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CONVERGENCE INVESTIGATION OF ITERATIVE
AGGREGATION METHODS FOR LINEAR EQUATIONS
IN A BANACH SPACE

M.I. KorACH, A.F. OBSHTA, B.A. SHUVAR

Abstract. The sufficient conditions of convergence for a class of multi-parameter iterative
aggregation methods are established. These conditions do not contain the requirements of
positivity for the operators and aggregating functionals. Moreover, it is not necessary that
the corresponding linear continuous operators are compressing.
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1. INTRODUCTION

Problems of the operator equations decomposition are still actual. It is caused by the necessity
of construction parallelization computation methods. Multi-parameter iterative aggregation is
an effective method for decomposition of the high dimension problems (see [1]).

Let E be a Banach space and A : E —— E be a linear continuous operator. Consider the
equation

x=Ax+D, beE. (1.1)

For such equations often it is assumed that: 1) the normal cone K C E of positive elements
is given; 2) semiordering in E is introduced by such elements; 3) compression operator A and
element b are positive (see, for example, [2]-[4]). These and other requirements are caused by
the specificity of the corresponding problems (see, for example, [5]-[10]). More detailed results
for one-parametric method are given in [2, p. 155-158] and can be described by the formula

(n+1) _ (¢, b) (n) _
x (g, 2 — Ax(”))Ax +b (n=0,1,...). (1.2)




Convergence Investigation of Iterative Aggregation Methods ... ~ 51

Here (¢, x) denotes the value of a linear functional ¢ € K* on the elements x € E, where K* is
a cone of positive elements in a dual Banach space E*. The algorithm (1.2) is investigated in [2,
p. 155-158] with the following assumptions: (i) A is a focusing operator [2, p. 77]; (ii) spectral
radius p(A) of the operator A is less than one; (iii) the functional ¢ is admissible. A functional ¢
is called an admissible if there exists a functional g € K* such that ¢ = A*gand (g, x) > (¢, x)
for x € K, x # ©, where A* is conjugate to A operator and © is zero element in E.

In particular, if (1.1) is a system of linear algebraic equations with a matrix A = {a;;}, then
the focusing condition is valid when all 4;; are strictly positive numbers. For the linear integral
operator of the following form

Ax = /ab G(t,s)x(s)ds

the focusing condition is valid if the continuous function G(t, s) satisfies the condition G(¢,s) >
e >0fort,s € [a,b].

In [2, p. 158] it is noted that the theory of methods for iterative aggregation is not well
developed and the conditions of their convergence are unknown. In particular, as it is indicated
by numerous examples (see [2, p. 158]), one parametric method (1.2) often converges when the
above conditions are not fulfilled.

In this work we investigate the multi-parameter algorithms of iterative aggregation using
the methodology described in [11]-[15]. The established sufficient conditions of convergence
do not contain the requirement of type p(A) < 1 for a spectral radius p(A) of an operator A
and condition of signs constancy for the operator A and of the aggregating functionals.

2. CONSTRUCTION OF THE AGGREGATIVE-ITERATIVE ALGORITHM

We consider the equation (1.1) in a Banach space E. We do not need semiordering in E. Let
the equation (1.1) is presented in the form

N
x=Y Ajx+Apx+b, (2.1)
j=1

where Ag: E — E, Aj: E — E (j=1,...,N), b € E. Set the linear continuous functionals go(i)
(i=0,1,...,N). Let us join to the equation (2.1) the auxiliary system of equations

N ‘ ,
vi =Y Ay + (9", Bix) = (91,b)  (i=0,1,...,N). 22)
j=1
Our basic assumptions are the following.
A) The equalities
(¢, Ajx) = Aij(9V, %) (j=1,...,N;i=0,1,...,N) 23)
hold.

B) There exists the operators B; : E — E (i =0,1, ..., N) such that

(Go(i),on + Bix) = Aio(q’(o)rx) (i=01,...,N). @4)
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Let us construct the iterative process by the formulas

N
x(r+1) Z Ajx™ 4 Agx 4+ ¥ a;”)(y](.n) — y](nﬂ)) + a(gn)(y(()") - y((J"H)) +b, (2.5)
=1

- ] N n n n
y§n+1) _ Z )\ijy](n+1) 4 /\ioy(()n—kl) + (q)(z),Bix(n)) + Z tX(- )(y( ) y( +1))
j=1 j=1

+ oy " =y = (Db)  (i=0,1,...,N), 2.6)
where the elements a](") = a]-(x(”)) € E and real numbers le(;q) = ocij(x(”)) satisfy the condition:

(1, aj(x) + A5(x) = Ay (x€Ei,j=01,...,N) 27

where A;; are real numbers and a;(x), «;;(x) are continuous functions for x € E.
3. MAIN LEMMA

Let E’ be an Euclid space of dimension N + 1. Consider the set of elements x € E and vectors
v = {vyo,y1,...,yn}! € E’, such that the equalities

(D, x)+y;i=0 (i=0,1,...,N) (3.1)
hold. Denote this set by €. It is clear that g is a subspace of the space E = E x E’ equipped by

the norm
1)l =/ llx[2+ [y[%

where || x|| is the norm of an element x € E and |y| is the Euclidean norm of a vector y € E'.

Lemma 3.1. Let the conditions A) and B) be satisfied. Let the matrix I — A\ be nondegenerate, where [
is the unit matrix in E' and
A= {A;} (i,j=0,1,...,N). (3.2)
Then solution {x*,y*} € E of the system (2.1), (2.2) belongs to €, i.e. {x*,y*} € ¢o.
Proof. From the formulas (2.1)—(2.4) for x = x*, y; = y; we have
N

(9", x) +yi = L (o Ax) + (9, Aox") + (9, 1)

j=1
N . .
+ 32 Aiy; + (91, Bix®) — (9, )
j=1

:Z [ +%} [((P(i),on“rBiX*) +)\i0y8}
=
N

=LA i[@D ) +y ]+ 20 [(00,x) 435 (=01..,N).

]:
Note, that the matrix I — A is nondegenerate, so the lemma is proved.
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Lemma 3.2. Let the conditions A), B) and (2.7) be satisfied. If the matrix I — A is nondegenerate and
{x(o),y(o)} € g, then {x(”),y(”)} c€eforn=0,1,...
Proof. From the equalities (2.5)—(2.7) we have

1 n N ] j N | n n n
(902 ) "V =Y (91, A+ (9, Aox™) 13- (9, ") (= ")
j=1 j=1

) ) N
+(@D,al™) g —y5") + (00, 0) + 1 Ay + digyy TV + (91, Box(™)

=
S ) ) )y () (1) (n) , N |

+) %ij (]/]- —Y; ) +agy (v — Y; ) — (¢, b) = Y. /\i]-(q)(]),x(”)) .
j=1 =1 .

N

j=1

Since {x(9), (0} ¢ ¢, equalities (3.3) are the reason for using of the induction principle. The
proof is complete.
From these two lemmas we obtain the following assertion.

Lemma 3 3. Let the conditions A), B) and (2.7) be satisfied. If there exists the matrix (I — A)~1,
{x(0,yO} € ¢, and {x*,y*} is the solution of the system (2.1), (2.2) in E, then

(@ x™ — 3y 4y _yr =0  (i=0,1,...,N;n=0,1,...). (3.4)

1

Proof. Tt is enough to note that (3.4) is a consequence of the equalities (3.1) for {x(?),4(®} and

{x*,y"}.

4. SUFFICIENT CONDITIONS FOR THE CONVERGENCE OF THE ALGORITHM (2.5), (2.6)

Denote a™ = {a{",al", ..,a%)}, [0,0] = {(¢9,b),(¢M,b),...,(¢"N),b)}T, [¢,Bx] =
{(¢©), Byx), ((p( ),B1x),...,(¢N), Byx)}T. Let us rewrite the formulas (2.2), (2.5), (2.6) in the
form

y = Ay + g, Bx] - [o,b], @1)
R Z 4y gl () 040y g (4.2)
y" ) = Ay 4 g, Bx ]+ ol (3 — y ) — (g, 1], (43)

respectively, where the matrix A is defined by (3.2).
From the formulas (1.1), (4.1) and (4.2), (4.3) we obtain

K0t = A ) el () — ) — el () ), oy
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yOH — g = (A= a0 <y a0 ) g, B ) @)
Hence
YDyt = (T At a™) a0 - ) (1 A+al) Vg, B —xT)). (46)
This equality together with (4.4) imply the equality
x(n+1) — x* :A(x(n) — x*) _|_ a(n) (y(n) — y*) — a(”)([ — A _|_ a(”))fla(n) (y(n) — y*)_ (4 7)
—a" (I = A+ a") g, B(x™ — x*)]. '

Therefore, using (4.7) and (3.4), we obtain

() o = A — %) —aM (1= A+ a1 = A) [, x" — x*] + [, B(x™) — x*))).
(4.8)
From (4.6), (4.8) it follows the next assertion.

