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An extension of the standard concept of the statistical ensembles is suggested. Namely, the sta-
tistical ensembles with extensive quantities fluctuating according to an externally given distribution
is introduced. Applications in the statistical models of multiple hadron production in high energy
physics are discussed.
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I. GENERAL CONCEPT OF STATISTICAL
ENSEMBLES

A successful application of the statistical model to the
description of mean hadron multiplicities in high energy
collisions (see, e.g., recent papers [1] and references there-
in) has stimulated investigations of properties of statisti-
cal ensembles. Whenever possible, one prefers to use the
grand canonical ensemble (GCE) due to its mathematical
convenience. The canonical ensemble (CE) [2] should be
applied when the number of carriers of conserved charges
is small (of the order of 1), such as strange hadrons [3],
anti-baryons [4], or charmed hadrons [5]. The micro-
canonical ensemble (MCE) [6] has been used to describe
small systems with fixed energy, e.g. mean hadron multi-
plicities in proton-antiproton annihilation at rest. In all
these cases, calculations performed in different statistical
ensembles yield different results. This happens because
the systems are “small” and they are “far away” from
the thermodynamic limit (TL). The mean multiplicity
of hadrons in relativistic heavy ion collisions ranges from
102 to 104, and mean multiplicities (of light hadrons) ob-
tained within GCE, CE, and MCE approach each other.
One refers here to the thermodynamical equivalence of
statistical ensembles and uses the GCE for calculating
the hadron yields.

Measurements of a hadron multiplicity distribution
P (N) in interactions, including nucleus-nucleus colli-
sions, open a new field of applications of the statistical
models. The particle multiplicity fluctuations are usually
quantified by the ratio of variance to mean value of a mul-
tiplicity distribution P (N), the scaled variance, and are
a subject of current experimental activities. In statistical
models there is a qualitative difference in the properties
of mean multiplicity and scaled variance of multiplicity
distributions. It was recently found [7–12] that even in

the TL corresponding results for the scaled variance are
different in different ensembles. Hence the equivalence
of ensembles holds for mean values in the TL, but does
not extend to fluctuations. This fact has non-trivial con-
sequences for relativistic gases, and was not discussed
previously in the standard (non-relativistic) statistical
mechanics.

A statistical system is characterized by the exten-
sive quantities: volume V , energy E, and conserved
charge(s)1 Q. In non-relativistic statistical mechanics,
the number of particles plays a role of the conserved
charge. The MCE is defined by the postulate that all
micro-states with given V , E, and Q have equal proba-
bilities of being realized. This is the basic postulate of the
statistical mechanics. The MCE partition function just
calculates the number of microscopic states with given
fixed (V,E,Q) values. In the CE the energy exchange be-
tween the considered system and “infinite thermal bath”
is assumed. Consequently, a new parameter, temperature
T is introduced. To define the GCE, one makes a simi-
lar construction for the conserved charge Q. An “infinite
chemical bath” and the chemical potential µ are intro-
duced. The CE introduces the energy fluctuations. In
the GCE, there are additionally the charge fluctuations.
The MCE, CE, and GCE are most familiar statistical
ensembles. In the textbooks (see, e.g., Ref. [13, 14]), the
pressure (or isobaric) canonical ensemble has been also
discussed. The “infinite bath of the fixed external pres-
sure” p0 is then introduced. This leads to the volume
fluctuations around the average value.

In general, there are 3 pairs2 of variables — (V, p0),
(E, T ), (Q,µ) — and, thus, the 8 statistical ensembles3

can be constructed. Among these 8 ensembles there are
4 pressure ensembles: (p0, E,Q), (p0, T,Q), (p0, E, µ),
and (p0, T, µ). In addition to the pressure canonical en-
semble known from the literature, three other possibil-

1In statistical description of hadron or quark-gluon systems, these conserved charges are usually the net baryon number,
strangeness, and electric charge.

2In the present study we do not discuss the role of the total 3-momentum. As shown in Ref. [15] the total momentum con-
servation is not important in the TL for thermodynamical functions and fluctuations in the full phase space. It may, however,
influence the particle number fluctuations in the limited segments of the phase space.

