^{s} is a continuous endomorphism of $\mathcal{H}_{b s}\left(\ell_{p}\right)$.
Proof. Evidently, T_{y}^{s} is linear and multiplicative. Let x belong to ℓ_{p} and $\|x\| \leq r$. Then $\|x \bullet y\| \leq$ $\sqrt[p]{r^{p}+\|y\|^{p}}$ and

$$
\begin{equation*}
\left|T_{y}^{s} f(x)\right| \leq \sup _{\|z\| \leq \sqrt[p]{r^{p}+\|y\|^{p}}}|f(z)|=\|f\|_{\sqrt[p]{r^{p}+\|y\|^{p}}} \tag{3.4}
\end{equation*}
$$

So T_{y}^{s} is continuous.
Using the intertwining operator we can introduce a symmetric convolution on $\mathcal{H}_{b s}\left(\ell_{p}\right)^{\prime}$. For any θ in $\mathcal{H}_{b s}\left(\ell_{p}\right)^{\prime}$, according to (3.4) the radius function $R\left(\theta \circ T_{y}^{s}\right) \leq \sqrt[p]{R(\theta)^{p}+\|y\|^{p}}$. Then arguing as in $\left[3,6.1\right.$. Theorem] , it turns out that for fixed $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ the function $y \mapsto \theta \circ T_{y}^{s}(f)$ also belongs to $\mathcal{H}_{b s}\left(\ell_{p}\right)$.

Definition 3.11. For any ϕ and θ in $\mathcal{H}_{b s}\left(\ell_{p}\right)^{\prime}$, their symmetric convolution is defined according to

$$
(\phi \star \theta)(f)=\phi\left(y \mapsto \theta\left(T_{y}^{s} f\right)\right)
$$

Corollary 3.12. [6] If $\phi, \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$, then $\phi \star \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$.
Proof. The multiplicativity of T_{y}^{s} yields that $\phi \star \theta$ is a character. Using inequality (3.4), we obtain that

$$
R(\phi \star \theta) \leq \sqrt[p]{R(\phi)^{p}+R(\theta)^{p}}
$$

Hence $\phi \star \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$.
Theorem 3.13. [7] a) For every $\varphi, \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ the following holds:

$$
\begin{equation*}
(\varphi \star \theta)\left(F_{k}\right)=\varphi\left(F_{k}\right)+\theta\left(F_{k}\right) \tag{3.5}
\end{equation*}
$$

b) The semigroup $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \star\right)$ is commutative, the evaluation at $0, \delta_{0}$, is its identity and the cancelation law holds.

Proof. Observe that for each element F_{k} in the algebraic basis of polynomials, $\left\{F_{k}\right\}$, we have

$$
\left(\theta \star F_{k}\right)(x)=\theta\left(T_{x}^{s}\left(F_{k}\right)\right)=\theta\left(F_{k}(x)+F_{k}\right)=F_{k}(x)+\theta\left(F_{k}\right)
$$

Therefore,

$$
(\varphi \star \theta)\left(F_{k}\right)=\varphi\left(F_{k}+\theta\left(F_{k}\right)\right)=\varphi\left(F_{k}\right)+\theta\left(F_{k}\right)
$$

To check that the convolution is commutative, that is, $\phi \star \theta=\theta \star \phi$, it suffices to prove it for symmetric polynomials, hence for the basis $\left\{F_{k}\right\}$. Bearing in mind (3.5) and also by exchanging parameters $(\theta \star \varphi)\left(F_{k}\right)=\theta\left(F_{k}\right)+\varphi\left(F_{k}\right)=(\varphi \star \theta)\left(F_{k}\right)$ as we wanted.

It also follows from (3.5) that the cancelation rule is valid for this convolution: If $\varphi \star \theta=\psi \star \theta$, then $\varphi\left(F_{k}\right)+\theta\left(F_{k}\right)=\psi\left(F_{k}\right)+\theta\left(F_{k}\right)$, hence $\varphi\left(F_{k}\right)=\psi\left(F_{k}\right)$, and thus, $\varphi=\psi$.

Example 3.14. [7] There exist nontrivial elements in the semigroup $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \star\right)$ that are invertible:
In [1, Example 3.1] it was constructed a continuous homomorphism $\varphi=\Psi_{1}$ on the uniform algebra $A_{u s}\left(B_{\ell_{p}}\right)$ such that $\varphi\left(F_{p}\right)=1$ and $\varphi\left(F_{i}\right)=0$ for all $i>p$. In a similar way, given $\lambda \in \mathbb{C}$ we can construct a continuous homomorphism Ψ_{λ} on the uniform algebra $A_{u s}\left(|\lambda| B_{\ell_{p}}\right)$ such that $\Psi_{\lambda}\left(F_{p}\right)=\lambda$ and $\Psi_{\lambda}\left(F_{i}\right)=0$ for all $i>p$: It suffices to consider for each $n \in \mathbb{N}$, the element $v_{n}=\left(\frac{\lambda}{n}\right)^{1 / p}\left(e_{1}+\cdots+e_{n}\right)$ for which $F_{p}\left(v_{n}\right)=\lambda$, and $\lim _{n} F_{j}\left(v_{n}\right)=0$. Now, the sequence $\left\{\delta_{v_{n}}\right\}$ has an accumulation point Ψ_{λ} in the spectrum of $A_{u s}\left(|\lambda| B_{\ell_{p}}\right)$. We use the notation ψ_{λ} for the restriction of Ψ_{λ} to the subalgebra $\mathcal{H}_{b s}\left(\ell_{p}\right)$ of $A_{u s}\left(|\lambda| B_{\ell_{p}}\right)$. It turns out that $\psi_{\lambda} \star \psi_{-\lambda}=\delta_{0}$ since for all elements F_{j} in the algebraic basis, $\left(\psi_{\lambda} \star \psi_{-\lambda}\right)\left(F_{j}\right)=\psi_{\lambda}\left(F_{j}\right)+\psi_{\lambda}\left(F_{j}\right)=0=\delta_{0}\left(F_{j}\right)$.

Therefore, we obtain a complex line of invertible elements $\left\{\psi_{\lambda}: \lambda \in \mathbb{C}\right\}$.
As in the non-symmetric case [3] Theorem 5.5, the following holds:
Proposition 3.15. [7] Every $\varphi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ lies in a schlicht complex line through δ_{0}.
Proof. For every $z \in \mathbb{C}$, consider the composition operator $L_{z}: \mathcal{H}_{b s}\left(\ell_{p}\right) \rightarrow \mathcal{H}_{b s}\left(\ell_{p}\right)$ defined according to $L_{z}(f)\left(\left(x_{n}\right)\right):=f\left(\left(z x_{n}\right)\right)$, and then, the restriction L_{z}^{*} to $\mathcal{M}_{b s}\left(\ell_{p}\right)$ of its transpose map. Now put $\varphi^{z}:=L_{z}^{*}(\varphi)=\varphi \circ L_{z}$. Observe that $\varphi^{z}\left(F_{k}\right)=\varphi \circ L_{z}\left(F_{k}\right)=\varphi\left(\left(F_{k}(z \cdot)\right)\right)=$ $z^{k} \varphi\left(F_{k}\right)$. Also, $\varphi^{0}=\delta_{0}$.

For each $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ the self-map of \mathbb{C} defined according to $z \rightsquigarrow \varphi^{z}(f)$ is entire by [3] Lemma 5.4.(i). Therefore, the mapping $z \in \mathbb{C} \rightsquigarrow \varphi^{z} \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ is analytic.

Since $\varphi \neq \delta_{0}$, the set $\Sigma:=\left\{k \in \mathbb{N}: \varphi\left(F_{k}\right) \neq 0\right\}$ is non-empty. Let m be the first element of Σ, so that $\varphi\left(F_{m}\right) \neq 0$. Then if $\varphi^{z}=\varphi^{w}$, one has $z^{m} \varphi\left(F_{m}\right)=w^{m} \varphi\left(F_{m}\right)$, hence $z^{m}=w^{m}$. Taking the principal branch of the $m^{\text {th }}$ root, the map $\xi \rightsquigarrow \varphi \sqrt[m]{\zeta}$ is one-to-one.

Recall that a linear operator $T: \mathcal{H}_{b s}\left(\ell_{p}\right) \rightarrow \mathcal{H}_{b s}\left(\ell_{p}\right)$ is said to be a convolution operator if there is $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ such that $T f=\theta \star f$. Let us denote $H_{\text {conv }}\left(\ell_{p}\right):=\left\{T \in L\left(\mathcal{H}_{b s}\left(\ell_{p}\right)\right)\right.$: T is a convolution operator $\}$.

Proposition 3.16. [7] A continuous homomorphism $T: \mathcal{H}_{b s}\left(\ell_{p}\right) \rightarrow \mathcal{H}_{b s}\left(\ell_{p}\right)$ is a convolution operator if, and only if, it commutes with all intertwining operators $T_{y}^{s}, y \in \ell_{p}$.

Proof.- Assume there is $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ such that $T f=\theta \star f$. Fix $y \in \ell_{p}$. Then $\left[T \circ T_{y}^{s}\right](f)(x)=$ $\left[T\left(T_{y}^{s}(f)\right)\right](x)=\left[\theta \star T_{y}^{s}(f)\right](x)=\theta\left[T_{x}^{s}\left(T_{y}^{s}(f)\right]=\theta\left[T_{x \bullet y}^{s}(f)\right]\right.$. On the other hand, $\left[T_{y}^{s} \circ T\right](f)(x)=$ $\left[T_{y}^{s}(T f)\right](x)=T f(x \bullet y)=(\theta \star f)(x \bullet y)=\theta\left[T_{x \bullet y}^{s}(f)\right]$.

