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A linear response of the electron system of a layered conductor in the presence of a temperature
gradient is investigated theoretically. We have found the dependencies of the thermo-emf on the
temperature and on an external magnetic field, the experimental study of which allows to deter-
mine the structure of charge carriers energy spectrum as well as to examine different relaxation
mechanisms in the system of conduction electrons.
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Investigations of the thermoelectric effect in layered
conductors placed in a strong magnetic field B allow to
study in detail their electron energy spectrum [1,2].

Within the framework of the linear theory the electric
current in a conductor

ji = σijEj − αij
∂T

∂xj
(1)

is related to an electric field E and a temperature gradi-
ent ∇T by the conductivity tensor σik and the thermo-
electric tensor αik.

In the case of nonuniform temperature distribution in
a specimen, even in the absence of current-conducting
contacts (j = 0), the thermoelectric field

Ei = ρil αlj
∂T

∂xj
, (2)

unavoidably appears. Here ρij is the resistivity tensor
which is inverse to the conductivity tensor σij .

Some important information about relaxation process-
es in the electron system may be extracted from the T -
dependence of the thermoelectric field. The reason is that
the kinetic coefficients

σik =
2e3B

c(2π~)3

∫
∂f0(ε)

∂ε
dε

∫
dpB

×
∫ 0

−∞
exp(t/τp)dt

∫ TB

0

dt′vi(t′)vk(t′ + t) (3)

and

αik =
2e2B

c(2π~)3

∫
∂f0(ε)

∂ε

ε− µ

T
dε

∫
dpB

×
∫ 0

−∞
exp(t/τε)dt

∫ TB

0

dt′vi(t′)vk(t′ + t) (4)

describe different relaxation processes in the charge car-
riers system. The components of the conductivity tensor
are connected to the momentum relaxation of electrons
which is characterized by the time τp, and the compo-
nents of the tensor αij depend on the energy relaxation

the time τε. Here e,v, pB , ε are the charge, velocity, mo-
mentum projection onto B-direction, and energy of a
conduction electron, respectively; f0(ε) is the equilibri-
um Fermi distribution function, µ is the chemical poten-
tial of the electron system, c is the velocity of light, ~ is
the Planck constant, t is the time of charge motion in a
magnetic field according to the equation

∂p
∂t

=
e

c
v ×B.

In case of a periodic motion of an electron in the mag-
netic field the magnitude TB is the period of motion. If
an electron executes an unperiodic motion along an open
trajectory, TB is the time that characterizes its displace-
ment per period of the inverse lattice.

In the absence of the magnetic field the thermoelectric
field

Ei =
π2

3e

(
T

µ

)
Qij

τε

τp

∂T

∂xJ
(5)

is proportional to the ratio of the relaxation times τε/τp.
Here the dimensionless tensor Qij does not depend on
temperature.

We consider the thermoelectric effect in a quasi-two-
dimensional conductor at temperature that is much be-
low the Debye temperature TD, when the T -dependencies
of the relaxation times τε and τp are essentially different.
When the temperature is close to zero, the relaxation
in electron system of a degenerated conductor is real-
ized mainly by the charge carriers scattering at impurity
centers and other crystal defects. This is the case when
the relaxation times τp and τε are of the same order
of magnitude. With the temperature increasing an ex-
tra mechanism of relaxation connected to electron scat-
tering by crystal lattice vibrations sets off. According
to Matthiessen’s rule each of the scattering mechanisms
makes an additive contribution into the relaxation pro-
cess, so

1
τ

=
1

τ (im)
+

1
τ (eph)

, (6)
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where 1/τ (eph) is the frequency of charge carriers colli-
sions with phonons. At T � TD because of the small-
angle scattering of electrons by phonons, a number of
collisions with phonons, necessary for the electron mo-
mentum relaxation, is much greater than that for the
energy relaxation. As a result, τε decreases more rapidly
with temperature than τp . The T -dependence of τε has
the form

τε =
{

1
τ (im)

+
1
τ0

T̃n

}−1

, (7)

where T̃ = T
TD

, τ0 is the time characterizing the ener-
gy relaxation of electrons due to their collisions with
phonons at the Debye temperature. The power n is de-
termined by the dimensionality of the system, n equals
3 for 3D metals and n equals 2 in the case of 2D conduc-
tors [3].

