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We study the influence of an external magnetic field h on the phase diagram of a system of Fermi
particles living on the sites of a Bethe lattice with coordination number z and interacting through on-
site U and nearest-neighbor V interactions. This is a physical realization of the extended Hubbard
model in the narrow-band limit. Our results establish that the magnetic field may dramatically
affect the critical temperature below whose long-range charge ordered phase is observed, as well
as the behavior of physical quantities that are inducing, for instance, magnetization plateaus in
the magnetization curves. Relevant thermodynamic quantities such as the specific heat and the
susceptibility are also investigated at finite temperature by varying the on-site potential, the particle
density and magnetic field.
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I. INTRODUCTION

Statistical models on the Bethe lattice are of consid-
erable interest since they admit a direct analytical ap-
proach for a number of problems that may be other-
wise intractable on Euclidean lattices. Due to the pecu-
liar structure of the lattice, several interesting physical
problems involving interactions are exactly solvable when
defined on the Bethe lattice [1]. There is a general inter-
est in the study of models defined on such lattices which
goes beyond physics. Being a dendrimer of the infinite
generation, the Bethe lattice is attractive both for ba-
sic and applied interdisciplinary research involving chem-
istry, physics, biology, pharmaceutics, and medicine [2].

In a recent paper, we provided a comprehensive and
systematic analysis of the extended Hubbard model in
the narrow-band (atomic) limit (AL-EHM) on the Bethe
lattice with the arbitrary coordination number z [3].
Within the Green’s function and equations of motion
formalism, we exactly solved the model and, by consid-
ering relevant physical quantities in the whole space of
the model parameters, we investigated the finite temper-
ature phase diagram, for both attractive and repulsive
on-site and intersite interactions. The aim of the present
paper is twofold. First, we would like to further develop
our previous work, by extending it to a more general sit-
uation in which a finite magnetization may be induced
by an external magnetic field. Secondly, the AL-EHM
on the Bethe lattice exhibits interesting features at low
temperatures such as the existence of magnetic plateaus.
Here, we address the problem of determining the effect
on the phase diagram and on the behavior of several ther-
modynamic quantities of the presence of a uniform mag-
netic field, introduced through a Zeeman term. We study
the properties of the system as functions of the external

parameters n, T/V , U/V and h/V , allowing for the on-
site interaction U to be both repulsive and attractive. In
fact, the parameter U can represent the effective interac-
tion coupling taking into account also other interactions.
Throughout the paper, we consider a repulsive intersite
interaction V and we set V = 1 as the unit of energy, tak-
ing the Boltzmann’s constant kB = 1. In the absence of a
magnetic field, the phase diagram in the plane (n, T ) ex-
hibits a transition line along the temperature axis, below
which translational invariance is broken [3]. The Bethe
lattice effectively splits in two sublattices with different
thermodynamic properties. As a result, a charge ordered
(CO) phase, characterized by a different distribution of
the electrons in alternating shells, is established for perti-
nent values of the particle density. A finite magnetic field
can have dramatic effect on the phase diagram: for in-
stance, when U < 0, the reentrant behavior observed for
h = 0 [3] disappears and one finds, above a certain value
of h, a CO phase for n > 1/z. This should be compared
with the case h = 0, where the CO phase is observed
only for n > 2/z when U < 0 [3]. The characteristic lobe
structure, exhibited by the critical temperature as a func-
tion of the particle density, shrinks by augmenting the
magnetic field. By further increasing h, the CO phase is
suppressed in the particle density range 0.75 < n < 0.85
and 1.15 < n < 1.25 at h = hT = zV/2 − U/2; the lobe
splits in three separated lobes centered around n = 0.5,
1, and 1.5, respectively. The central lobe eventually van-
ishes by increasing h. A similar behavior is observed also
for U > 0.