Conversely, set $\theta=\delta_{0} \circ T$. Clearly, $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$. Let us check that $T f=\theta \star f$: Indeed, $(\theta \star f)(x)=\theta\left[T_{x}^{s}(f)\right]=\left[T\left(T_{x}^{s}(f)\right)\right](0)=\left[T_{x}^{s}(T(f))\right](0)=T f(0 \bullet x)=T f(x)$.

Consider the mapping Λ defined by $\Lambda(\theta)(f)=\theta \star f$, that is,

$$
\begin{array}{ccc}
\Lambda: \mathcal{M}_{b s}\left(\ell_{p}\right) & \rightarrow & H_{\text {conv }}\left(\ell_{p}\right) \\
\theta & \mapsto f \rightsquigarrow \theta \star f \equiv \Lambda(\theta)(f)
\end{array} .
$$

It is, clearly, bijective. Moreover we obtain a representation of the convolution semigroup
Proposition 3.17. [7] The mapping Λ is an isomorphism from $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \star\right)$ into $\left(H_{\text {conv }}\left(\ell_{p}\right), \circ\right)$ where - denotes the usual composition operation.

Proof.- First, notice that using the above proposition,

$$
\begin{aligned}
\Lambda(\varphi \star \theta)(f)(x) & =[(\varphi \star \theta) \star f](x)=(\varphi \star \theta)\left(T_{x}^{s} f\right)=\varphi\left(\theta \star T_{x}^{s} f\right) \\
& =\varphi\left[\Lambda(\theta)\left(T_{x}^{s} f\right)\right]=\varphi\left[\left(\Lambda(\theta) \circ T_{x}^{s}\right)(f)\right]=\varphi\left[\left(T_{x}^{s} \circ \Lambda(\theta)\right)(f)\right]
\end{aligned}
$$

On the other hand,

$$
[\Lambda(\varphi) \circ \Lambda(\theta)](f)(x)=\Lambda(\varphi)[\Lambda(\theta)(f)](x)=[\varphi \star \Lambda(\theta)(f)](x)=\varphi\left[T_{x}^{s}(\Lambda(\theta)(f))\right]
$$

Thus the statement follows.
As a consequence, the homomorphism θ is invertible in $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \star\right)$, if, and only if, the convolution operator $\Lambda(\theta)$ is an algebraic isomorphism. Observe also that for $\psi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$, one has

$$
\psi \circ \Lambda(\theta)=\psi \star \theta
$$

because $[\psi \circ \Lambda(\theta)](f)=\psi[\Lambda(\theta)(f)]=\psi(\theta \star f)=(\psi \star \theta)(f)$.
Next we address the question of solving the equation $\varphi=\psi \star \theta$ for given $\varphi, \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$. We begin with a general lemma.
Lemma 3.18. [7] Let A, B be Fréchet algebras and $T: A \rightarrow B$ an onto homomorphism. Then T maps (closed) maximal ideals onto (closed) maximal ideals.
Proof. Since T is onto, it maps ideals in A onto ideals in B. Let $\mathcal{J} \subset A$ be a maximal ideal, we prove that $T(\mathcal{J})$ is a maximal ideal in $B:$ If \mathcal{I} is another ideal with $T(\mathcal{J}) \subset \mathcal{I} \subset B$, it turns out that for the ideal $T^{-1}(\mathcal{I}), \mathcal{J} \subset T^{-1}(T(\mathcal{J})) \subset T^{-1}(\mathcal{I})$, hence either $\mathcal{J}=T^{-1}(\mathcal{I})$, or $A=T^{-1}(\mathcal{I})$. That is, either $T(\mathcal{J})=\mathcal{I}$, or $B=\mathcal{I}$.

Let now $\varphi \in \mathcal{M}(A)$ and $\mathcal{J}=\operatorname{Ker}(\varphi)$, a closed maximal ideal. Then $T(\mathcal{J})$ is a maximal ideal in B, so there is a character ψ on B such that $\operatorname{Ker}(\psi)=T(\mathcal{J})$. Then $\operatorname{Ker}(\varphi) \subset \operatorname{Ker}(\psi \circ T)$, because if $\varphi(a)=0$, that is, $a \in \mathcal{J}$, we have $T(a) \in \operatorname{Ker}(\psi)$. By the maximality, either $\varphi=\psi \circ T$, or $\psi \circ T=0$, hence $\psi=0$. In the former case, ψ is also continuous since being T an open mapping, if $\left(b_{n}\right)$ is a null sequence in B, there is a null sequence $\left(a_{n}\right) \subset A$ such that $T\left(a_{n}\right)=b_{n}$; thus $\lim _{n} \psi\left(b_{n}\right)=\lim _{n} \psi \circ T\left(a_{n}\right)=\lim _{n} \varphi\left(a_{n}\right)=0$.
Remark 3.19. Let A, B be Fréchet algebras and $T: A \rightarrow B$ an onto homomorphism. If $T(\operatorname{Ker}(\varphi))$ is a proper ideal, then there is a unique $\psi \in \mathcal{M}(B)$ such that $\varphi=\psi \circ T$.
Corollary 3.20. [7] Let $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$. Assume that $\Lambda(\theta)$ is onto. If $\Lambda(\theta)(\operatorname{Ker} \varphi)$ is a proper ideal, then the equation $\varphi=\psi \star \theta$ has a unique solution. In case $\Lambda(\theta)(\operatorname{Ker} \varphi)=\mathcal{H}_{b s}\left(\ell_{p}\right)$, then the equation $\varphi=\psi \star \theta$ has no solution.

Proof. The first statement is just an application of the remark, since $\psi \star \theta=\psi \circ \Lambda(\theta)=\varphi$. For the second statement, if some solution ψ exists, then again $\psi \circ \Lambda(\theta)=\psi \star \theta=\varphi$, so $\psi\left(\mathcal{H}_{b s}\left(\ell_{p}\right)\right)=$ $(\psi \circ \Lambda(\theta))((\operatorname{Ker} \varphi))=\varphi(\operatorname{Ker} \varphi)=0$. Therefore, then also $\varphi=0$.

3.4. A Weak Polynomial Topology on $\mathcal{M}_{b s}\left(\ell_{p}\right)$ [7]

Let us denote by w_{p} the topology in $\mathcal{M}_{b s}\left(\ell_{p}\right)$ generated by the following neighborhood basis:

$$
U_{\varepsilon, k_{1}, \ldots, k_{n}}(\psi)=\left\{\psi \star \varphi: \varphi \in \mathcal{M}_{b s}\left(\ell_{p}\right) \quad\left|\varphi\left(F_{k_{j}}\right)\right|<\varepsilon, \quad j=1, \ldots, n\right\} .
$$

It is easy to check that the convolution operation is continuous for the w_{p} topology, since thanks to (3.5),

$$
U_{\varepsilon / 2, k_{1}, \ldots, k_{n}}(\theta) \star U_{\varepsilon / 2, k_{1}, \ldots, k_{n}}(\psi) \subset U_{\varepsilon, k_{1}, \ldots, k_{n}}(\theta \star \psi) .
$$

We say that a function $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ is finitely generated if there are a finite number of the basis functions $\left\{F_{k}\right\}$ and an entire function q such that $f=q\left(F_{1}, \ldots, F_{j}\right)$.

Theorem 3.21. A function $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ is w_{p}-continuous if and only if it is finitely generated.
Proof. Clearly, every finitely generated function is w_{p}-continuous. Let us denote by V_{n} the finite dimensional subspace in ℓ_{p} spanned by the basis vectors $\left\{e_{1}, \ldots, e_{n}\right\}$. First we observe that if there is a positive integer m such that the restriction $f_{\left.\right|_{V_{n}}}$ of f to V_{n} is generated by the restrictions of F_{1}, \ldots, F_{m} to V_{n} for every $n \geq m$, then f is finitely generated. Indeed, for given $n \geq k \geq m$ we can write

$$
f_{\left.\right|_{V_{k}}}(x)=q_{1}\left(F_{1}(x), \ldots, F_{m}(x)\right) \quad \text { and } \quad f_{V_{V_{n}}}(x)=q_{2}\left(F_{1}(x), \ldots, F_{m}(x)\right)
$$

for some entire functions q_{1} and q_{2} on \mathbb{C}^{n}. Since

$$
\left\{\left(F_{1}(x), \ldots, F_{m}(x)\right): x \in V_{k}\right\}=\mathbb{C}^{m}
$$

(see e. g. [1]) and $\left.f\right|_{V_{n}}$ is an extension of $\left.f\right|_{V_{k}}$ we have $q_{1}\left(t_{1}, \ldots, t_{n}\right)=q_{2}\left(t_{1}, \ldots, t_{n}\right)$. Hence $f(x)=q_{1}\left(F_{1}(x), \ldots, F_{m}(x)\right)$ on ℓ_{p} because $f(x)$ coincides with $q_{1}\left(F_{1}(x), \ldots, F_{m}(x)\right)$ on the dense subset $\bigcup_{n} V_{n}$.

Let f be a w_{p}-continuous function in $\mathcal{H}_{b s}\left(\ell_{p}\right)$. Then f is bounded on a neighborhood $U_{\varepsilon, 1, \ldots, m}=$ $\left\{x \in \ell_{p}:\left|F_{1}(x)\right|<\varepsilon, \ldots,\left|F_{m}(x)\right|<\varepsilon\right\}$. For a given $n \geq m$ let

$$
\left.f\right|_{V_{n}}(x)=q\left(F_{1}(x), \ldots, F_{m}(x)\right)
$$

be the representation of $\left.f\right|_{V_{n}}(x)$ for some entire function q on \mathbb{C}^{n}. Since $\left\{\left(F_{1}(x), \ldots, F_{m}(x)\right): x \in\right.$ $\left.V_{n}\right\}=\mathbb{C}^{m}, q\left(t_{1}, \ldots, t_{n}\right)$ must be bounded on the set $\left\{\left|t_{1}\right|<\varepsilon, \ldots,\left|t_{m}\right|<\varepsilon\right\}$. The Liouville Theorem implies $q\left(t_{1}, \ldots, t_{n}\right)=q\left(t_{1}, \ldots, t_{m}, 0 \ldots, 0\right)$, that is, $\left.f\right|_{V_{n}}$ is generated by F_{1}, \ldots, F_{m}. Since it is true for every n, f is finitely generated.