3For several conserved charges {Qi} the number of possible ensembles is larger, as each charge can be treated either canonically
or grand canonically.
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ities — pressure micro-canonical, pressure grand micro-
canonical, and pressure grand canonical ensembles — are
constructed and studied in Ref. [16]. Note that the pres-
sure grand canonical ensemble has a unique property.
Among 8 possible ensembles this is the only one where
the system description includes only intensive quantities:
p0, T and µ. This special ensemble has unusual features
discussed in details in Ref. [16].

A more general concept of the statistical ensembles
was suggested in Ref. [17]. The statistical ensemble is
defined by an externally given distribution of extensive
quantities, Pα(E, V,Q). The construction of distribution
of any variable X in such an ensemble proceeds in two
steps. Firstly, the MCE X-distribution, Pmce(X ;A), is
calculated at fixed values of the extensive quantities
A = (V,E,Q). Secondly, this result is averaged over the
external distribution Pα(A) [17],

Pα(X) =

∫

dAPα(A)Pmce(X ;A). (1)

Fluctuations of extensive quantities A around their av-
erage values depend not on the system’s physical proper-
ties, but rather on external conditions. One can imagine
a huge variety of these conditions, thus, the standard sta-
tistical ensembles discussed above are only some special
examples. Thermodynamics relates the average quanti-
ties of the statistical ensemble. Thus, it may work in
these new ensembles. The ensembles defined by Eq. (1),
the α-ensembles, include the standard statistical ensem-
bles as particular cases.

II. STATISTICAL MODELS FOR HADRON
PRODUCTION

In collisions at relativistic energies many new parti-
cles are produced. Their number, masses and charges as
well as their momenta vary from event to event. Most
of the experimental results concern single particle pro-
duction properties averaged over many interactions. It
is well established that some of these properties, name-
ly, mean particle multiplicities and transverse momen-
tum spectra, follow simple rules of statistical mechan-
ics. In proton-proton (p+p) collisions the single parti-
cle momentum distribution has an approximately Boltz-
mann form in the local rest frame of produced mat-

ter: dN/(p2dp) ∼ exp
(

−
√

p2 +m2/T
)

, where T , p and

m are the temperature parameter, the particle momen-
tum and its mass, respectively. At large momentum,
p� m, this gives: dN/(p2dp) ∼ exp (−p/T ). Integration
over momentum yields the mean particle multiplicity,
〈N〉, which is also governed by the Boltzmann factor for
m >> T : 〈N〉 ∼ (mT )3/2 exp (−m/T ). The approximate
validity of the exponential distributions is confirmed by
numerous experimental results on bulk particle produc-
tion in high energy collisions. The agreement is limited to

the low transverse momentum (pT ≤ 2 GeV) and the low
mass (m ≤ 2 GeV) domains. However, the temperature
parameter T extracted from the data on p+p interactions
is in the range 160–190 MeV. Thus, almost all particles
are produced at low pT and with low masses.

Along with evident successes there are obvious prob-
lems of the statistical approach. The probability P (N)
to createN particles in p+p collisions obeys the so called
KNO scaling4, namely:

P (N) = 〈N〉−1ψ(z), (2)

where 〈N〉 is the mean multiplicity and the KNO scaling
function ψ(z) only depends on z ≡ N/〈N〉. The mean
multiplicity increases with increasing collision energy,
whereas the KNO scaling function remains unchanged.
The latter implies that the scaled variance ω of the mul-
tiplicity distribution P (N) grows linearly with the mean
multiplicity:

ω ≡
〈N2〉 − 〈N〉2

〈N〉
∝ 〈N〉. (3)

A qualitatively different behavior is predicted within the
existing statistical models where the scaled variance is
expected to be independent of the mean multiplicity:
ω ≈ const ≈ 1. This contradiction between the data
and the statistical models constitutes the first problem
which will be considered in this paper.

