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CONVERGENCE INVESTIGATION OF ITERATIVE
AGGREGATION METHODS FOR LINEAR EQUATIONS
IN A BANACH SPACE

M.I. KOPACH, A.F. OBSHTA, B.A. SHUVAR

Abstract. The sufficient conditions of convergence for a class of multi-parameter iterative
aggregation methods are established. These conditions do not contain the requirements of
positivity for the operators and aggregating functionals. Moreover, it is not necessary that
the corresponding linear continuous operators are compressing.
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1. INTRODUCTION

Problems of the operator equations decomposition are still actual. It is caused by the necessity
of construction parallelization computation methods. Multi-parameter iterative aggregation is
an effective method for decomposition of the high dimension problems (see [1]).

Let E be a Banach space and A : E 7−→ E be a linear continuous operator. Consider the
equation

x = Ax + b, b ∈ E. (1.1)
For such equations often it is assumed that: 1) the normal cone K ⊂ E of positive elements
is given; 2) semiordering in E is introduced by such elements; 3) compression operator A and
element b are positive (see, for example, [2]–[4]). These and other requirements are caused by
the specificity of the corresponding problems (see, for example, [5]–[10]). More detailed results
for one-parametric method are given in [2, p. 155–158] and can be described by the formula

x(n+1) =
(ϕ, b)

(ϕ, x(n) − Ax(n))
Ax(n) + b (n = 0, 1, . . .). (1.2)
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Here (ϕ, x) denotes the value of a linear functional ϕ ∈ K∗ on the elements x ∈ E, where K∗ is
a cone of positive elements in a dual Banach space E∗. The algorithm (1.2) is investigated in [2,
p. 155–158] with the following assumptions: (i) A is a focusing operator [2, p. 77]; (ii) spectral
radius ρ(A) of the operator A is less than one; (iii) the functional ϕ is admissible. A functional ϕ
is called an admissible if there exists a functional g ∈ K∗ such that ϕ = A∗g and (g, x) > (ϕ, x)
for x ∈ K, x 6= Θ, where A∗ is conjugate to A operator and Θ is zero element in E.

In particular, if (1.1) is a system of linear algebraic equations with a matrix A = {aij}, then
the focusing condition is valid when all aij are strictly positive numbers. For the linear integral
operator of the following form

Ax =
∫ b

a
G(t, s)x(s)ds

the focusing condition is valid if the continuous function G(t, s) satisfies the condition G(t, s) >
ε > 0 for t, s ∈ [a, b].

In [2, p. 158] it is noted that the theory of methods for iterative aggregation is not well
developed and the conditions of their convergence are unknown. In particular, as it is indicated
by numerous examples (see [2, p. 158]), one parametric method (1.2) often converges when the
above conditions are not fulfilled.

In this work we investigate the multi-parameter algorithms of iterative aggregation using
the methodology described in [11]–[15]. The established sufficient conditions of convergence
do not contain the requirement of type ρ(A) < 1 for a spectral radius ρ(A) of an operator A
and condition of signs constancy for the operator A and of the aggregating functionals.

2. CONSTRUCTION OF THE AGGREGATIVE-ITERATIVE ALGORITHM

We consider the equation (1.1) in a Banach space E. We do not need semiordering in E. Let
the equation (1.1) is presented in the form

x =
N

∑
j=1

Ajx + A0x + b, (2.1)

where A0 : E → E, Aj : E → E (j = 1, . . . , N), b ∈ E. Set the linear continuous functionals ϕ(i)

(i = 0, 1, . . . , N). Let us join to the equation (2.1) the auxiliary system of equations

yi =
N

∑
j=1

λijyj + (ϕ(i), Bix)− (ϕ(i), b) (i = 0, 1, . . . , N). (2.2)

Our basic assumptions are the following.
A) The equalities

(ϕ(i), Ajx) = λij(ϕ(j), x) (j = 1, . . . , N; i = 0, 1, . . . , N) (2.3)

hold.
B) There exists the operators Bi : E→ E (i = 0, 1, . . . , N) such that

(ϕ(i), A0x + Bix) = λi0(ϕ(0), x) (i = 0, 1, . . . , N). (2.4)
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Let us construct the iterative process by the formulas

x(n+1) =
N

∑
j=1

Ajx(n) + A0x(n) +
N

∑
j=1

a(n)j (y(n)j − y(n+1)
j ) + a(n)0 (y(n)0 − y(n+1)