For example $f(x)=\sum_{n=1}^{\infty} \frac{F_{n}(x)}{n!}$ is not w_{p}-continuous.
Proposition 3.22. w_{p} is a Hausdorff topology.
Proof. If $\varphi \neq \psi$, then there is a number k such that

$$
\left|\varphi\left(F_{k}\right)-\psi\left(F_{k}\right)\right|=\rho>0
$$

Let $\varepsilon=\rho / 3$. Then for every θ_{1} and θ_{2} in $U_{\varepsilon, k}(0)$,

$$
\left|\left(\varphi \star \theta_{1}\right)\left(F_{k}\right)-\left(\varphi \star \theta_{2}\right)\left(F_{k}\right)\right|=\left|\left(\varphi\left(F_{k}\right)-\psi\left(F_{k}\right)\right)-\left(\theta_{2}\left(F_{k}\right)\right)-\theta_{1}\left(F_{k}\right)\right| \geq \rho / 3
$$

Proposition 3.23. On bounded sets of $\mathcal{M}_{b s}\left(\ell_{p}\right)$ the topology w_{p} is finer than the weak-star topology $w\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \mathcal{H}_{b s}\left(\ell_{p}\right)\right)$.
Proof. Since $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), w_{p}\right)$ is a first-countable space, it suffices to verify that for a bounded sequence $\left(\varphi_{i}\right)_{i}$ which is w_{p} convergent to some ψ, we have $\lim _{i} \varphi_{i}(f)=\psi(f)$ for each $f \in$ $\mathcal{H}_{b s}\left(\ell_{p}\right)$: Indeed, by the Banach-Steinhaus theorem, it is enough to see that $\lim _{i} \varphi_{i}(P)=\psi(P)$ for each symmetric polynomial P. Being $\left\{F_{k}\right\}$ an algebraic basis for the symmetric polynomials, this will follow once we check that $\lim _{i} \varphi_{i}\left(F_{k}\right)=\psi\left(F_{k}\right)$ for each F_{k}. To see this, notice that given $\varepsilon>0, \varphi_{i} \in U_{\varepsilon, k}$ for i large enough, that is, there is θ_{i} such that $\varphi_{i}=\psi \star \theta_{i}$ with $\left|\theta_{i}\left(F_{k}\right)\right|<\varepsilon$. Then, $\left|\varphi_{i}\left(F_{k}\right)-\psi\left(F_{k}\right)\right|=\left|\theta_{i}\left(F_{K}\right)\right|<\varepsilon$ for i large enough.

Proposition 3.24. If $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \star\right)$ is a group, then w_{p} coincides with the weakest topology on $\mathcal{M}_{b s}\left(\ell_{p}\right)$ such that for every polynomial $P \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ the Gelfand extension \widehat{P} is continuous on $\mathcal{M}_{b s}\left(\ell_{p}\right)$.

Proof. The sets $F_{k}^{-1}\left(B\left(F_{k}(\psi), \varepsilon\right)\right)$ generate the weakest topology such that all \widehat{P} are continuous. Let $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ be such that $\left|F_{k}(\theta)-F_{k}(\psi)\right|<\varepsilon$. Set $\varphi=\theta \star \psi^{-1}$. Then $\left|F_{k}(\varphi)\right|=\mid F_{k}(\theta)-$ $F_{k}(\psi) \mid<\varepsilon$ and $\theta=\psi \star \varphi$.

3.5. Representations of the Convolution Semigroup $\left(\mathcal{M}_{b s}\left(\ell_{1}\right), \star\right)[7]$

In this subsection we consider the case $\mathcal{H}_{b s}\left(\ell_{1}\right)$. This algebra admits besides the power series basis $\left\{F_{n}\right\}$, another natural basis that is useful for us: It is given by the sequence $\left\{G_{n}\right\}$ defined by $G_{0}=1$, and

$$
G_{n}(x)=\sum_{k_{1}<\cdots<k_{n}}^{\infty} x_{k_{1}} \cdots x_{k_{n}}
$$

and we refer to it as the basis of elementary symmetric polynomials.
Lemma 3.25. We have that $\left\|G_{n}\right\|=1 / n$!
Proof. To calculate the norm, it is enough to deal with vectors in the unit ball of ℓ_{1} whose components are non-negative. And we may reduce ourselves to calculate it on L_{m} the linear span of $\left\{e_{1}, \ldots, e_{m}\right\}$ for $m \geq n$. We do the calculation in an inductive way over m.

Since $G_{\left.n\right|_{L_{m}}}$ is homogeneous, its norm is achieved at points of norm 1 . If $m=n$, then G_{n} is the product $x_{1} \cdots x_{n}$. By using the Lagrange multipliers rule, we deduce that the maximum is attained at points with equal coordinates, that is at $\frac{1}{n}\left(e_{1}+\cdots+e_{n}\right)$. Thus $\left|G_{n}\left(\frac{1}{n}, n, \frac{n}{n}, 0, \ldots\right)\right|=$ $1 / n^{n} \leq \frac{1}{n!}$.

Now for $m>n$, and $x \in L_{m}$, we have $G_{n}(x)=\sum_{k_{1}<\cdots<k_{n} \leq m}^{\infty} x_{k_{1}} \cdots x_{k_{n}}$. Again the Lagrange multipliers rule leads to either some of the coordinates vanish or they are all equal, hence they have the same value $\frac{1}{m}$. In the first case, we are led back to some the previous inductive steps, with L_{k} with $k<m$, so the aimed inequality holds. While in the second one, we have

$$
G_{n}\left(\frac{1}{m}, \ldots ., \frac{1}{m}, 0, \ldots\right)=\binom{m}{n} \frac{1}{m^{n}} \leq \frac{1}{n!} .
$$

Moreover, $\left\|G_{n}\right\| \geq \lim _{m}\binom{m}{n} \frac{1}{m^{n}}=\frac{1}{n!}$. This completes the proof.
Let $\mathbb{C}\{t\}$ be the space of all power series over \mathbb{C}. We denote by \mathcal{F} and \mathcal{G} the following maps from $\mathcal{M}_{b s}\left(\ell_{1}\right)$ into $\mathbb{C}\{t\}$

$$
\mathcal{F}(\varphi)=\sum_{n=1}^{\infty} t^{n-1} \varphi\left(F_{n}\right) \quad \text { and } \quad \mathcal{G}(\varphi)=\sum_{n=0}^{\infty} t^{n} \varphi\left(G_{n}\right)
$$

Let us recall that every element $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$ has a radius-function

$$
R(\varphi)=\underset{n \rightarrow \infty}{\limsup }\left\|\varphi_{n}\right\|^{\frac{1}{n}}<\infty
$$

where φ_{n} is the restriction of φ to the subspace of n-homogeneous polynomials [6].

Proposition 3.26. The mapping $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right) \xrightarrow{\mathcal{G}} \mathcal{G}(\varphi) \in \mathcal{H}(\mathbb{C})$ is one-to-one and ranges into the subspace of entire functions on \mathbb{C} of exponential type. The type of $\mathcal{G}(\varphi)$ is less than or equal to $R(\varphi)$.
Proof. Using Lemma 3.25,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \sqrt[n]{n!\left|\varphi_{n}\left(G_{n}\right)\right|} & \leq \limsup _{n \rightarrow \infty} \sqrt[n]{n!\left\|\varphi_{n}\right\|\left\|G_{n}\right\|} \\
& =\limsup _{n \rightarrow \infty} \sqrt[n]{\left\|\varphi_{n}\right\|}=R(\varphi)<\infty
\end{aligned}
$$

hence $\mathcal{G}(\varphi)$ is entire and of exponential type less than or equal to $R(\varphi)$. That \mathcal{G} is one-to-one follows from the fact $\left\{G_{n}\right\}$ is a basis.

Theorem 3.27. The following identities hold:
(1) $\mathcal{F}(\varphi \star \theta)=\mathcal{F}(\varphi)+\mathcal{F}(\theta)$.
(2) $\mathcal{G}(\varphi \star \theta)=\mathcal{G}(\varphi) \mathcal{G}(\theta)$.