The second and the third problems which will be ad-
dressed here concern particle production at high (trans-
verse) momenta and with high masses, respectively.
In these regions the single particle energy distribution
seems to obey a power law behavior [19]: dN/(p2dp) ∼
(

√

p2 +m2

)

−K

. At p � m this gives: dN/(p2dp) ∼

p−Kp , with Kp = K. Integration over particle momen-
tum yields the mean multiplicity which follows a pow-
er law dependence on the particle mass: 〈N〉 ∼ m−Km ,
with Km = Kp − 3. The above power laws describe the
data on spectra of light particles at large (p ≥ 3 GeV)
(transverse) momenta and on the mean multiplicity of
heavy (m ≥ 3 GeV) particles, respectively. The parame-
ters fitted to the data are Kp

∼= 8 and Km
∼= 5 [19]. One

observes a growing disagreement between the exponen-
tial behavior and power law dependence with increasing
(transverse) momentum and/or mass. At p = 10 GeV
or m = 10 GeV the statistical models underestimate the
data by more than 10 orders of magnitude.

In Ref. [20] we made an attempt to extend the statis-
tical model to the hard domain of high transverse mo-
menta and/or high hadron masses (hard domain). The
proposal is inspired by statistical type regularities [19] in
the high transverse mass region, as well as by the recent
work on the statistical ensembles with fluctuating exten-
sive quantities [17]. We postulate that the volume of the

4This scaling was suggested by Koba, Nielsen, and Olesen in Ref. [18] and triggered an intensive discussion in the literature.
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system created in p+p collision changes from event to
event5. The main assumptions of the proposed approach
are the following.

1. Each final state created in p+p interactions is iden-
tified with a micro-state of a micro-canonical en-
semble (MCE) defined by the volume V , energy E,
and conserved charges of the system. By definition
of the MCE, all its micro-states appear with the
same probability.

2. The volume of micro-canonical ensembles repre-
sented in p+p interactions fluctuates from colli-
sion to collision. The volume probability density
function, Pα(V ), is given by the scaling function,

Pα(V ) = V
−1
φα(V/V ), where V is the scaling pa-

rameter.

The model based on these assumptions will be referred
as the Micro-Canonical Ensemble with scaling Volume
Fluctuations, the MCE/sVF.

III. MICRO-CANONICAL ENSEMBLE

The MCE partition function for the system with N
Boltzmann massless neutral particles reads [8]:

WN (E, V ) =
1

N !

(

gV

2π2

)N

×

∞
∫

0

p2
1dp1 . . .

∞
∫

0

p2
NdpN δ(E −

N
∑

i=1

pi)

=
1

E

AN

(3N − 1)!N !
, (4)

where E and V are the system energy and volume, re-
spectively, g is the degeneracy factor, and A ≡ gV E3/π2.
The MCE partition function (4) includes exact ener-
gy conservation, but neglects the momentum conser-
vation. The MCE multiplicity distribution is given by
Pmce(N ;E, V ) = WN (E, V )/W (E, V ) , whereW (E, V )
is the total MCE partition function [8]:

W (E, V ) ≡

∞
∑

N=1

WN (E, V )

=
A

2E
0F3

(

;
4

3
,
5

3
, 2;

A

27

)

, (5)

where 0F3 is the generalized hyper-geometric func-
tion. For A � 1 the mean multiplicity equals to
〈N〉mce ≡

∑

∞

N=1NPmce(N ;E, V ) ∼= (A/27)1/4, where
Pmce(N ;E, V ) was approximated by the normal distri-
bution [8]:

Pmce(N ;E, V ) ∼= (2π ωmce · 〈N〉mce)
−1/2

× exp

[

−
(N − 〈N〉mce)

2

2ωmce · 〈N〉mce

]

, (6)

with ωmce ≡ (〈N2〉mce − 〈N〉2mce)/〈N〉mce
∼= 1/4.

Note that in the grand canonical ensemble (GCE) the
multiplicity distribution is equal to the Poisson one:

Pgce(N ;T, V ) = N
N

exp(−N)/N !, where N is the mean
multiplicity in the GCE. It approaches the Gaussian for
large N :

Pgce(N ;T, V ) ∼= (2π ωgce ·N)−1/2 exp

[

−

(

N −N
)2

2ωgce ·N

]

,

with ωgce ≡ (N2 −N
2
)/N = 1.