The magnetic properties of the system depend on the
value of the particle density and of the on-site poten-
tial. At low temperatures, and for attractive on-site in-
teractions, the magnetic field does not play any role if
its intensity is h < |U |/2: the ground state is a col-
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lection of shells with doubly occupied sites (doublons)
surrounded by empty shells. The magnetic energy is not
strong enough to break the doublons. On the other hand,
for strong repulsive on-site interactions, it is sufficient a
small nonzero value of the magnetic field to have a finite
magnetization. In the intermediate region, the competi-
tion among U , V and h determines the phase structure.
For all values of the particle density, one finds a critical
value of the magnetic field hs — dramatically depending
on U and n — above which the ground state is param-
agnetic. In this state, every occupied site contains one
and only one electron, aligned along the direction of h.
For strong repulsive on-site interactions, hs = 0, i.e., the
spin are polarized as soon as the magnetic field is turned
on. Furthermore, for attractive on-site interactions and
0.5 < n ≤ 1, one observes the existence of two criti-
cal fields, namely: hc, up to which no magnetization is
observed, and hs, marking the beginning of full polariza-
tion. This is analogous to the finite field behavior of the
S = 1 Haldane chain [4].

The addition of a homogeneous magnetic field does not
dramatically modify the framework of calculation given
in Ref. [3], provided one takes into account the break-
down of the spin rotational invariance. For the sake of
comprehensiveness, in the next section, we briefly report
the analysis leading to the exact solution of the AL-EHM
on the Bethe lattice in the presence of a magnetic field.
Then, we investigate the phase diagram in the space n,
T/V , U/V by varying h and we observe that, above a
critical value of h, the CO region shrinks due to the pres-
ence of a finite magnetic field. We also analyze the mag-
netic properties of the system and find magnetic plateaus
in the magnetization curve. Finally, last section is devot-
ed to our conclusions.

II. EXACTLY SOLVABLE MODEL

When defined on the Bethe lattice with coordination
number z, the narrow-band limit of the extended Hub-
bard model, in the presence of an external homogeneous
magnetic field, can be described by the following Hamil-
tonian:

H = −µn(0) + UD(0) − hn3(0) +

z
∑

p=1

H(p). (1)

H(p) is the Hamiltonian of the p-th sub-tree rooted at
the central site (0) and can be written as

H(p) = −µn(p) + UD(p) − hn3(p)

+ V n(0)n(p) +

z−1
∑

m=1

H(p,m). (2)

Here, (p) (p = 1, . . . z) are the nearest-neighbor sites of
(0), also termed the first shell. H (p,m) describes the m-th
sub-tree rooted at the site (p):

H(p.m) = −µn(p,m) + U D(p,m) − hn3(p,m)

+ V n(p)n(p,m) +

z−1
∑

q=1

H(p,m,q). (3)

(p,m) (m = 1, . . . z−1) and (0) are the nearest-neighbors
of the site (p). H(p,m,q) is the Hamiltonian of the q-
th sub-tree rooted at the site (p,m). The process may
be continued indefinitely. U and V are the strengths
of the local and intersite interactions, respectively; µ
is the chemical potential, n(i) = n↑(i) + n↓(i) and
D(i) = n↑(i)n↓(i) = n (i) [n (i) − 1] /2 are the charge
density and double occupancy operators at site i, respec-
tively. n3(i) is the third component of the spin density
operator, also called the electronic Zeeman term,

n3(i) = n↑(i) − n↓(i) = c†↑(i)c↑(i) − c†↓(i)c↓(i). (4)

Here we do not consider the orbital interaction with
the magnetic field. As usual, nσ(i) = c†σ(i)cσ(i) with
σ = {↑, ↓}, where cσ(i) (c†σ(i)) is the fermionic annihila-
tion (creation) operator of an electron of spin σ at site i,
satisfying canonical anticommutation relations. We use
the Heisenberg picture: i = (i, t), where i stands for the
lattice vector Ri.