Proof. The first statement is a trivial conclusion of the properties of the convolution. To prove the second we observe that

$$
G_{n}(x \bullet y)=\sum_{k=0}^{n} G_{k}(x) G_{n-k}(y)
$$

Thus

$$
\left(\theta \star G_{n}\right)(x)=\theta\left(T_{x}^{s}\left(G_{n}\right)\right)=\theta\left(\sum_{k=0}^{n} G_{k}(x) G_{n-k}\right)=\sum_{k=0}^{n} G_{k}(x) \theta\left(G_{n-k}\right)
$$

Therefore,

$$
(\varphi \star \theta)\left(G_{n}\right)=\varphi\left(\sum_{k=0}^{n} G_{k}(x) \theta\left(G_{n-k}\right)\right)=\sum_{k=0}^{n} \varphi\left(G_{k}\right) \theta\left(G_{n-k}\right) .
$$

Hence, being the series absolutely convergent,

$$
\begin{aligned}
\mathcal{G}(\varphi) \mathcal{G}(\theta) & =\sum_{k=0}^{\infty} t^{k} \varphi\left(G_{k}\right) \sum_{m=0}^{\infty} t^{m} \theta\left(G_{m}\right)=\sum_{n=0}^{\infty} \sum_{k+m=n} t^{n} \varphi\left(G_{k}\right) \theta\left(G_{m}\right) \\
& =\sum_{n=0}^{\infty} t^{n} \sum_{k+m=n} \varphi\left(G_{k}\right) \theta\left(G_{m}\right)=\sum_{n=0}^{\infty} t^{n}(\varphi \star \theta)\left(G_{n}\right)=\mathcal{G}(\varphi \star \theta)
\end{aligned}
$$

Example 3.28. Let ψ_{λ} be as defined in Example 3.14. We know that $\mathcal{F}\left(\psi_{\lambda}\right)=\lambda$. To find $\mathcal{G}\left(\psi_{\lambda}\right)$ note that

$$
G_{k}\left(v_{n}\right)=\left(\frac{\lambda}{n}\right)^{k}\binom{n}{k}, \text { hence } \varphi\left(G_{k}\right)=\lim _{n} G_{k}\left(v_{n}\right)=\frac{\lambda^{k}}{k!}
$$

and so

$$
\mathcal{G}\left(\psi_{\lambda}\right)(t)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n}(\lambda t)^{k} \psi_{\lambda}\left(G_{n}\right)=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{(\lambda t)^{k}}{k!}=e^{\lambda t}
$$

According to well-known Newton's formula we can write for $x \in \ell_{1}$,

$$
\begin{equation*}
n G_{n}(x)=F_{1}(x) G_{n-1}(x)-F_{2}(x) G_{n-2}(x)+\cdots+(-1)^{n+1} F_{n}(x) \tag{3.6}
\end{equation*}
$$

Moreover, if ξ is a complex homomorphism (not necessarily continuous) on the space of symmetric polynomials $\mathcal{P}_{S}\left(\ell_{1}\right)$, then

$$
\begin{equation*}
n \xi\left(G_{n}\right)=\xi\left(F_{1}\right) \xi\left(G_{n-1}\right)-\xi\left(F_{2}\right) \xi\left(G_{n-2}\right)+\cdots+(-1)^{n+1} \xi\left(F_{n}\right) . \tag{3.7}
\end{equation*}
$$

Next we point out the limitations of the construction's technique described in 3.14.
Remark 3.29. Let ξ be a complex homomorphism on $\mathcal{P}_{s}\left(\ell_{1}\right)$ such that $\xi\left(F_{m}\right)=c \neq 0$ for some $m \geq 2$ and $\xi\left(F_{n}\right)=0$ for $n \neq m$. Then ξ is not continuous.
Proof. Using formula (3.7) we can see that

$$
\xi\left(G_{k m}\right)=(-1)^{m+1} \frac{\xi\left(F_{m}\right) \xi\left(G_{(k-1) m}\right)}{k m}
$$

and $\xi\left(G_{n}\right)=0$ if $n \neq k m$ for some $k \in \mathbb{N}$. By induction we have

$$
\xi\left(G_{k m}\right)=\frac{\left((-1)^{m+1} c / m\right)^{k}}{k!}
$$

and so

$$
\left.\mathcal{G}(\xi)(t)=1+\sum_{k=1}^{\infty} \frac{\left((-1)^{m+1} c / m\right)^{k}}{k!} t^{k m}=1+\sum_{k=1}^{\infty} \frac{\left((-1)^{m+1} \frac{1 t^{m}}{m}\right)^{k}}{k!}=e^{\left((-1)^{m+1} \frac{c c^{m}}{m}\right.}\right) .
$$

Hence $\mathcal{G}(\xi)(t)=e^{-\frac{(-c c)^{m}}{m}}=e^{-\frac{(-c)^{m}}{m} t^{m}}$. Since $m \geq 2, \mathcal{G}(\xi)$ is not of exponential type. So if ξ were continuous, it could be extended to an element in $\mathcal{M}_{b s}\left(\ell_{1}\right)$, leading to a contradiction with Proposition 3.26.

According to the Hadamard Factorization Theorem (see [14, p. 27]) the function of the exponential type $\mathcal{G}(\varphi)(t)$ is of the form

$$
\begin{equation*}
\mathcal{G}(\varphi)(t)=e^{\lambda t} \prod_{k=1}^{\infty}\left(1-\frac{t}{a_{k}}\right) e^{t / a_{k}} \tag{3.8}
\end{equation*}
$$

where $\left\{a_{k}\right\}$ are the zeros of $\mathcal{G}(\varphi)(t)$. If $\sum\left|a_{k}\right|^{-1}<\infty$, then this representation can be reduced to

$$
\begin{equation*}
\mathcal{G}(\varphi)(t)=e^{\lambda t} \prod_{k=1}^{\infty}\left(1-\frac{t}{a_{k}}\right) \tag{3.9}
\end{equation*}
$$

Recall how ψ_{λ} was defined in Example 3.14.
Proposition 3.30. If $\varphi \in\left(\mathcal{M}_{b s}\left(\ell_{1}\right), \star\right)$ is invertible, then $\varphi=\psi_{\lambda}$ for some λ. In particular, the semigroup $\left(\mathcal{M}_{b s}\left(\ell_{1}\right), \star\right)$ is not a group.

Proof. If φ is invertible then $\mathcal{G}(\varphi)(t)$ is an invertible entire function of exponential type and so has no zeros. By Hadamard's factorization (3.8) we have that $\mathcal{G}(\varphi)(t)=e^{\lambda t}$ for some complex number λ. Hence $\varphi=\psi_{\lambda}$ by Proposition 3.26.

The evaluation $\delta_{(1,0 \ldots, 0, \ldots)}$ does not coincide with any ψ_{λ} since, for instance, $\psi_{\lambda}\left(F_{2}\right)=0 \neq 1=$ $\delta_{(1,0 \ldots, 0, \ldots)}\left(F_{2}\right)$.

Another consequence of our analysis is the following remark.
Corollary 3.31. Let Φ be a homomorphism of $\mathcal{P}_{s}\left(\ell_{1}\right)$ to itself such that $\Phi\left(F_{k}\right)=-F_{k}$ for every k. Then Φ is discontinuous.

Proof. If Φ is continuous it may be extended to continuous homomorphism $\widetilde{\Phi}$ of $\mathcal{H}_{b s}\left(\ell_{1}\right)$. Then for $x=(1,0 \ldots, 0, \ldots), \delta_{x} \star\left(\delta_{x} \circ \widetilde{\Phi}\right)=\delta_{0}$. However, this is impossible since δ_{x} is not invertible.

We close this section by analyzing further the relationship established by the mapping \mathcal{G}.
It is known from Combinatorics (see e.g. [15, p. 3, 4]) that

$$
\begin{equation*}
\mathcal{G}\left(\delta_{x}\right)(t)=\prod_{k=1}^{\infty}\left(1+x_{k} t\right) \quad \text { and } \quad \mathcal{F}\left(\delta_{x}\right)(t)=\sum_{k=1}^{\infty} \frac{x_{k}}{1-x_{k} t} \tag{3.10}
\end{equation*}
$$

for every $x \in c_{00}$. Formula (3.10) for $\mathcal{G}\left(\delta_{x}\right)$ is true for every $x \in \ell_{1}$: Indeed, for fixed t, both the infinite product and $\mathcal{G}\left(\delta_{x}\right)(t)$ are analytic functions on ℓ_{1}.

Taking into account formula (3.10) we can see that the zeros of $\mathcal{G}\left(\delta_{x}\right)(t)$ are $a_{k}=-1 / x_{k}$ for $x_{k} \neq 0$. Conversely, if $f(t)$ is an entire function of exponential type which is equal to the right hand side of (3.9) with $\sum\left|a_{k}\right|^{-1}<\infty$, then for $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$ given by $\varphi=\psi_{\lambda} \star \delta_{x}$, where $x \in \ell_{1}$, $x_{k}=-1 / a_{k}$ and ψ_{λ} is defined in Example 3.14, it turns out that $\mathcal{G}(\varphi)(t)=f(t)$. So we have just to examine entire functions of exponential type with Hadamard canonical product

$$
\begin{equation*}
f(t)=\prod_{k=1}^{\infty}\left(1-\frac{t}{a_{k}}\right) e^{t / a_{k}} \tag{3.11}
\end{equation*}
$$

with $\sum\left|a_{k}\right|^{-1}=\infty$. Note first that the growth order of $f(t)$ is not greater than 1 . According to Borel's theorem [14, p. 30] the series

$$
\sum_{k=1}^{\infty} \frac{1}{\left|a_{k}\right|^{1+d}}
$$

converges for every $d>0$. Let

$$
\Delta_{f}=\limsup _{n \rightarrow \infty} \frac{n}{\left|a_{n}\right|}, \quad \eta_{f}=\limsup _{r \rightarrow \infty}\left|\sum_{\left|a_{n}\right|<r} \frac{1}{a_{n}}\right|
$$

and $\gamma_{f}=\max \left(\Delta_{f}, \eta_{f}\right)$. Due to Lindelöf's theorem [14, p. 33] the type σ_{f} of f and γ_{f} simultaneously are equal either to zero, or to infinity, or to positive numbers. Hence $f(t)$ of the form (3.11) is a function of exponential type if and only if $\sum\left|a_{k}\right|^{-1-d}$ converges for every $d>0$ and γ_{f} is finite.
Corollary 3.32. If a sequence $\left(x_{n}\right) \notin \ell_{p}$ for some $p>1$, then there is no $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$ such that

$$
\varphi\left(F_{k}\right)=\sum_{n=1}^{\infty} x_{n}^{k}
$$

for all k.
Let $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ be a sequence of complex numbers such that $x \in \ell_{1+d}$ for every $d>0$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n\left|x_{n}\right|<\infty, \quad \limsup _{r \rightarrow 1}\left|\sum_{\frac{1}{\left|x_{n}\right|}<r} x_{n}\right|<\infty \tag{3.12}
\end{equation*}
$$

and $\lambda \in \mathbb{C}$. Let us denote by $\delta_{(x, \lambda)}$ a homomorphism on the algebra of symmetric polynomials $\mathcal{P}_{s}\left(\ell_{1}\right)$ of the form

$$
\delta_{(x, \lambda)}\left(F_{1}\right)=\lambda, \quad \delta_{(x, \lambda)}\left(F_{k}\right)=\sum_{n=1}^{\infty} x_{n}^{k}, \quad k>1
$$

Proposition 3.33. Let $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$. Then the restriction of φ to $\mathcal{P}_{s}\left(\ell_{1}\right)$ coincides with $\varphi_{(x, \lambda)}$ for some $\lambda \in \mathbb{C}$ and x satisfying (3.15).
Proof. Consider the exponential type function $\mathcal{G}(\varphi)$ given by (3.8) and the corresponding sequence $x=\left(\frac{-1}{a_{n}}\right)$.