0 ) + b, (2.5)

y(n+1)
i =

N

∑
j=1

λijy
(n+1)
j + λi0y(n+1)

0 + (ϕ(i), Bix(n)) +
N

∑
j=1

α
(n)
ij (y(n)j − y(n+1)

j )

+ α
(n)
i0 (y(n)0 − y(n+1)

0 )− (ϕ(i), b) (i = 0, 1, . . . , N), (2.6)

where the elements a(n)j = aj(x(n)) ∈ E and real numbers α
(n)
ij = αij(x(n)) satisfy the condition:

(ϕ(i), aj(x)) + λij(x) = λij (x ∈ E, i, j = 0, 1, . . . , N) (2.7)

where λij are real numbers and aj(x), αij(x) are continuous functions for x ∈ E.

3. MAIN LEMMA

Let E′ be an Euclid space of dimension N + 1. Consider the set of elements x ∈ E and vectors
y = {y0, y1, . . . , yN}T ∈ E′, such that the equalities

(ϕ(i), x) + yi = 0 (i = 0, 1, . . . , N) (3.1)

hold. Denote this set by ε0. It is clear that ε0 is a subspace of the space Ẽ = E× E′ equipped by
the norm

‖(x, y)‖ =
√
‖x‖2 + |y|2,

where ‖x‖ is the norm of an element x ∈ E and |y| is the Euclidean norm of a vector y ∈ E′.

Lemma 3.1. Let the conditions A) and B) be satisfied. Let the matrix I −Λ be nondegenerate, where I
is the unit matrix in E′ and

Λ = {λij} (i, j = 0, 1, . . . , N). (3.2)

Then solution {x∗, y∗} ∈ Ẽ of the system (2.1), (2.2) belongs to ε0, i.e. {x∗, y∗} ∈ ε0.

Proof. From the formulas (2.1)–(2.4) for x = x∗, yi = y∗i we have

(ϕ(i), x∗) + y∗i =
N

∑
j=1

(ϕ(i), Ajx∗) + (ϕ(i), A0x∗) + (ϕ(i), b)

+
N

∑
j=1

λijy∗j + (ϕ(i), Bix∗)− (ϕ(i), b)

=
N

∑
j=1

λij

[
(ϕ(j), x∗) + y∗j

]
+
[
(ϕ(i), A0x∗ + Bix∗) + λi0y∗0

]
=

N

∑
j=1

λij

[
(ϕ(j), x∗) + y∗j

]
+ λi0

[
(ϕ(0), x∗) + y∗0

]
(i = 0, 1, . . . , N).

Note, that the matrix I −Λ is nondegenerate, so the lemma is proved.
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Lemma 3.2. Let the conditions A), B) and (2.7) be satisfied. If the matrix I −Λ is nondegenerate and
{x(0), y(0)} ∈ ε0, then {x(n), y(n)} ∈ ε0 for n = 0, 1, . . .

Proof. From the equalities (2.5)–(2.7) we have

(ϕ(i), x(n+1)) + y(n+1)
i =

N

∑
j=1

(ϕ(i), Ajx(n))+(ϕ(i), A0x(n)) +
N

∑
j=1

(ϕ(i), a(n)j )(y(n)j − y(n+1)
j )

+(ϕ(i), a(n)0 )(y(n)0 − y(n+1)
0 ) + (ϕ(i), b) +

N

∑
j=1

λijy
(n+1)
j + λi0y(n+1)

0 + (ϕ(1), B0x(n))

+
N

∑
j=1

α
(n)
ij (y(n)j − y(n+1)

j ) + α
(n)
i0 (y(n)0 − y(n+1)

j )− (ϕ(i), b) =
N

∑
j=1

λij(ϕ(j), x(n))

+(ϕ(i), A0x(n) + Bix(n)) +
[
(ϕ(i), a(n)0 ) + α

(n)
i0

]
y(n)0 +

N

∑
j=1

[
(ϕ(i), a(n)j ) + α

(n)
ij

]
y(n)j

+
[
λi0 − (ϕ(i), a(n)0 ) + α

(n)
i0

]
y(n+1)

0 +
[
λij − (ϕ(i), a(n)j )− α

(n)
ij

]
y(n+1)

j

=
N

∑
j=1

λij

[
(ϕ(j), x(n)) + y(n)j

]
+ λi0

[
(ϕ(0), x(n)) + y(n)0

]
(i = 0, 1, . . . , N).