The exact solution of the model can be obtained by
using the equations of motion approach in the context
of the composite operator method [5], which is based
on the choice of a convenient operatorial basis. For our
purposes, the suitable field operators are the Hubbard
operators, ξσ(i) = [1 − n(i)]cσ(i) and ησ(i) = n(i)cσ(i),
which satisfy the equations of motion:

i
∂

∂t
ξσ(i) = −(µ+ σh)ξσ(i) + zV ξσ(i)nα(i)

i
∂

∂t
ησ(i) = −(µ− U + σh)ησ(i) + zV ησ(i)nα(i).

(5)

Hereafter, for a generic operator Φ (i) we shall use the
notation Φα(i) =

∑z
p=1 Φ(i, p)/z, (i, p) being the first

nearest-neighbors of the site i. The Heisenberg equa-
tions (5) contain the higher-order nonlocal operators
ξσ(i)nα(i) and ησ(i)nα(i). By taking time derivatives
of the latter, higher-order operators are generated. This
process may be continued and an infinite hierarchy of
field operators is created. However, since the number n(i)
and the double occupancy D(i) operators satisfy the fol-
lowing algebra

np (i) = n (i) + apD(i), Dp (i) = D(i),

np (i)D(i) = 2D(i) + apD(i), (6)

where p ≥ 1 and ap = 2p − 2, it is straightforward to
establish the following recursion rule [6]:

[nα(i)]k =

2z
∑

m=1

A(k)
m [nα(i)]m, (7)

which allows one to write the higher-power expressions
of the operator nα(i) in terms of the first 2z powers. The

coefficients A
(k)
m are rational numbers, satisfying the re-

lations
∑2z

m=1A
(k)
m = 1 and A

(k)
m = δm,k (k = 1, . . . , 2z)
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[7, 8]. The recursion relation (7) allows one to close the
hierarchy of equations of motion. As a result, a com-
plete set of eigenoperators of the Hamiltonian (1) can
be found. To this end, one defines the composite field
operator

ψ(i) =

(

ψ(ξ)(i)
ψ(η)(i)

)

=













ψ
(ξ)
↑ (i)

ψ
(ξ)
↓ (i)

ψ
(η)
↑ (i)

ψ
(η)
↓ (i)













, (8)

where

ψ(ξ)
σ (i) =











ξσ(i)
ξσ(i)[nα(i)]

...
ξσ(i)[nα(i)]2z











,

(9)

ψ(η)
σ (i) =











ησ(i)
ησ(i)[nα(i)]

...
ησ(i)[nα(i)]2z











.

With respect to the case of zero magnetic field [3], the
degrees of freedom have doubled, since one has taken into
account the two nonequivalent directions of the spin. By
exploiting the algebraic properties of the operators n(i)
and D(i), and the recursion rule (7), it is easy to show
that the fields ψ(ξ)(i) and ψ(η)(i) are eigenoperators of
the Hamiltonian (1) [8]:

i
∂

∂t
ψ(ξ)(i) = [ψ(ξ)(i), H ] = ε(ξ)ψ(ξ)(i),

i
∂

∂t
ψ(η)(i) = [ψ(η)(i), H ] = ε(η)ψ(η)(i).

(10)

ε(ξ) and ε(η) are the energy matrices:

ε(ξ) =

(

ε
(ξ)
↑ 0

0 ε
(ξ)
↓

)

, ε(η) =

(

ε
(η)
↑ 0

0 ε
(η)
↓

)

, (11)

where ε
(ξ)
σ and ε

(η)
σ are the (2z + 1) × (2z + 1) matrices

given by

ε(ξ)σ =





















−µ−σh zV 0 ... 0 0 0

0 −µ−σh zV ... 0 0 0

0 0 −µ−σh ... 0 0 0

...
...

...
...

...
...

...
0 0 0 ... −µ−σh zV 0

0 0 0 ... 0 −µ−σh zV

0 zV A
2z+1
1 zV A

2z+1
2 ... zV A

2z+1
2z−2 zV A

2z+1
2z−1 −µ−σh+zV A

2z+1
2z





















, (12)

ε(η)
σ =





















U−µ−σh zV 0 ... 0 0 0

0 U−µ−σh zV ... 0 0 0

0 0 U−µ−σh ... 0 0 0

...
...