If $x \in \ell_{1}$, then according to (3.9), $\varphi=\psi_{\lambda} \star \delta_{x}$. If $x \notin \ell_{1}$, then $\mathcal{G}(\varphi)(t)=e^{\lambda t} \prod_{n=1}^{\infty}(1+$ $\left.t x_{n}\right) e^{-t x_{n}}$ and, on the other hand, $\mathcal{G}(\varphi)(t)=\sum_{n=0}^{\infty} \varphi\left(G_{n}\right) t^{n}$.

We have

$$
\begin{aligned}
\left(e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}\right)_{t}^{\prime} & =\lambda e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}=e^{\lambda t}\left(-t x_{1}^{2} e^{-t x_{1}} \prod_{n \neq 1}\left(1+t x_{n}\right) e^{-t x_{n}}\right. \\
& \left.-t x_{2}^{2} e^{-t x_{2}} \prod_{n \neq 2}\left(1+t x_{n}\right) e^{-t x_{n}}-\ldots\right) \\
& =\lambda e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}-t e^{\lambda t} \sum_{k=1}^{\infty} x_{k}^{2} e^{-t x_{k}} \prod_{n \neq k}\left(1+t x_{n}\right) e^{-t x_{n}}
\end{aligned}
$$

and

$$
\left.\left(e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}\right)^{\prime}\right|_{t=0}=\lambda
$$

So by the uniqueness of the Taylor coefficients, $\varphi\left(G_{1}\right)=\varphi\left(F_{1}\right)=\lambda$.
Now

$$
\begin{aligned}
\left(e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}\right)_{t}^{\prime \prime} & =\left(\lambda e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}\right)_{t}^{\prime} \\
& -\left(t e^{\lambda t} \sum_{k=1}^{\infty} x_{k}^{2} e^{-t x_{k}} \prod_{n \neq k}\left(1+t x_{n}\right) e^{-t x_{n}}\right)_{t}^{\prime} \\
& =\lambda^{2} e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}-\lambda t e^{\lambda t} \sum_{k=1}^{\infty} x_{k}^{2} e^{-t x_{k}} \prod_{n \neq k}\left(1+t x_{n}\right) e^{-t x_{n}} \\
& -e^{\lambda t} \sum_{k=1}^{\infty} x_{k}^{2} e^{-t x_{k}} \prod_{n \neq k}\left(1+t x_{n}\right) e^{-t x_{n}} \\
& -t\left(e^{\lambda t} \sum_{k=1}^{\infty} x_{k}^{2} e^{-t x_{k}} \prod_{n \neq k}\left(1+t x_{n}\right) e^{-t x_{n}}\right)_{t}^{\prime}
\end{aligned}
$$

and

$$
\left.\left(e^{\lambda t} \prod_{n=1}^{\infty}\left(1+t x_{n}\right) e^{-t x_{n}}\right)^{\prime \prime}\right|_{t=0}=\lambda^{2}-\sum_{k=1}^{\infty} x_{k}^{2}
$$

Then

$$
\varphi\left(G_{2}\right)=\frac{\lambda^{2}-F_{2}(x)}{2}=\frac{\left(\varphi\left(F_{1}\right)\right)^{2}-F_{2}(x)}{2}
$$

On the other hand,

$$
\varphi\left(G_{2}\right)=\frac{\varphi\left(F_{1}^{2}\right)-\varphi\left(F_{2}\right)}{2}
$$

and we have

$$
\varphi\left(F_{2}\right)=F_{2}(x) .
$$

Now using induction we obtain the required result.
Question 3.34. Does the $\operatorname{map} \mathcal{G}$ act onto the space of entire functions of exponential type?

3.6. The Multiplicative Convolution [8]

Definition 3.35. Let $x, y \in \ell_{p}, x=\left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right)$. We define the multiplicative intertwining of x and $y, x \diamond y$, as the resulting sequence of ordering the set $\left\{x_{i} y_{j}: i, j \in \mathbb{N}\right\}$ with one single index in some fixed order.

Note that for further consideration the order of numbering does not matter.
Proposition 3.36. For arbitrary $x, y \in \ell_{p}$ we have
(1) $x \diamond y \in \ell_{p}$ and $\|x \diamond y\|=\|x\|\|y\|$;
(2) $F_{k}(x \diamond y)=F_{k}(x) F_{k}(y) \forall k \geq\lceil p\rceil$.
(3) If P is an n-homogeneous symmetric polynomial on ℓ_{p} and y is fixed, then the function $x \mapsto$ $P(x \diamond y)$ is n-homogeneous.
Proof. It is clear that $\|x \diamond y\|^{p}=\sum_{i, j}\left|x_{i} y_{j}\right|^{p}=\sum_{i}\left|x_{i}\right|^{p} \sum_{i}\left|y_{j}\right|^{p}=\|x\|^{p}\|y\|^{p}$. Also $F_{k}(x \diamond y)=$ $\sum_{i, j}\left(x_{i} y_{j}\right)^{k}=\sum_{i} x_{i}^{k} \sum_{j} y_{j}^{k}=F_{k}(x) F_{k}(y)$. Statement (3) follows from the equality $\lambda(x \diamond y)=(\lambda x) \diamond$ y.

Given $y \in \ell_{p}$, the mapping $x \in \ell_{p} \xrightarrow{\pi_{y}}(x \diamond y) \in \ell_{p}$ is linear and continuous because of Proposition 3.36. Therefore if $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$, then $f \circ \pi_{y} \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ because $f \circ \pi_{y}$ is analytic and bounded on bounded sets and clearly $f(\sigma(x) \diamond y)=f(x \diamond y)$ for every permutation $\sigma \in \mathcal{G}$. Thus if we denote $M_{y}(f)=f \circ \pi_{y}, M_{y}$ is a composition operator on $\mathcal{H}_{b s}\left(\ell_{p}\right)$, that we will call the multiplicative convolution operator. Notice as well that $M_{y}=M_{\sigma(y)}$ for every permutation $\sigma \in \mathcal{G}$ and that $M_{y}\left(F_{k}\right)=F_{k}(y) F_{k} \forall k \geq\lceil p\rceil$.
Proposition 3.37. For every $y \in \ell_{p}$ the multiplicative convolution operator M_{y} is a continuous homomorphism on $\mathcal{H}_{b s}\left(\ell_{p}\right)$.

Note that in particular, if f_{n} is an n-homogeneous continuous polynomial, then $\left\|M_{y}\left(f_{n}\right)\right\| \leq$ $\left\|f_{n}\right\|\|y\|^{n}$. And also that for $\lambda \in \mathbb{C}, M_{\lambda y}\left(f_{n}\right)=\lambda^{n} M_{y}\left(f_{n}\right)$, because $\pi_{\lambda y}(x)=\lambda \pi(x)$. Analogously, $M_{y+z}\left(f_{n}\right)=f_{n} \circ\left(\pi_{y}+\pi_{z}\right)$, because $\pi_{y+z}=\pi_{y}+\pi_{z}$. Therefore the mapping $y \in \ell_{p} \mapsto$ $M_{y}\left(f_{n}\right)$ is an n-homogeneous continuous polynomial.

Recall that the radius function $R(\phi)$ of a complex homomorphism $\phi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ is the infimum of all r such that ϕ is continuous with respect to the norm of uniform convergence on the ball $r B_{\ell_{p}}$, that is $|\phi(f)| \leq C_{r}\|f\|_{r}$. It is known that

$$
R(\phi)=\underset{n \rightarrow \infty}{\limsup }\left\|\phi_{n}\right\|^{1 / n}
$$

where ϕ_{n} is the restriction of ϕ to $\mathcal{P}_{s}\left({ }^{n} \ell_{p}\right)$ and $\left\|\phi_{n}\right\|$ is its corresponding norm (see [6]).
Proposition 3.38. For every $\theta \in \mathcal{H}_{b s}\left(\ell_{p}\right)^{\prime}$ and every $y \in \ell_{p}$ the radius-function of the continuous homomorphism $\theta \circ M_{y}$ satisfies

$$
R\left(\theta \circ M_{y}\right) \leq R(\theta)\|y\|
$$

and for fixed $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ the function $y \mapsto \theta \circ M_{y}(f)$ also belongs to $\mathcal{H}_{b s}\left(\ell_{p}\right)$.