At sufficiently low temperatures, when the momentum
relaxation is realized mainly due to the charge carriers
collisions with impurities (i. e. τp coincides with τ (im))
and account of the interaction with phonons affects es-
sentially the energy relaxation, the T -dependence of the
thermoelectric field at B = 0 can be presented as

Ei =
π2TD

3eµ
Qikf(T̃ )

∂T

∂xk
,

f(T̃ ) =
T̃

1 + (τ (im)/τ0)T̃n
. (8)

At T̃ � (τ0/τ (im))1/n the field Ei is proportional to
T , but with the temperature increasing the frequency
of charge carriers collisions with phonons 1/τ

(eph)
ε =

1/(τ0)T̃n becomes comparable to the frequency of their
collisions with impurities 1/τ (im) and the growth with
temperature gives place to decreasing as T (1−n). The
maximum is attained at

τ (eph)
ε = (n− 1)τ (im).

In layered conducting structures with the Q2D ener-
gy spectrum at temperature that is much less than the
overlap integral t⊥ for the wave functions of electrons be-
longing to neighboring layers, the T -dependence of τ

(eph)
ε

is basically the same as in 3D metals. In layered organ-
ic conductors the overlap integral t⊥ is of the order of
the Debye temperature. Thus in the whole of the range
where T is less than the Debye temperature, 1/τ

(eph)
ε is

proportional to T 3, and in accordance with the Bloch
law, τp is of the form

1
τp

=
1

τ (im)
+

1
τ0

T̃ 5. (9)

In certain organic conductors there are several groups
of charge carriers that are responsible for the electron
transport. The Fermi surface in such conductors may
consist of topologically different elements: weekly cor-
rugated cylinders and planes [4, 5].

An external magnetic field affects differently the mo-
tion of charge carriers whose states belong to the weakly
corrugated cylinder and to the plane sheet of the Fermi
surface. Just for this reason the presence of such plane
sheets of the Fermi surface may be revealed most easy in
a conductor placed in a magnetic field.

As an example, consider the conductor with two
groups of charge carriers, in a magnetic field B =
(0, B sin θ, B cos θ). It is assumed that the preferred di-
rections of the mean velocities ±v1 of electrons belong-
ing to the plane sheets, are determined by the angle ϕ,
so v1x = ±v1 cos ϕ, v1y = ±v1 sinϕ, and the dispersion
law for the other charge carriers group is of the form

ε(p) =
p2

x + p2
y

2m
− 2t⊥ cos

apz

~
, (10)

where m = const, a is the separation between the layers,
t⊥ is much less than the Fermi energy εF.

We shall assume that the angle θ is not near π/2, so
all orbits of electrons with the Q2D dispersion law are
closed. At cos θ � mc/eBτ the condition of the strong
magnetic field (TB/τ)� 1 is fulfilled automatically.

The components of the kinetic coefficients for the con-
ductor σik and αik are the sums of the contributions of
each group of charge carriers, and, in particular, it is as
easy to make sure that

σik =


γ2σ2 − γ2σzz tan2 θ + σ1 cos2 ϕ γσ2 − γσzz tan2 θ + σ1 cos ϕ sinϕ −γσzz tan θ

−γσ2 + γσzz tan2 θ + σ1 cos ϕ sinϕ γ2σ2 + σzz tan2 θ + σ1 sin2 ϕ σzz tan θ

γσzz tan θ σzz tan θ σzz

 . (11)

Here σ1 and σ2 = (e2εFτp/π~2a) are the contributions to the conductivity along the layers at B = 0 made by
charge carriers belonging to the plane sheets of the Fermi surface and to the corrugated cylinder, respectively;
γ = mc/(eBτp cos θ) = 1/(ωcτp)� 1.

Account of the contribution to σzz of charge carriers with Q1D energy spectrum does not affect the T -dependence
of the thermoelectric field. The component

σzz =
2ae2mτpt

2
⊥ cos θ

π~4
J2

0

(apF

~
tan θ

)
≡ Szτp, (12)
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in the main approximation in the quasi-two-dimensionality parameter t⊥/εF = η � 1 is quadratic in η, and at
1 � tan θ � eBτp/mc this component oscillates as θ varies. Here Jn(x) is the Bessel function, pF is the Fermi
momentum.