...
...

...
...

...
0 0 0 ... U−µ−σh zV 0

0 0 0 ... 0 U−µ−σh zV

0 zV A2z+1
1 zV A2z+1

2 ... zV A2z+1
2z−2 zV A2z+1

2z−1 U−µ−σh+zV A2z+1
2z





















. (13)

The eigenvalues of the matrices ε
(ξ)
σ and ε

(η)
σ are

E(ξ)
p,σ = −µ− σh+ (p− 1)V,

E(η)
p,σ = U − µ− σh+ (p− 1)V,

(14)

with p = 1, . . . , 2z + 1. The Hamiltonian has now been
formally solved since, for any coordination number of the
underlying Bethe lattice, one has found a closed set of
eigenoperators and eigenenergies. As a result, one may
solve the model and compute observable quantities.

Since the addition of a homogeneous magnetic field
does not dramatically modify the framework of calcula-
tion given in Ref. [3], here we report only some details of

the calculations and refer the interested reader to Ref. [3]
for a comprehensive analysis. Upon splitting the Hamil-
tonian (1) as

H = H
(i)
0 +H

(i)
I ,

H
(i)
I = zV n(i)nα(i),

(15)

it is immediate to notice that, with respect to the case

h = 0, only H
(i)
0 is modified by the presence of the mag-

netic field h. Therefore, all the calculations related to

H
(i)
I are not modified; the changes induced by the pres-

ence of h will concern only the calculations involving H0.
In particular, the statistical average of any operator O
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can be expressed as

〈O〉 =
〈Oe−βH

(i)
I 〉0,i

〈e−βH
(i)
I 〉0,i

. (16)

The symbol 〈· · · 〉0,i stands for the thermal average with

respect to the reduced Hamiltonian H
(i)
0 : i.e., 〈· · · 〉0,i =

Tr{· · · e−βH
(i)
0 }/Tr{e−βH

(i)
0 }. Equation (16) allows us to

express the thermal averages with respect to the com-
plete Hamiltonian H in terms of thermal averages with
respect to the reduced HamiltonianH0, which describes a
system where the original lattice has been reduced to the
site i and to z unconnected sublattices. As a consequence,
in the H0-representation, correlation functions connect-
ing sites belonging to disconnected sublattices can be
decoupled. Within this scheme, all the local correlators
necessary to compute the Green’s functions [3] can be
written as functions of the parameters

Xi = 〈nα(i)〉0,i =
1

z

∑z
p=1〈n(ip)〉0,i ,

Yi = 〈Dα(i)〉0,i =
1

z

∑z
p=1〈D(ip)〉0,i, (17)

in terms of which one may find a solution of the model.
In the above equation, ip (p = 1, . . . , z) is an arbitrary
neighboring site of i.

A repulsive intersite interaction disfavors the occupa-
tion of neighboring sites. At low temperatures, this may

lead to a CO phase characterized by a nonhomogeneous
distribution of the electrons in alternating shells [3]. In
order to capture this phase, we shall divide the lattice in-
to two sublattices: A contains the central point (0) and
the even shells, the sublattice B contains the odd shells.
Then, one requires the following boundary condition to
hold:

〈n(i)〉 =

{

nA

nB

i ∈ A,
i ∈ B,

(18a)

n =
1

N

∑

i

〈n(i)〉 =
1

2
(nA + nB). (18b)

Let us take two distinct sites i ∈ A and j ∈ B. We re-
quire that the expectation values of the particle density
and of the double occupancy operators at the site i are
equal to the ones of the neighboring sites of j and vicever-
sa. As a consequence, the number of unknown correlators
is four: the parameters Xi, Xj , Yi, Yj are determined by
the equations

〈n(i)〉 = 〈n(jp)〉

〈D(i)〉 = 〈D(jp)〉

〈n(ip)〉 = 〈n(j)〉,

〈D(ip)〉 = 〈D(j)〉.
(19)