Proof. For a given $y \in \ell_{p}$, let $\left(\theta \circ M_{y}\right)_{n}$ (respectively, $\left.\theta_{n}\right)$ be the restriction of $\theta \circ M_{y}$ (respectively, θ) to the subspace of n-homogeneous symmetric polynomials. Then we have

$$
\left\|\left(\theta \circ M_{y}\right)_{n}\right\|=\sup _{\left\|f_{n}\right\| \leq 1}\left|\theta_{n}\left(\frac{M_{y}\left(f_{n}\right)}{\|y\|^{n}}\right)\right|\|y\|^{n} \leq\left\|\theta_{n}\right\|\|y\|^{n}
$$

So

$$
R\left(\theta \circ M_{y}\right) \leq \limsup _{n \rightarrow \infty}\left(\left\|\theta_{n}\right\|\|y\|^{n}\right)^{1 / n}=R(\theta)\|y\|
$$

Since the terms in the Taylor series of the function $y \mapsto \theta \circ M_{y}(f)$ are $y \mapsto \theta \circ M_{y}\left(f_{n}\right)$, where $\left(f_{n}\right)$ are the terms in the Taylor series of f, the formula above proves the second statement.

Using the multiplicative convolution operator we can introduce a multiplicative convolution on $\mathcal{H}_{b s}\left(\ell_{p}\right)^{\prime}$.
Definition 3.39. Let $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$ and $\theta \in \mathcal{H}_{b s}\left(\ell_{p}\right)^{\prime}$. The multiplicative convolution $\theta \diamond f$ is defined as

$$
(\theta \diamond f)(x)=\theta\left[M_{x}(f)\right] \text { for every } x \in \ell_{p}
$$

We have by Proposition 3.38, that $\theta \diamond f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$.
Definition 3.40. For arbitrary $\varphi, \theta \in \mathcal{H}_{b s}\left(\ell_{p}\right)^{\prime}$ we define their multiplicative convolution $\varphi \diamond \theta$ according to

$$
(\varphi \diamond \theta)(f)=\varphi(\theta \diamond f) \text { for every } f \in \mathcal{H}_{b s}\left(\ell_{p}\right)
$$

For the evaluation homomorphism at y, δ_{y}, observe that

$$
\left(\delta_{y} \diamond f\right)(x)=\delta_{y}\left(M_{x}(f)\right)=\left(f \circ \pi_{x}\right)(y)=f\left(\pi_{x}(y)\right)=f(x \diamond y)=f\left(\pi_{y}(x)\right)=M_{y}(f)(x)
$$

Hence, $\delta_{x} \diamond \delta_{y}=\delta_{x \diamond y}$.
Proposition 3.41. If $\varphi, \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$, then $\varphi \diamond \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$.
Proof. From the multiplicativity of M_{y} it follows that $\varphi \diamond \theta$ is a character. Using arguments as in Proposition 3.38, we have that

$$
R(\varphi \diamond \theta) \leq R(\varphi) R(\theta)
$$

Hence $\varphi \diamond \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$.
Theorem 3.42.

$$
\begin{equation*}
\text { 1.If } \varphi, \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right) \text {, then }(\varphi \diamond \theta)\left(F_{k}\right)=\varphi\left(F_{k}\right) \theta\left(F_{k}\right) \forall k \geq\lceil p\rceil \tag{3.13}
\end{equation*}
$$

2. The semigroup $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \diamond\right)$ is commutative and the evaluation at $x_{0}=(1,0,0, \ldots), \delta_{x_{0}}$, is its identity.
Proof. Let us take firstly $x, y \in \ell_{p}$ and $\delta_{x}, \delta_{y} \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ the corresponding point evaluation homomorphisms. Then $\left(\delta_{x} \diamond \delta_{y}\right)\left(F_{k}\right)=F_{k}(x \diamond y)=\sum x_{i}^{k} y_{j}^{k}=F_{k}(x) F_{k}(y)$.

Now let $\varphi, \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$. Then

$$
\left(\theta \diamond F_{k}\right)(x)=\theta\left(M_{x}\left(F_{k}\right)\right)=\theta\left(F_{k}(x) F_{k}\right)=F_{k}(x) \theta\left(F_{k}\right)
$$

So,

$$
(\varphi \diamond \theta)\left(F_{k}\right)=\varphi\left(F_{k} \theta\left(F_{k}\right)\right)=\varphi\left(F_{k}\right) \theta\left(F_{k}\right) .
$$

Exchanging parameters in (3.13) we get that

$$
(\theta \diamond \varphi)\left(F_{k}\right)=\theta\left(F_{k}\right) \varphi\left(F_{k}\right)=(\varphi \diamond \theta)\left(F_{k}\right)
$$

whence it follows that the multiplicative convolution is commutative for F_{k}. Since every symmetric polynomial is an algebraic combination of polynomials F_{k} and each function of $\mathcal{H}_{b s}\left(\ell_{p}\right)$ is uniformly approximated by symmetric polynomials, then the convolution operation is commutative. Analogously, \diamond is associative since

$$
\left.(\psi \diamond(\varphi \diamond \theta))\left(F_{k}\right)=\psi\left(F_{k}\right) \varphi\left(F_{k}\right) \theta\left(F_{k}\right)=((\psi \diamond \varphi) \diamond \theta)\right)\left(F_{k}\right) .
$$

Also from (3.13) it follows that the cancelation rule holds and $\delta_{x_{0}}$, where $x_{0}=(1,0,0, \ldots)$, is the identity.

In [7] it was constructed a family $\left\{\psi_{\lambda}: \lambda \in \mathbb{C}\right\}$ of elements of the set $\mathcal{M}_{b s}\left(\ell_{p}\right)$ such that $\psi_{\lambda}\left(F_{p}\right)=\lambda$ and $\psi_{\lambda}\left(F_{k}\right)=0$ for $k>p$. Let us recall the construction: Consider for each $n \in \mathbb{N}$, the element $v_{n}=\left(\frac{\lambda}{n}\right)^{1 / p}\left(e_{1}+\cdots+e_{n}\right)$ for which $F_{p}\left(v_{n}\right)=\lambda$, and $\lim _{n} F_{j}\left(v_{n}\right)=0$ for $j>$ p. Now, the sequence $\left\{\delta_{v_{n}}\right\}$ has an accumulation point ψ_{λ} in the spectrum for the pointwise convergence topology for which $\psi_{\lambda}\left(F_{k}\right)=0$ for $k>p$ that prevents ψ_{λ} from being invertible because of (3.13).
Remark 3.43. The semigroup $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \diamond\right)$ is not a group.
Recall that for any $\varphi, \theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ and $f \in \mathcal{H}_{b s}\left(\ell_{p}\right)$, the symmetric convolution $\varphi \star \theta$ was defined in [6] as follows:

$$
(\varphi \star \theta)(f)=\varphi\left(T_{y}^{s}(f)\right)
$$

where $T_{y}^{s}(f)(x)=f(x \bullet y)$.
Proposition 3.44. For arbitrary $\theta, \varphi, \psi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ the following equality holds:

$$
\theta \diamond(\varphi \star \psi)=(\theta \diamond \varphi) \star(\theta \diamond \psi)
$$

Proof. Indeed, using Theorem 3.42 and [7, Thm 1.5], we obtain that

$$
\begin{aligned}
((\theta \diamond \varphi) \star(\theta \diamond \psi))\left(F_{k}\right) & =(\theta \diamond \varphi)\left(F_{k}\right)+(\theta \diamond \psi)\left(F_{k}\right)=\theta\left(F_{k}\right) \varphi\left(F_{k}\right)+\theta\left(F_{k}\right) \psi\left(F_{k}\right) \\
& =\theta\left(F_{k}\right)\left(\varphi\left(F_{k}\right)+\psi\left(F_{k}\right)\right)=\theta\left(F_{k}\right)(\varphi \star \psi)\left(F_{k}\right) \\
& =\theta \diamond(\varphi \star \psi)\left(F_{k}\right)
\end{aligned}
$$

Corollary 3.45. The set $\left(\mathcal{M}_{b s}\left(\ell_{p}\right), \diamond, \star\right)$ is a commutative semi-ring with identity.
A linear operator $T: \mathcal{H}_{b s}\left(\ell_{p}\right) \rightarrow \mathcal{H}_{b s}\left(\ell_{p}\right)$ is called a multiplicative convolution operator if there exists $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ such that $T f=\theta \diamond f$.
Proposition 3.46. A continuous homomorphism $T: \mathcal{H}_{b s}\left(\ell_{p}\right) \rightarrow \mathcal{H}_{b s}\left(\ell_{p}\right)$ is a multiplicative convolution operator if and only if it commutes with all multiplicative operators $M_{y}, y \in \ell_{p}$.
Proof. Suppose that there exists $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ such that $T f=\theta \diamond f$. Fix $y \in \ell_{p}$. Then

$$
\left[T \circ M_{y}\right](f)(x)=\left[T\left(M_{y}(f)\right)\right](x)=\left[\theta \diamond M_{y}(f)\right](x)=\theta\left[M_{x}\left(M_{y}(f)\right]=\theta\left[M_{x \diamond y}(f)\right] .\right.
$$

On the other hand,

$$
\left[M_{y} \circ T\right](f)(x)=\left[M_{y}(T f)\right](x)=T f(x \diamond y)=(\theta \diamond f)(x \diamond y)=\theta\left[M_{x \diamond y}(f)\right] .
$$

Conversely, for $x_{0}=(1,0,0, \ldots)$ we put $\theta=\delta_{x_{0}} \circ T$. Clearly, $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$. Let us check that $T f=\theta \diamond f$. Indeed, $(\theta \diamond f)(x)=\theta\left[M_{x}(f)\right]=\left[T\left(M_{x}(f)\right)\right]\left(x_{0}\right)=\left[M_{x}(T(f))\right]\left(x_{0}\right)=T f\left(x_{0} \diamond x\right)=$ $T f(x)$.

Theorem 3.47. A homomorphism $T: \mathcal{H}_{b s}\left(\ell_{p}\right) \rightarrow \mathcal{H}_{b s}\left(\ell_{p}\right)$ such that $T\left(F_{k}\right)=a_{k} F_{k}, k \geq\lceil p\rceil$, is continuous if and only if there exists $\varphi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ such that $\varphi\left(F_{k}\right)=a_{k}, k \geq\lceil p\rceil$.