Theorem 4.1. Let the conditions of Lemma 3.3 be satisfied. Let the operator, generated by the right part
of the equalities (4.6), (4.7) with respect to the pair {x — x*,y — y*} with (x,y) € &g, be compression.
This means that the operator H = ( Z;i Z;i ) is compression with respect to the pair {w, z}, where
weEzekFE, {wz}€e,

hiw = Aw +a(x)(I — A+ a(x)) e, Bw),
hipz =a(x)(I — A+a(x)"HI—-A)z,
hyyw=(I—A+ zx(x))_l[q), Bw],

hoz = (I — A+ a(x) ta(x)z

Then a sequence {x"™)}, obtained by the algorithm (4.2), (4.3) converges to the solution x* € E of the
equation (1.1) not slower than a geometric progression with common ratio q < 1, where q is a norm of
the operator H in the space E.

From the Theorem 4.1 we can get next proposition.
Theorem 4.2. Let the conditions of Lemma 3.3 be satisfied. Define the operator Hy by the formula
How = Aw —a(x)(I — A+ a(x))"1((I = A)[p,w] + [@, Bw]). (4.9)

If for (x,y) € &g the operator Hy is compression with a compression constant qo < 1, then a sequence

{x(”)}, obtained by (4.2), (4.3), converges to the solution x* of the equation (1.1) not slower than a
geometric progression with common ratio qo.

Proof. Rewrite the equalities (3.4) in the form
(@, 2 =+ (v )T =@, (4.10)

where O is zero column vector. From (4.9), (4.10) we obtain that the theorem is proved.
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5. MULTI-PARAMETER ITERATIVE AGGREGATION

Define elements a;(x) by the formula

Aix
aj(x) = —- (j=0,1,...,N, x € E). (5.1)

In this case the algorithm (2.5), (2.6) can be defined by the interpolation formula

N (qp(]) x(”""l)) ((P(O) x(”"‘l))

(1) — y W /2 T A () (™), xt"H))
’ ]; (@), x(n) AFT b (¢©), x(m)) (5.2)

This algorithm is an analogue of the method (19.12), (19.13) from [2, p.156]. From the nonde-
generacy of the matrices I — A, I — A + a(x) for {x,y} € ¢y (x € E, y € E’) it follows that we
can choose the aggregation functionals ¢, matrices A = {Aij} and a(x) = {a;j(x)}, which are
used in described above methodology

If a(x) is a zero matrix, then the algorithm (2.5), (2.6) does not converted to one of the
projection-iterative methods, that are investigated in [16, 17].

It is also possible to construct other multi-parameter algorithms of iterative aggregation. For
example,

N (o), x(n+1))

(n+1) — A x(1) (1)
X ox\" + : Aix\" 4+ b. (5.3)
]; (1), x(m)
Let us consider the case, when we use the formulas
x(n+1) Z A 4 Z 2" (" =y + Apx™ 4 b, (5.4)
y D = Ayt [, Bx M) 4 2l (y) — y D) — [, Agx )] — [g, D] (5.5)

instead of the formulas (2.5), (2.6) respectively.

Everywhere in the formulas (5.3)-(5.5) all indices i, j take values from 1 to N, i.e. i # 0 and
j#0,

For the algorithm (5.4), (5.5) we remain the structure of the matrix H and of the set ¢y. In this
case we have

i = Aw -+ a(x)(1— A +a(x)) g, (B - Ag)uw],
Moz =a(x)(I — A+a(x)"HI—-A)z
hyyw = (I — A+ a(x)) " e, (B— Ag)w],

hpoz = (I— A +a(x)) ta(x)z

In these circumstances, the Theorem 4.2 is still valid for the algorithm (5.4), (5.5).



56 M.I. Kopach, A.F. Obshta, B.A. Shuvar

REFERENCES

[1] Dudkin L.M. (Ed.) Iterative aggregation and its application in planning. Economy, Moscow, 1979. (in Russian)

[2] Krasnoselsky M.A., Lifshits E.A., Sobolev A.V. Positive linear system. Nauka, Moscow, 1985. (in Russian)

[3] Hrobova T.A., Stetsenko V.Ya. Iterative aggregation methods for the approximate solution of linear and nonlinear
algebraic systems and integral equation. Publ. House of the Stavropol State Univ., Stavropol, 2003. (in Russian)

[4] Plyuta A.L, Stetsenko V.Ya. "Hybrid” of the methods of convergence of monotone approximations to the solution of
the equation x = Ax + b and of the one parametric Iterative aggregation.In: Memoirs of the Stavropol State Univ.,
Physics and Mathematics, Stavropol, 2002. (in Russian)

[5] Marec L., Mayer P. Conference analysis of aggregation/disaggregation iterative method for compytation sta-
tionary probability vectors of stochastic matrices. Linear Algebra Appl., 5 (1998), 253-274.