After lengthy but straightforward calculations, one can
find analytical expressions for the average values of the
particle density and of the double occupation operators
in terms of the parameters Xi and Yi, namely:

〈n(i)〉 =
f(1 + k2)F z

i + 2gk Gz
i

k + f(1 + k2)F z
i + gk Gz

i

, 〈D(i)〉 =
gk Gz

i

k + f(1 + k2)F z
i + gk Gz

i

, (20)

and

〈n(ip)〉 =
kXi + f(1 + k2)K (Xi + 2aYi)F

z−1
i + kgK2 (Xi + 2d Yi)G

z−1
i

k + f(1 + k2)F z
i + kg Gz

i

,

〈D(ip)〉 =
kYi

[

1 + f(1 + k2)K2F z−1
i + gkK4Gz−1

i

]

k + f(1 + k2)F z
i + gk Gz

i

.

(21)

Where f = eβµ, g = eβ(2µ−U), and k = eβh, and we used
the definitions

Fi = 1 + aXi + a2Yi, Gi = 1 + dXi + d2Yi, (22)

with K = e−βV , a = K − 1, and d = K2 − 1. Similar-
ly, also the third component of the spin density can be
written as a function of the parameters Xi and Yi:

〈n3(i)〉 =
f(1 − k2)F z

i

k + f(1 + k2)F z
i + gk Gz

i

,

It is not difficult to show that the magnetization m =
〈n3(i)〉 can be written in terms of the particle density and
double occupancy as: 〈n3(i)〉 = tanh(βh)[n(i) − 2D(i)].

Equations (19) together with Eq. (18b), which fixes the
chemical potential µ, constitute a system of coupled
equations allowing us to ascertain the five parameters
µ, XA, XB , YA, and YB in terms of the external parame-
ters of the model, namely: n, h, U , V , and T . Once these
quantities are known, all the properties of the model can
be computed.

III. PHASE DIAGRAM AND MAGNETIC
PROPERTIES

In this section, we derive the phase diagram by numer-
ically solving the set of equations (19). In the absence
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of a magnetic field, we find the regions of the (U, n, T )
3D space characterized by a spontaneous breakdown of
translational invariance [3]. In these regions, the popu-
lation of the two sublattices A and B is not equivalent:
the system has entered a finite temperature long-range
CO phase. Upon decreasing the temperature, the distri-
bution of the electrons becomes more inhomogeneous. In
the presence of a magnetic field, the phase structure is
determined by the three competing terms of the Hamilto-
nian: the repulsive intersite potential (disfavoring the oc-
cupation of neighboring sites), the magnetic field (align-
ing the spins along its direction, disfavoring thus dou-
ble occupancy) and the on-site potential, which can be
either attractive or repulsive. The competition among
these terms may affect the transition temperature. To
understand the effect of a magnetic field on the critical
region, in Figs. 1 we plot the phase diagram at constant
U for several value of h.

In Figs. 1 we consider the full range of variation of the
particle density 0 ≤ n ≤ 2, although it would be suf-
ficient, owing to the particle-hole symmetry, to explore
just the interval [0, 1].

In the plane (n, T ), for attractive U , the CO phase is
observed in an interval ∆n which varies with the magnet-
ic field. As is shown in Fig. 1(a), at h = 0 and in the limit