Proof. Let $\varphi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ with $\varphi\left(F_{k}\right)=a_{k}$. Then

$$
\left(\varphi \diamond F_{k}\right)(x)=\varphi\left(M_{x}\left(F_{k}\right)\right)=\varphi\left(F_{k} F_{k}(x)\right)=a_{k} F_{k}(x)
$$

Thus if $T f=\varphi \diamond f, T$ defines a continuous homomorphism and $T\left(F_{k}\right)=a_{k} F_{k}$.
Conversely, if such homomorphism T is continuous, then clearly T commutes with all M_{y}. By Proposition 3.46 it has the form $T(f)=\varphi \diamond f$ for some $\varphi \in \mathcal{M}_{b s}\left(\ell_{p}\right)$. Thus, $T\left(F_{k}\right)=$ $\varphi\left(F_{k}\right) F_{k}(x)=a_{k} F_{k}$, hence $\varphi\left(F_{k}\right)=a_{k}$.

Proposition 3.48. The identity is the only operator on $\mathcal{H}_{b s}\left(\ell_{p}\right)$ that is both a convolution and a multiplicative convolution operator.
Proof. Let $T: \mathcal{H}_{b s}\left(\ell_{p}\right) \rightarrow \mathcal{H}_{b s}\left(\ell_{p}\right)$ be such an operator. Then there is $\theta \in \mathcal{M}_{b s}\left(\ell_{p}\right)$ such that $T f=\theta \star f$ and T commutes with all M_{y}. In particular we have for all polynomials $F_{k}, k \geq\lceil p\rceil$, that

$$
\begin{gathered}
M_{y}\left(T F_{k}\right)=M_{y}\left(\theta \star F_{k}\right)=M_{y}\left(\theta\left(F_{k}\right)+F_{k}\right)=\theta\left(F_{k}\right)+M_{y}\left(F_{k}\right)=\theta\left(F_{k}\right)+F_{k}(y) F_{k} \text { and } \\
T\left(M_{y}\left(F_{k}\right)\right)=T\left(F_{k}(y) F_{k}\right)=F_{k}(y) \theta \star F_{k}=F_{k}(y)\left(\theta\left(F_{k}\right)+F_{k}\right) \text { coincide. }
\end{gathered}
$$

Hence $\theta\left(F_{k}\right)=F_{k}(y) \theta\left(F_{k}\right)$, that leads to $\theta\left(F_{k}\right)=0$, that in turn shows that $\theta=\delta_{0}$, or in other words, $T=I d$.

3.7. The Case of ℓ_{1} [8]

In this section we consider the algebra $\mathcal{H}_{b s}\left(\ell_{1}\right)$. In addition to the basis $\left\{F_{n}\right\}$, this algebra has a different natural basis that is given by the sequence $\left\{G_{n}\right\}$:

$$
G_{n}(x)=\sum_{k_{1}<\cdots<k_{n}}^{\infty} x_{k_{1}} \cdots x_{k_{n}}
$$

and $G_{0}:=1$.
According to [7] Lemma 3.1, $\left\|G_{n}\right\|=\frac{1}{n!}$, so it follows that for every $t \in \mathbb{C}$, the function $\sum_{n=0}^{\infty} t^{n} G_{n} \in \mathcal{H}_{b s}\left(\ell_{1}\right)$ and that such series converges uniformly on bounded subsets of ℓ_{1}. Thus if $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$,

$$
\mathcal{G}(\varphi)(t)=\varphi\left(\sum_{n=0}^{\infty} t^{n} G_{n}\right)=\sum_{n=0}^{\infty} t^{n} \varphi\left(G_{n}\right)
$$

is well defined and as it was shown in [7, Proposition 3.2], the mapping

$$
\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right) \xrightarrow{\mathcal{G}} \mathcal{G}(\varphi) \in H(\mathbb{C})
$$

is one-to-one and ranges into the subspace of entire functions of exponential (finite) type. Whether \mathcal{G} is an onto mapping was an open question there that we answer negatively here, see Corollary 3.52, using the multiplicative convolution we are dealing with.

Observe that for every $a \in \mathbb{C}$,

$$
\left(\delta_{(a, 0,0, \ldots)} \diamond \sum_{n=0}^{\infty} t^{n} G_{n}\right)(x)=M_{x}\left(\sum_{n=0}^{\infty} t^{n} G_{n}\right)(a, 0,0, \ldots)=\left(\sum_{n=0}^{\infty} t^{n} G_{n}\right)(x \diamond(a, 0,0, \ldots))
$$

$$
=\sum_{n=0}^{\infty} t^{n} G_{n}(a x)=\sum_{n=0}^{\infty} t^{n} a^{n} G_{n}(x)
$$

Therefore,

$$
\mathcal{G}\left(\varphi \diamond \delta_{(a, 0,0, \ldots)}\right)(t)=\varphi\left(\sum_{n=0}^{\infty} t^{n} a^{n} G_{n}\right)=\sum_{n=0}^{\infty} t^{n} a^{n} \varphi\left(G_{n}\right)
$$

According to [7, Theorem 1.6 (a)],$\delta_{(a, 0,0, \ldots)} \star \delta_{(b, 0,0, \ldots)}=\delta_{(a, b, 0,0, \ldots)}$, consequently using Proposition 3.44 and [7, Theorem 3.3 (2)] ,

$$
\begin{gathered}
\mathcal{G}\left(\varphi \diamond \delta_{(a, b, 0,0, \ldots)}\right)(t)=\mathcal{G}\left(\left(\varphi \diamond \delta_{(a, 0,0, \ldots)}\right) \star\left(\varphi \diamond \delta_{(b, 0,0, \ldots)}\right)\right)(t)=\mathcal{G}\left(\varphi \diamond \delta_{(a, 0,0, \ldots)}\right)(t) \mathcal{G}\left(\varphi \diamond \delta_{(b, 0,0, \ldots)}\right)(t)= \\
\sum_{n=0}^{\infty} t^{n} a^{n} \varphi\left(G_{n}\right) \cdot \sum_{n=0}^{\infty} t^{n} b^{n} \varphi\left(G_{n}\right) .
\end{gathered}
$$

Therefore,

$$
\mathcal{G}\left(\varphi \diamond \delta_{\left(x_{1}, x_{2}, \ldots, x_{m}, 0, \ldots\right)}\right)(t)=\prod_{k=1}^{m} \sum_{n=0}^{\infty} t^{n} x_{k}^{n} \varphi\left(G_{n}\right)
$$

Further since the sequence $\left(\delta_{\left(x_{1}, x_{2}, \ldots, x_{m}, 0, \ldots\right)}\right)_{m}$ is pointwise convergent to $\delta_{\left(x_{1}, x_{2}, \ldots, x_{m} \ldots\right)}$ in $M_{b s}\left(\ell_{1}\right)$ we have, bearing in mind the commutativity of \diamond, that the sequence $\left(\varphi \diamond \delta_{\left(x_{1}, x_{2}, \ldots, x_{m}, 0, \ldots\right)}\right)_{m}$ is pointwise convergent to $\varphi \diamond \delta_{\left(x_{1}, x_{2}, \ldots, x_{m} \ldots\right)}$. Thus

$$
\begin{equation*}
\mathcal{G}\left(\varphi \diamond \delta_{x}\right)(t)=\prod_{k=1}^{\infty} \sum_{n=0}^{\infty} t^{n} x_{k}^{n} \varphi\left(G_{n}\right) \quad \text { for } x=\left(x_{1}, x_{2}, \ldots, x_{m} \ldots\right) \in \ell_{1} \tag{3.14}
\end{equation*}
$$

For the mentioned above family $\left\{\psi_{\lambda}: \lambda \in \mathbb{C}\right\}$, it was shown in [7] that $\mathcal{G}\left(\psi_{\lambda}\right)(t)=e^{\lambda t}$. Further, it is easy to see that
(1) $\psi_{\lambda} \diamond \varphi\left(F_{1}\right)=\lambda \varphi\left(F_{1}\right)$.
(2) $\psi_{\lambda} \diamond \varphi\left(F_{k}\right)=0, \quad k>1$.
(3) $\mathcal{G}\left(\psi_{\lambda} \diamond \varphi\right)=e^{\lambda \varphi\left(F_{1}\right) t}$.

The following theorem might be of interest in Function Theory.
Theorem 3.49. Let $g(t)$ and $h(t)$ be entire functions of exponential type of one complex variable such that $g(0)=h(0)=1$. Let $\left\{a_{n}\right\}$ be zeros of $g(t)$ with $\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|}<\infty$ and let $\left\{b_{n}\right\}$ be zeros of $h(t)$ with $\sum_{n=1}^{\infty} \frac{1}{\left|b_{n}\right|}<\infty$. Then there exists a function of exponential type $u(t)$ with zeros $\left\{a_{n} b_{m}\right\}_{n, m}$, which can be represented as

$$
u(t)=\prod_{k=1}^{\infty} \sum_{n=0}^{\infty}\left(-\frac{1}{a_{k}}\right)^{n} h_{n}(t)=\prod_{k=1}^{\infty} \sum_{n=0}^{\infty}\left(-\frac{1}{b_{k}}\right)^{n} g_{n}(t)
$$

Proof. By [7], $g(t)=\mathcal{G}\left(\delta_{x}\right)(t)$ and $h(t)=\mathcal{G}\left(\delta_{y}\right)(t)$, where $x, y \in \ell_{1}, x_{n}=-\frac{1}{a_{n}}, y_{n}=-\frac{1}{b_{n}}$. So $u(t)=\mathcal{G}\left(\delta_{x} \diamond \delta_{y}\right)(t)$ and using (3.14) we obtain the statement of the theorem.