The numerical calculations presented in this paper will
be performed for g = 1 and the energy density which cor-
responds to the temperature parameter T = 160 MeV.
The latter relates the values of E and V via equation:
E = 3V T 4/π2. The mean multiplicity 〈N〉mce in the
MCE is then approximately equal to the GCE value:
N = V T 3/π2. The approximation 〈N〉mce

∼= N is valid
forN � 1 and reflects the thermodynamic equivalence of
the MCE and the GCE. The scaled variance of the MCE
distribution is ωmce = 1/4 [8], and is approximately inde-
pendent of 〈N〉mce already for 〈N〉mce > 5. Thus, despite
of thermodynamic equivalence of the MCE and GCE the
value of ωmce is four times smaller than the scaled vari-
ance of the GCE (Poisson) distribution, ωgce = 1.

The single particle momentum spectrum in the GCE
reads:

Fgce(p) ≡
1

N

dN

p2dp
=

V

2π2N
exp

(

−
p

T

)

=
1

2T 3
exp

(

−
p

T

)

, (7)

whereas the corresponding spectrum in the MCE is given
by [20]:

Fmce(p) ≡
1

〈N〉mce

dN

p2dp

=
V

2π2〈N〉mce

∞
∑

N=2

WN−1(E − p, V )

W (E, V )

≡
V

2π2〈N〉mce

f(p;E, V ) =
1

〈N〉mce

1

2E3

×

∞
∑

N=2

N (3N − 1)!

(3N − 4)!

(

1 −
p

E

)3N−4

Pmce(N ;E, V ) (8)

where f(p;E, V ) is the MCE analogue of the Boltz-
mann factor, exp(−p/T ). From Eq. (8) follows f(p =

5The volume fluctuations in hadron statistical physics were first introduced in the framework of the isobaric ensemble in
Ref. [21].
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0;E, V ) = 1. Both (7) and (8) are normalized such that
∫

∞

0
p2dp Fgce(p) = 1 and

∫ E

0
p2dpFmce(p) = 1.

Figure 1a shows a comparison of the MCE and GCE
results for the multiplicity distribution and Fig. 1b shows
the momentum spectrum for N = 50. The MCE spec-
trum is close to the Boltzmann distribution (7) at low
momenta. This can be shown analytically using the
asymptotic form of the generalized hyper-geometric func-
tion at E → ∞ and p/E � 1. The MCE spectrum de-
creases faster than the GCE one at high momenta. Close
to the threshold momentum, p = E, where the MCE
spectrum goes to zero, large deviations from (7) are ob-
served. In order to demonstrate this the MCE and GCE
momentum spectra are shown in Fig. 1b over 90 orders
of.

Fig. 1. (Color online) (a): The multiplicity distribution of
massless neutral particles in the MCE, dashed line, and the
GCE, dotted line. (b): The momentum spectrum of mass-
less neutral particles calculated within the MCE (8), dashed
line, and the GCE (7), dotted line. The system energy is
E = 3NT = 24 GeV for both plots.

IV. MICRO-CANONICAL ENSEMBLE WITH
SCALING VOLUME FLUCTUATIONS

Let us consider a set of micro-canonical ensembles with
the same energy E but different volumes V . The proba-
bility density which describes the volume fluctuations is
denoted by Pα(V ). The distribution of any quantity X
can then be calculated as:

Pα(X ;E) =

∞
∫

0

dV Pα(V )Pmce(X ;E, V ), (9)

where Pmce(X ;E, V ) is the distribution of the quantity
X in the MCE with fixed E and V . Further more it is as-
sumed that the distribution Pα(V ) has the scaling form:

Pα(V ) = V
−1

φα(V/V ), with the volume parameter V
being the scale parameter of Pα(V ). The MCE/sVF de-
fined by Eq. (9) is a special case of α-ensembles (1). The
volume integral in Eq. (9) can be conveniently rewritten
as:

Pα(X ;E) =
(

V
)

−1

∞
∫

0

dV φα

(

V/V
)

Pmce(X ;E, V )

=

∞
∫

0

dyψα(y)Pmce(X ;E, y4V ), (10)

where ψα(y) ≡ 4y3φα(y4). Choosing ψα(y) = δ(y − 1)
one recovers the MCE with V = V and 〈N〉mce = N .
The scaling function ψα(y) will be required to satisfy
two normalization conditions:

∞
∫

0

dy ψα(y) = 1,

∞
∫

0

dy y ψα(y) = 1. (11)

The first condition guarantees the proper normal-
ization of the volume probability density function,
∫

∞

0
dV Pα(V ) = 1. The second condition is selected in

order to keep the mean multiplicity in the MCE/sVF
equal to the MCE mean multiplicity. The multiplicity
distribution in the MCE/sVF is:

Pα(N ;N) =

∞
∫

0

dV Pα(V )Pmce(N ;E, V )

=

∞
∫

0

dy ψα(y)Pmce(N ;E, y4V ). (12)

At N � 1, the particle number distribution (12) can be
approximated as:

Pα(N ;N) ∼= 〈N〉−1
α ψα(z), (13)

where z ≡ N/〈N〉α, and the mean multiplicity 〈N〉α is
given by:

〈N〉α =

∞
∑

N=1

NPα(N ;N) ∼= N

∞
∫

0

dy y ψα(y) = N. (14)
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The approximate equality of 〈N〉α and N is satisfied
for N � 1 due to the second normalization condition
(11). The KNO scaling of the multiplicity distribution
Pα(N ;N) follows from the assumption of the scaling of
the volume fluctuations.

For convenience, a simple analytical form of the scaling
function, ψα will be used:

ψα(y) =
kk

Γ(k)
yk−1 exp(−k y), (15)

where Γ(k) is the Euler gamma function. The function
(15) with k = 4 approximately describes the experimen-
tal data on KNO scaling in p+p interactions. Note, that
the function (15) satisfies both normalization conditions
(11) for any k > 0. The KNO scaling of the multiplic-
ity distribution implies that the scaled variance of the
distribution increases in proportion to the mean mul-
tiplicity. For N � 1 one gets: ωα

∼= κ〈N〉α, where
κ =

∫

∞

0
dy(y − 1)2ψα(y) > 0. For the function ψα(y)

defined by Eq. (15) one finds, κ = k−1.
In Fig. 2 (left) the multiplicity distributions obtained

within the MCE and the MCE/sVF for N = 50 are com-
pared. The scaled variance of the MCE/sVF distribution
for N = 50 is about 12.5, whereas the scaled variance of
the MCE distribution is 1/4. This large difference in the
width of the MCE/sVF and the MCE distributions is
clearly seen in the figure. The volume fluctuations in the
MCE/sVF significantly increase the width of the multi-
plicity distribution. They are also expected to modify the
single particle momentum spectrum. This is because for
a fixed system energy, the volume of the system deter-
mines the energy density, and consequently, the effective
temperature of particles.

The single particle momentum spectrum within the
MCE/sVF can be directly calculated from Eq. (9) and
it reads [20]:

Fα(p) ≡
1

〈N〉α

〈 dN

p2dp

〉

α

=
1

〈N〉α

∞
∫

0

dV Pα(V )
V

2π2
f(p;E, V ) (16)

=
1

〈N〉α

1

2E3

∞
∑

N=2

N(3N − 1)!

(3N − 4)!

(

1−
p

E

)3N−4

Pα(N ;N).

The formal structure of the expression (16) is similar
to the structure of the corresponding expression derived
within the MCE (8). The only, but the crucial, differ-
ence is that the narrow MCE multiplicity distribution
used for averaging the particle spectrum in Eq. (8) is re-
placed by the broad MCE/sVF multiplicity distribution
in Eq. (16). The spectrum Fα(p) fulfills the normaliza-

tion condition,
∫ E

0
p2dpFα(p) = 1. From Eq. (16) one

finds Fα(p = 0) = a · Fgce(p = 0), where a ∼= 3.28 for
the ψα function (15) with k = 4. Thus, in the MCE/sVF
there is an enhancement of the momentum spectrum at
p→ 0 compared to the GCE and MCE results.

The single particle momentum spectrum (16) calcu-
lated with the volume scaling function (15) is shown in
Fig. 2 (right). A striking new feature of this spectrum is
the presence of a long power law tail. In the momentum
range from several GeV to about 20 GeV the spectrum
can be approximated by:

Fα(p) ∼= Cpp
−Kp , (17)

Fig. 2. (Color online) Left: A comparison of the multiplicity distributions of massless neutral particles calculated with
the MCE/sVF (solid line) and the MCE (dashed line). The system energy is E = 3N T = 24 GeV. Right: The momentum
spectrum of massless neutral particles calculated within the MCE/sVF (16), solid line, and the GCE (7), dotted line. The
approximation (18) of the MCE/sVF spectrum is shown by the dashed-dotted line.