T → 0, a complete CO state is established in the region
2/z ≤ n ≤ 2(z−1)/z. ∆n first increases with T , then de-
creases vanishing at n = 1, where the maximum critical
temperature is reached; a reentrant behavior character-
izes this region. Upon turning on a finite magnetic field,
∆n increases by increasing h and the reentrant behav-
ior is lost. For h ≥ |U |, a CO state is established in
the region 1/z ≤ n ≤ (2z − 1)/z (in the limit T → 0).
The phase diagram still presents a single lobe structure
centered at n = 1, although the height of the lobe has
decreased. There exists a critical value of the magnetic
field hT = zV/2−U/2 above which one observes the for-
mation of three separated lobes centered around n = 0.5,
n = 1 and n = 1.5, respectively. The transition to the
CO phase is suppressed in the range 0.75 < n < 0.85
and 1.15 < n < 1.25 (for z = 3). By further increasing
h, the central lobe shrinks and eventually disappears. As
one can infer from Fig. 1(b), the picture is very simi-
lar for repulsive on-site interaction. The phase diagram
presents a single lobe structure centered at n = 1: a CO
phase is observed below the critical temperature in the
range 1/z < n < (2z−1)/z, which does not depend on h.
At the same value of the magnetic field hT = zV/2−U/2,
the CO phase is observed inside the three separated lobes
as for the case U < 0.

Fig. 1. Phase diagram in the plane (T, n) for V = 1 and z = 3 and several values of h, and for (a) U = −1; (b) U = 1.

Fig. 2. (a) The critical temperature Tc as a function of the magnetic field h at n = 0.75 for V = 1 and z = 3, and several
values of U . (b) The specific heat as a function of the temperature at n = 0.75, for V = 1, U = −1, and z = 3, and several
values of h.
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When plotted as a function of the magnetic field, the
critical temperature shows a decreasing behavior, which
is more pronounced in the neighborhood of n = 1. More-
over, as one can also notice from Fig. 1, according to the
value of the particle density, two situations can occur:
either the transition temperature is finite for all values
of h or it vanishes at the same critical value. In Fig. 2(a),
we plot the transition temperature Tc as a function of the
magnetic field at n = 0.75, z = 3 and for different values
of the on-site potential. The transition temperature de-
creases by increasingU and vanishes at hT = zV/2−U/2.
For U = 3V , hT = 0: a strong on-site repulsion inhibits
the CO phase, as already noticed in Ref. [3]. The study
of the specific heat also enlightens the influence of the
magnetic field on the thermodynamic behavior of the
system. The specific heat is given by C = dE/dT , where
the internal energy E can be computed as the thermal
average of the Hamiltonian (1). As an example of the
characteristic behavior of the specific heat by varying h,
in Fig. 2(b) we plot C as a function of the temperature
at U = −1, z = 3 and n = 0.75, for several values of the
magnetic field. For h = 0 and at low temperatures, the
system is in a CO phase and exhibits a phase transition
at Tc to a homogeneous phase. The specific heat exhibits
a peak at T1 = Tc — due to the phase transition — and
another peak T2 at low temperatures which vanishes as
h increases. For finite magnetic fields, the position of the
peak T1 and the relative height decrease by augmenting
h. For h = hT , the transition is suppressed and, corre-

spondingly, the peak T1 disappears.
The competition among the magnetic field and the on-

site and intersite potentials gives rise to the formation
of plateaus in the magnetization curves. By increasing
the magnetic field, one observes plateaus whose start-
ing points depend on the particle density, as well as on
the on-site potential: one identifies two critical values of
the magnetic field. The nonzero magnetization can either
begin from h = 0 or from a finite field. hc denotes the
starting point of a nonzero magnetization, whereas hs

denotes the value of the magnetic field when it reaches
saturation.

The results for the magnetization m(h) are shown in
Fig. 3, where Uc is the critical value of the on-site po-
tential separating the different observed behaviors; for
z = 3, one finds Uc ≈ 2.8. Making reference to Fig. 3
for the different regions of n and U , one has: hc = hs =
|U |/2 (Fig. 3(a)), hc = |U |/2 and hs = zV/2 + |U |/2
(Fig. 3(b)), hc = 0 and hs = zV/2 − U/2 (Fig. 3(c)),
and hc = hs = 0 (Fig. 3(d)). The so-called metamag-
netic behavior is clearly seen: at low temperatures the
magnetization begins to show a typical S-shape which
becomes more pronounced by further decreasing the tem-
perature. At T = 0 one, two or three plateaus (m = 0,
m = 1 − n and m = n) are observed according to the
values of the external parameters. These results are sim-
ilar to the ones obtained in one-dimensional AL-EHM [9]
and spin-1 antiferromagnetic Ising chain with single-ion
anisotropy [10, 11].