(3.3)

Since {x(0), y(0)} ∈ ε0, equalities (3.3) are the reason for using of the induction principle. The
proof is complete.

From these two lemmas we obtain the following assertion.

Lemma 3.3. Let the conditions A), B) and (2.7) be satisfied. If there exists the matrix (I − Λ)−1,
{x(0), y(0)} ∈ ε0, and {x∗, y∗} is the solution of the system (2.1), (2.2) in Ẽ, then

(ϕ(i), x(n) − x∗) + y(n)i − y∗i = 0 (i = 0, 1, . . . , N; n = 0, 1, . . .). (3.4)

Proof. It is enough to note that (3.4) is a consequence of the equalities (3.1) for {x(0), y(0)} and
{x∗, y∗}.

4. SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF THE ALGORITHM (2.5), (2.6)

Denote a(n) = {a(n)0 , a(n)1 , . . . , a(n)N }, [ϕ, b] = {(ϕ(0), b), (ϕ(1), b), . . . , (ϕ(N), b)}T, [ϕ, Bx] =

{(ϕ(0), B0x), (ϕ(1), B1x), . . . , (ϕ(N), BNx)}T. Let us rewrite the formulas (2.2), (2.5), (2.6) in the
form

y = Λy + [ϕ, Bx]− [ϕ, b], (4.1)

x(n+1) = Ax(n) + a(n)(y(n) − y(n+1)) + b, (4.2)

y(n+1) = Λy(n+1) + [ϕ, Bx(n)] + α(n)(y(n) − y(n+1))− [ϕ, b], (4.3)
respectively, where the matrix Λ is defined by (3.2).

From the formulas (1.1), (4.1) and (4.2), (4.3) we obtain

x(n+1) − x∗ = A(x(n) − x∗) + a(n)(y(n) − y∗)− a(n)(y(n+1) − y∗), (4.4)
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y(n+1) − y∗ = (Λ− α(n))(y(n+1) − y∗) + α(n)(y(n) − y∗) + [ϕ, B(x(n) − x∗)]. (4.5)

Hence

y(n+1) − y∗ = (I −Λ + α(n))−1α(n)(y(n) − y∗) + (I −Λ + α(n))−1[ϕ, B(x(n) − x∗)]. (4.6)

This equality together with (4.4) imply the equality

x(n+1) − x∗ =A(x(n) − x∗) + a(n)(y(n) − y∗)− a(n)(I −Λ + α(n))−1α(n)(y(n) − y∗)−
−a(n)(I −Λ + α(n))−1[ϕ, B(x(n) − x∗)].

(4.7)

Therefore, using (4.7) and (3.4), we obtain

x(n+1) − x∗ = A(x(n) − x∗)− a(n)(I −Λ + α(n))−1((I −Λ)[ϕ, x(n) − x∗] + [ϕ, B(x(n) − x∗)]).
(4.8)

From (4.6), (4.8) it follows the next assertion.

Theorem 4.1. Let the conditions of Lemma 3.3 be satisfied. Let the operator, generated by the right part
of the equalities (4.6), (4.7) with respect to the pair {x− x∗, y− y∗} with (x, y) ∈ ε0, be compression.

This means that the operator H =

(
h11 h12
h21 h22

)
is compression with respect to the pair {w, z}, where

w ∈ E, z ∈ E′, {w, z} ∈ ε0,

h11w = Aw + a(x)(I −Λ + α(x))−1[ϕ, Bw],

h12z = a(x)(I −Λ + α(x))−1(I −Λ)z,

h21w = (I −Λ + α(x))−1[ϕ, Bw],

h22z = (I −Λ + α(x))−1α(x)z.