4201-5



M. I. GORENSTEIN

with Cp and Kp = k + 4 = 8 being the normalization
and power parameters, respectively. For momenta small-
er than 3 GeV the spectrum starts to deviate significantly
from the power law parametrization and its local inverse
slope parameter is close to the temperature of the cor-
responding GCE, T = 160 MeV. A rapid decrease of the
spectrum starts at p ≥ 20 GeV, when the threshold val-
ue p = 24 GeV is approached. The above features of the
MCE/sVF momentum spectrum resemble features of the
transverse momentum spectrum of hadrons produced in
high energy p+p interactions. The power law dependence
(17) of the momentum spectrum at high momenta can
be derived analytically, namely:

Fα(p) =

∫

∞

0

Fmce(p)ψα(y) dy

∼=
V

2π2N

∫

∞

0

dy ψα(y)y4 exp

(

−
p

T
y

)

=
kkΓ(k + 4)

2Γ(k)
T

k+1
(p+ Tk)−k−4

∼= 11.27GeV5(p+ 4T )−8, (18)

where T = 160 MeV and k = 4 is set in the last expres-
sion.

V. SEMI-INCLUSIVE QUANTITIES
IN STATISTICAL MODELS

In Ref. [22] the selected properties of semi-inclusive
events have been studied within statistical models: the
GCE, CE, MCE, and MCE/sVF. In particular, the mean
multiplicity of neutral particles and momentum spectra
of charged particles are considered at a fixed charged
particle multiplicity. Different statistical ensembles lead
to qualitatively different results for these semi-inclusive
quantities. For illustration the joint N0 and N− distri-
butions of neutral and negatively charged particles are
calculated within the GCE, CE, MCE, and MCE/sVF.
They are shown in Fig. 3 for the system with the net
charge Q = N+ −N− equal to zero.

The multiplicities of neutral and negatively charged
particles are uncorrelated in the GCE and CE (see Fig. 3
top panels). They are anti-correlated and correlated in
the MCE and MCE/sVF, respectively. A positive corre-
lation between N0 and N− in the MCE/sVF is caused
by the scaling volume fluctuations. Note that finite size
effects are seen in Fig. 3. For example, the Poisson distri-
bution of the GCE is significantly asymmetric for large
deviations from N .

Fig. 3. (Color online) Examples of the joint N0 and N
−

distributions calculated within the GCE (top left), CE (top right),
MCE (bottom left) and MCE/sVF (bottom right). The distributions are calculated assuming Q = 0 and average multiplicities
of neutral and negatively charged particles equal to N = 10 (see Ref. [22] for details).
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VI. CONCLUSIONS

In this paper I presented the results of Refs. [16,17,20,
22]. It was suggested to extend the concepts of statisti-
cal ensembles. The class of ensembles defined by external
distributions of extensive quantities was introduced. This
construction was motivated by the statistical approach
to the particle number fluctuations in high energy col-

lisions. We believe also that the concept of statistical
ensembles with fluctuating extensive quantities may be
appropriate in other situations too.
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of the Department of Physics and Astronomy of NAS,
Ukraine.

[1] J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys.
Rev. C 73, 034905 (2006); F. Becattini, J. Manninen,
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НОВА КОНЦЕПЦIЯ СТАТИСТИЧНИХ АНСАМБЛIВ

М. I. Горенштейн
Iнститут теоретичної фiзики iм. Боголюбова НАН України,

вул. Метрологiчна, 14-б, 03680, Київ, Україна

Запропоновано розширення стандартної концепцiї статистичних ансамблiв. Уведено статистичнi ансамб-

лi, у яких екстенсивнi величини флюктуюють вiдповiдно до заданного ззовнi розподiлу. Показано застосу-

вання такого пiдходу в статистичних моделях множинного народження адронiв у фiзицi високих енерґiй.
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