Let $x=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ be a sequence of complex numbers such that $x \in \ell_{1+d}$ for every $d>0$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n\left|x_{n}\right|<\infty, \quad \limsup _{r \rightarrow \infty}\left|\sum_{\frac{1}{\left|x_{n}\right|}<r} x_{n}\right|<\infty \tag{3.15}
\end{equation*}
$$

(think for instance of $\left.x_{n}=\frac{(-1)^{n}}{n}\right)$ and $\lambda \in \mathbb{C}$. Let us denote by $\delta_{(x, \lambda)}$ a homomorphism on the algebra of symmetric polynomials $\mathcal{P}_{S}\left(\ell_{1}\right)$ of the form

$$
\delta_{(x, \lambda)}\left(F_{1}\right)=\lambda, \quad \delta_{(x, \lambda)}\left(F_{k}\right)=\sum_{n=1}^{\infty} x_{n}^{k}, \quad k>1
$$

Recall that according to [14, p. 17], $\lim _{\sup }^{n \rightarrow \infty} n^{n}\left|x_{n}\right|$ coincides with the so-called upper density of the sequence $\left(\frac{1}{x_{n}}\right)$ that is defined by $\lim \sup _{r \rightarrow \infty} \frac{\mathbf{n}(r)}{r}$, where $\mathbf{n}(r)$ denotes the counting number of $\left(\frac{1}{x_{n}}\right)$, that is, the number of terms of the sequence with absolute value not greater than r.
Proposition 3.50. [7, Proposition 3.9] Let $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$. Then the restriction of φ to $\mathcal{P}_{s}\left(\ell_{1}\right)$ coincides with $\delta_{(x, \lambda)}$ for some $\lambda \in \mathbb{C}$ and x satisfying (3.15).

Actually, thanks to [1, Theorem 1.3] such sequence x is unique up to permutation.
Theorem 3.51. There is no continuous character of the form $\delta_{(v, \lambda)}$ in the space $\mathcal{M}_{b s}\left(\ell_{1}\right)$, where

$$
v=\left\{c_{1}, \frac{c_{2}}{2}, \ldots, \frac{c_{n}}{n}, \ldots\right\},
$$

and $\left|c_{k}\right|=1$ for each k.
Proof. Assume otherwise, i.e., $\delta_{(v, \lambda)}$ is the restriction of some $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$. Then by (3.13),

$$
(\varphi \diamond \varphi)\left(F_{k}\right)=\varphi\left(F_{k}\right)^{2}=\left(\sum_{n=1}^{\infty} v_{n}^{k}\right)^{2}=\left(\sum_{n=1}^{\infty} v_{n}^{k}\right)\left(\sum_{m=1}^{\infty} v_{m}^{k}\right)=\sum_{n, m=1}^{\infty}\left(v_{n} v_{m}\right)^{k}
$$

Therefore the sequence $\left(v_{n} v_{m}\right)_{n, m}=v \diamond v:=s$, is, up to permutation, the one appearing in Proposition 3.50, so it must satisfy condition (3.15), that is, the sequence of the inverses has finite upper density.

Denote by $d(m)$ the number of divisors of a positive integer m. Then in the sequence $|s|$ of absolute values each number with absolute value $1 / m$ can be found $d(m)$ times. So $|s|$ can be rearranged, if necessary, in the form

$$
(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \ldots, \underbrace{\frac{1}{m}, \ldots \frac{1}{m}}_{d(m)}, \ldots) .
$$

In particular, the index of the last entry of the element with absolute value $\frac{1}{m}$ is $\sum_{n=1}^{m} d(n)$. Hence for the sequence of the inverses and their counting number $\mathbf{n}(m)$, we have $\mathbf{n}(m)=\sum_{n=1}^{m} d(n)$. From Number Theory [2, Theorem 3.3] it is known that

$$
\sum_{n=1}^{m} d(n)=m \ln m+2(\gamma-1) m+O(\sqrt{m})
$$

where γ is the Euler constant. So we are led to a contradiction because

$$
\limsup _{m \rightarrow \infty} \frac{\mathbf{n}(m)}{m} \geq \limsup _{m \rightarrow \infty} \frac{m \ln m}{m}=\limsup _{m \rightarrow \infty} \ln m=\infty .
$$

Corollary 3.52. There is a function of exponential type $g(t)$ for which there is no character $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$ such that $\mathcal{G}(\varphi)(t)=g(t)$.
Proof. It is enough to take a function of exponential (finite) type whose zeros are the elements of the sequence

$$
\left\{\frac{1}{v_{n}}\right\}=\left\{-1,2, \ldots(-1)^{n} n, \ldots\right\}
$$

Such is, for example, the function

$$
g(t)=\prod_{1}^{\infty}\left(1+(-1)^{n} \frac{t}{n}\right) \exp \left((-1)^{n} \frac{t}{n}\right)
$$

Every $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$ is determined by the sequence $\left(\varphi\left(F_{m}\right)\right)$, that verifies the inequality $\lim \sup _{n}\left|\varphi\left(F_{m}\right)\right|^{1 / m} \leq R(\varphi)$ because $\left\|F_{m}\right\| \leq 1$. As a byproduct of Theorem 3.51, we notice that the condition $\limsup _{m}\left|a_{m}\right|^{1 / m}<+\infty$, does not guarantee that there is $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$ such that $\varphi\left(F_{m}\right)=a_{m}$: Indeed, let $a_{m}=\sum_{n} \frac{1}{n^{m}}$ for $m>1$ and arbitrary a_{1}. Then the sequence $\left(a_{m}\right)$ is bounded, so $\lim \sup _{m}\left|a_{m}\right|^{1 / m} \leq 1$, and if there existed $\varphi \in \mathcal{M}_{b s}\left(\ell_{1}\right)$ such that $\varphi\left(F_{m}\right)=a_{m}$, it would mean that for the sequence $x:=\left(\frac{1}{n}\right), \varphi\left(F_{m}\right)=\sum_{n} \frac{1}{n^{m}}$, so $\delta_{\left(x, a_{1}\right)}=\varphi_{P_{P_{s}\left(\ell_{1}\right)}}$.
Question 3.53. Can each element of $\mathcal{M}_{b s}\left(\ell_{1}\right)$ be represented as an entire function of exponential type with zeros $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that either $\left\{a_{n}\right\}=\varnothing$ or $\sum_{n=1}^{\infty} \frac{1}{\left|a_{n}\right|}<\infty$?

References

[1] Alencar R., Aron R., Galindo P., Zagorodnyuk A. Algebras of symmetric holomorphic functions on ℓ_{p}. Bull. Lond. Math. Soc., 35 (2003), 55-64.
[2] Apostol T. Introduction to Analytic Number Theory. Springer-Verlag, New York, 1976.
[3] Aron R.M., Cole B.J., Gamelin T.W. Spectra of algebras of analytic functions on a Banach space. Journal fur die reine und angewandte Mathematik, 415 (1991), 51-93.
[4] Aron R., Galindo P. Uniform algebras of symmetric holomorphic functions. Advanced courses of math. analysis IV: proceedings of the Fourth International School. Spain, September 8-12, 2009, 158-164.
[5] Bogdanowicz W. On the weak continuity of the polynomial functionals on the space c_{0}. Bull. Acad. Polon. Sci., 21 (1957), 243-246.
[6] Chernega I., Galindo P., Zagorodnyuk A. Some algebras of symmetric analytic functions and their spectra. Proc. Edinburgh Math. Soc., 55 (2012), 125-142.
[7] Chernega I., Galindo P., Zagorodnyuk A. The convolution operation on the spectra of algebras of symmetric analytic functions. J. Math. Anal. Appl., 395 (2) (2012), 569-577.
[8] Chernega I., Galindo P., Zagorodnyuk A. The multiplicative convolution on the spectra of algebras of symmetric analytic functions. Rev. Mat. Complut., 27 (2014), 575-585. doi: 10.1007/s13163-013-0128-0
[9] Dineen S. Complex Analysis in Locally Convex Spaces. In: North-Holland Mathematics Studies, Vol.57. Amsterdam, New York, Oxford, 1981.
[10] Dineen S. Complex Analysis on Infinite Dimensional Spaces. In: Monographs in Mathematics. Springer, New York, 1999.
[11] González M., Gonzalo R., Jaramillo J. Symmetric polynomials on rearrangement invariant function spaces. J. London Math. Soc., 59 (2) (1999), 681-697.
[12] Hormander L. An introduction to complex analysis in several variables. North Holland, 1990.
[13] Kurosch A.G. Curso de Algebra Superior. Mir, Moscow, 1977.
[14] Levin B.Ya. Lectures in Entire Functions. In: Translations of Mathematical Monographs, 150. AMS, Providence, RI, 1996.
[15] Macdonald I.G. Symmetric Functions and Orthogonal Polynomials. In: University Lecture Series, 12. AMS, Providence, RI, 1997.
[16] Nemirovskii A.S., Semenov S.M. On polynomial approximation of functions on Hilbert space. In: Mat. USSR Sbornik, 21, 1973, 255-277.
[17] Van der Waerden B.L. Modern Algebra. Ungar, 1964.

Address: I.V. Chernega, Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences, 3 b, Naukova str., Lviv, 79060, Ukraine.
E-mail: icherneha@ukr.net.
Received: 16.06.2015; revised: 02.11.2015.

Чернега I.B. Симетричні поліноми і голоморфні функції на нескінченновимірних просторах. Журнал Прикарпатського університету імені Василя Стефаника, 2 (4) (2015), 23-49.

Стаття містить огляд основних результатів про спектри алгебр симетричних голоморфних функцій i алгебр симетричних аналітичних функцій обмеженого типу на банахових просторах.

Ключові слова: поліноми і аналітичні функції на банахових просторах, симетричні поліноми, спектри алгебр.