[6] Marec 1., Mayer P, Pultarova I. Conference issue in the theory and practice of iterative aggregation-
disaggregation methods. Economic Transactions of Numerical Analysis, 35 (2009), 185-200.

[7] Schweitzer PI., Kindle K.W. An iterative aggregation-disaggregation algorithm solving linear equation.
Applied Mathematics and Compution, 18 (4) (1986), 313-353.

[8] Garsia L. A global conference theorem for aggregation algorithms. Optimation, 19 (6) (1988), 819-829.

[9] He G., Feng H., Li C., Chen H. Parallel SimRank Computation on Large Graphs with Aggregation. In: Proc.
of the 16th ACM SIGKDD Intern. Conf. KDD, Washington DC, USA, July 25-28, 2010, ACM, New York, USA,
543-552. doi: 10.1145/1835804.1835874

[10] Zhu Y, Ye S., Li X. Distributed PageRank Computation Based on Iterative Aggregation-Disaggregation Me-
thods. In: Proc. of the 14th ACM Intern. Conf. on Information and knowledge management, Bremen, Ger-
many, October 31 — November 5, 2005, ACM, New York, USA, 578-585. doi: 10.1145/1099554.1099705

[11] Shuvar B.A., Kopach M.I. Modified iterative aggregation algorithms. Russian Mathematics (1Z VUZ), 3 (2007),
68-71.

[12] Shuvar B.A., Obshta A.F., Kopach M.I. Iterative aggregation for the nonlinear operator equations. Mathemati-
cal Bull. of Shevchenko Sci. Soc., 8 (2011) , 99-106. (in Ukrainian)

[13] Shuvar B.A., Obshta A.F., Kopach M.I. Decomposition of linear operator equations by iterative aggregation
methods. Mathematical Bull. of Shevchenko Sci. Soc., 9 (2012), 384-398. (in Ukrainian)

[14] Shuvar B.A., Obshta A.E, Kopach M.I. Aggregation-iterative analogues and generalization of the projection-
iterative methods. Carpathian mathematical publications, 5 (1) (2013), 156-163.

[15] Shuvar B.A., Kopach M.I. Mentynskyi S.M., Obshta A.F. Bilateral approximate methods. Publ. House of Pre-
carpathian Univ., Ivano-Frankivsk, 2007. (in Ukrainian)

[16] Kurpel N.S. Projection-iterative methods for the solution of operator equations. Naukova Dumbka, Kyiv, 1968. (in
Ukrainian)

[17] Luchka A.Yu. Projection-iterative methods of the solution of differential and integral equations. Naukova Dumka,
Kyiv, 1980. (in Ukrainian)

Address: M.I. Kopach, Vasyl Stefanyk Precarpathian National University, 57, Shevchenka Str., Ivano-
Frankivsk, 76000, Ukraine;
A.F. Obshta, B.A. Shuvar, Lviv Polytechnic National University, 12 Bandera street, Lviv, 79013,
Ukraine.

E-mail: kopachm2009@gmail.com; obshta2002@gmail.com.

Received: 12.05.2015; revised: 17.11.2015.




Convergence Investigation of Iterative Aggregation Methods ... ~ 57

Konaa M.I., O6mra A.®., [llysap B.A. ociimkenHs 3612KHOCTI METO/IIB ITEPATUBHOIO arperyBaHHS st
JIHIHHUX PiBHAHD B 6anaxoBoMy mpoctopi. 2Kypraa [Ipukxapnamcorozo ynisepcumemy imeni Bacuas Cme-

darnura, 2 (4) (2015), 50-57.

Y poboTi BcTaHOBJEHH] J0CTATHI yMOBHU 3012KHOCTI OJIHOTO KJjacy OararorapaMeTpUIHUX arperariiiHo-
irepaTuBHuX MeToAiB. OTpUMaHi pe3ybTaTu He MICTSITH BUMOL IIPO JIOJIATHICTH OLEPATOPIB 1 arperyovanx
YHKIIOHAJIIB, a TAKOXK He TOTPeOyIOTh, 1M00 BimoBiHI iHiitHI onepaTopu Oy CTUCKYIOUUMU.

Kunro4oBi ciioBa: JIeKOMIO3HUIIisI, po3TapaJieieHHs O0YNCIeHb, ITEPATUBHE arperyBaHHs.