Fig. 3. The magnetization m as a function of the magnetic field h at T = 0.
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Fig. 4. (a) The spin susceptibility as a function of the temperature for V = 1, n = 0.75, and (a) attractive (b) repulsive
on-site interaction.

In Figs. 4(a)–(b) we plot the spin susceptibility as a
function of the magnetic field at T = 0.1 for several val-
ues of U (both attractive and repulsive), z = 3 and for
n = 0.75. In the limit T → 0, the spin susceptibility di-
verges in correspondence with the values hcrit at which
the system moves from one magnetization plateau to the
other. For low values of the magnetic field and attrac-
tive on-site interactions corresponding to Fig. 4(a) the
spin susceptibility vanishes at low temperatures for all
values of the filling: in the limit T → 0 all electrons are
paired and no alignment of the spin is possible. By in-
creasing h, the magnetic excitations break some of the
doublons inducing a finite magnetization: χs has a peak,
then decreases, the system having entered the successive
magnetic plateau. If 0.5 < n < 1 then another peak is
observed, corresponding to the second jump of the mag-
netization when h reaches the saturated value hs. On the
other hand, for repulsive on-site interactions, a very small
magnetic field induces a finite magnetization (with the
exception of n = 1 when U < Uc): χs has a maximum
at h = 0 and then decreases by augmenting h, unless
another transition line is encountered, as it happens for
0.5 < n ≤ 1 and 0 < U < Uc.

IV. CONCLUDING REMARKS

Green’s function and equations of motion formalism
allows one to tackle a large class of classical fermion-

ic and spin systems, providing a general formulation for
any dimension and any underlying lattice [6–8,11]. In this
paper we have evidenced how the use of this formalism
leads to the exact solution of the AL-EHM on the Bethe
lattice in the presence of an external magnetic field. By
considering nearest-neighbor repulsion V , there is a tran-
sition temperature below which a charge ordered phase,
characterized by a different distribution of the electrons
in alternating shells, is established for n > 1/z. The onset
of the CO phase is signalled by the breaking of transla-
tional invariance: at Tc the values of both the particle
density and the double occupation become site or, more
properly, shell dependent [3]. The charge ordered phase is
dramatically affected by the presence of a magnetic field:
the transition temperature is lessened by a finite magnet-
ic field. The CO phase shrinks by increasing h, leading
to the appearance of large regions where the strength of
the magnetic field prevents the ordering of the particles.

By investigating the magnetic properties of the sys-
tem, we found magnetic plateaus at low temperature.
Furthermore, we identified the values of the critical fields
hc and hs, defining the beginning point of nonzero mag-
netization and the saturated magnetization field, respec-
tively.

I thank F. Mancini for interesting and fruitful discus-
sions.
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МАГНIТНI ВЛАСТИВОСТI СИЛЬНОКОРЕЛЬОВАНИХ СИСТЕМ НА ҐРАТЦI БЕТЕ
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Вивчено вплив зовнiшнього магнiтного поля h на фазову дiаграму системи фермi-частинок на ґратцi

Бете з координацiйним числом z та взаємодiями на одному вузлi U , а також мiж сусiднiми вузлами V . Це

фiзична реалiзацiя розширеної моделi Хаббарда у вузькозоннiй границi. Виявлено, що магнiтне поле може

суттєво впливати на критичну температуру переходу до зарядововпорядкованої фази а також на поведiнку

фiзичних величин, що приводить, наприклад, до появи плато на кривих намагнiчення. Також дослiджено

вiдповiднi термодинамiчнi величини, такi, як питома теплоємнiсть i сприйнятливiсть при скiнченнiй темпе-

ратурi та при змiнi одновузлової взаємодiї, концентрацiї частинок i магнiтного поля.
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