Then a sequence {x(n)}, obtained by the algorithm (4.2), (4.3) converges to the solution x∗ ∈ E of the
equation (1.1) not slower than a geometric progression with common ratio q < 1, where q is a norm of
the operator H in the space Ẽ.

From the Theorem 4.1 we can get next proposition.

Theorem 4.2. Let the conditions of Lemma 3.3 be satisfied. Define the operator H0 by the formula

H0w = Aw− a(x)(I −Λ + α(x))−1((I −Λ)[ϕ, w] + [ϕ, Bw]). (4.9)

If for (x, y) ∈ ε0 the operator H0 is compression with a compression constant q0 < 1, then a sequence
{x(n)}, obtained by (4.2), (4.3), converges to the solution x∗ of the equation (1.1) not slower than a
geometric progression with common ratio q0.

Proof. Rewrite the equalities (3.4) in the form

[ϕ, x(n) − x∗] + (y(n) − y∗)T = Θ, (4.10)

where Θ is zero column vector. From (4.9), (4.10) we obtain that the theorem is proved.
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5. MULTI-PARAMETER ITERATIVE AGGREGATION

Define elements aj(x) by the formula

aj(x) =
Ajx

(ϕ(j), x)
(j = 0, 1, . . . , N, x ∈ E). (5.1)

In this case the algorithm (2.5), (2.6) can be defined by the interpolation formula

x(n+1) =
N

∑
j=1

(ϕ(j), x(n+1))

(ϕ(j), x(n))
Ajx(n) + b +

(ϕ(0), x(n+1))

(ϕ(0), x(n))
. (5.2)

This algorithm is an analogue of the method (19.12), (19.13) from [2, p.156]. From the nonde-
generacy of the matrices I −Λ, I −Λ + α(x) for {x, y} ∈ ε0 (x ∈ E, y ∈ E′) it follows that we
can choose the aggregation functionals ϕ(i), matrices Λ = {λij} and α(x) = {αij(x)}, which are
used in described above methodology.

If α(x) is a zero matrix, then the algorithm (2.5), (2.6) does not converted to one of the
projection-iterative methods, that are investigated in [16, 17].

It is also possible to construct other multi-parameter algorithms of iterative aggregation. For
example,

x(n+1) = A0x(n) +
N

∑
j=1

(ϕ(j), x(n+1))

(ϕ(j), x(n))
Ajx(n) + b. (5.3)

Let us consider the case, when we use the formulas

x(n+1) =
N

∑
j=1

Ajx(n) +
N

∑
j=1

a(n)j (y(n)j − y(n+1)
j ) + A0x(n) + b, (5.4)

y(n+1) = Λy(n+1) + [ϕ, Bx(n)] + α(n)(y(n) − y(n+1))− [ϕ, A0x(n)]− [ϕ, b] (5.5)

instead of the formulas (2.5), (2.6) respectively.
Everywhere in the formulas (5.3)–(5.5) all indices i, j take values from 1 to N, i.e. i 6= 0 and

j 6= 0.
For the algorithm (5.4), (5.5) we remain the structure of the matrix H and of the set ε0. In this

case we have

h11w = Aw + a(x)(I −Λ + α(x))−1[ϕ, (B− A0)w],

h12z = a(x)(I −Λ + α(x))−1(I −Λ)z,

h21w = (I −Λ + α(x))−1[ϕ, (B− A0)w],

h22z = (I −Λ + α(x))−1α(x)z.

In these circumstances, the Theorem 4.2 is still valid for the algorithm (5.4), (5.5).
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Копач М.I., Обшта А.Ф., Шувар Б.А. Дослiдження збiжностi методiв iтеративного агрегування для
лiнiйних рiвнянь в банаховому просторi. Журнал Прикарпатського унiверситету iменi Василя Сте-
фаника, 2 (4) (2015), 50-57.

У роботi встановленнi достатнi умови збiжностi одного класу багатопараметричних агрегацiйно-
iтеративних методiв. Отриманi результати не мiстять вимог про додатнiсть операторiв i агрегуючих
функцiоналiв, а також не потребують, щоб вiдповiднi лiнiйнi оператори були стискуючими.

Ключовi слова: декомпозицiя, розпаралелення обчислень, iтеративне агрегування.