At γ � 1 the asymptotic expression for the resistivity tensor is

ρik = ρ0



1 + q
sin2 ϕ

γ2
− 1

γ
− q

sin 2ϕ

2γ2

(
1
γ

+ q
sin 2ϕ

2γ2

)
tan θ

1
γ
− q

sin 2ϕ

2γ2
1 + q

cos2 ϕ

γ2
−q

cos2 ϕ

γ2
tan θ

(
− 1

γ
+ q

sin 2ϕ

2γ2

)
tan θ −q

cos2 ϕ

γ2
tan θ

1

σ
(2)
zz ρ0

+ q
cos2 ϕ

γ2
tan2 θ


, (13)

where ρ0 = 1/(σ1 + σ2), q = σ1/σ2.

The thermoelectric effect depends essentially on the
presence of the plane sheet of the Fermi surface, and the
distinct components of the field

Ei =
π2TD

3eµ
Pik(T )

∂T

∂xk
(14)

behave in different ways.
In the case of a single charge carriers group with the

Q2D dispersion law, in the main approximation in the
small parameters γ and η the diagonal components

Pxx = Pyy = T̃ (15)

exceed significantly the components

Pxy = −Pyx = T̃

(
1

ωcτp
− 1− b

ωcτε

)
, (16)

so the field in the layers plane is directed mainly along
∇T and grows linearly with T , when a conductor is heat-
ed along the layers. The components

Pzx = −T̃

(
1− b

ωcτε
− d

ωcτp

)
tan θ, (17)

and

Pzy = T̃

(
−1 +

(d + b)τε

τp

)
tan θ (18)

differ from zero if only the magnetic field deviates from
the normal to the layers,

Pzz = T̃ (d + b), (19)

and the magnitudes Pxz, Pyz are proportional to η2.
Here b = (µ/τε)(∂τε/∂µ) ' 1, and the coefficient d =
(µ/Sz)(∂Sz/∂µ) is of the form

d = −2µma tan θ

pF~

×
J1

(apF

~
tan θ

)
J0

(apF

~
tan θ

)
J2

0

(apF

~
tan θ

)
+ φ1γ2 + φ2η2

, (20)

where φ1 and φ2 are the magnitudes of the order of unit
which allow for corrections to Sz, omitted in the main
approximation in the small parameters η and γ. As a
result, the dependence of the components Pzk upon the
angle θ takes form of giant oscillations. The dependence
of the nondiagonal components of the tensor Pik on the
temperature is determined by the T -dependence of the
relaxation times, and taking into consideration (7) and
(9),we have

Pxy =
T̃

ωcτ (im)

[
b− (1− b)

τ (im)

τ0
T̃ 3 +

τ (im)

τ0
T̃ 5

]
, (21)

Pzx =
T̃

ωcτ (im)

[
d + b− 1− (1− b)

τ (im)

τ0
T̃ 3 + d

τ (im)

τ0
T̃ 5

]
tan θ, (22)

Pzy = T̃

−1 + (d + b)
1 +

τ (im)

τ0
T̃ 5

1 +
τ (im)

τ0
T̃ 3

 tan θ. (23)
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In the presence of the Q1D charge carriers group the components of the tensor Pik contain the terms, that grow
linearly with B increasing. These terms vanish at certain values of the angle ϕ, in the remaining cases they are
dominant and determine the thermoelectric effect in the strong magnetic field (ωcτ � 1). When ∇T is oriented in
the plane of the layers the linear growth with B of the components

Pxx = ρ0T̃

[
σ2 + σ1

(
(1− b)

τp

τε
sin2 ϕ + a

τε

τp
cos2 ϕ + ωc(τp − aτε) sinϕ cos ϕ

)]
, (24)

Pyy = ρ0T̃

[
σ2 + σ1

(
(1− b)

τp

τε
cos2 ϕ + a

τε

τp
sin2 ϕ− ωc(τp − aτε) sinϕ cos ϕ

)]
(25)

takes place when both projections (v1x and v1y ) of the electron velocity at the plane sheet of the Fermi surface vanish
simultaneously. This is the case when the T -dependence of the components Pxx, Pyy in the main approximation in
the parameter γ has the form

Pxx = −Pyy = ρ0σ1ωτ (im)T̃

 1

1 +
τ (im)

τ0
T̃ 5

− a

1 +
τ (im)

τ0
T̃ 3

 sinϕ cos ϕ. (26)

Here a ≡ (µ/σ1)(∂σ1/∂µ) ∼= 1.
When sin 2ϕ = 0, the magnitudes Pxx, Pyy do not depend on the magnetic field.
The nondiagonal components

Pyx = −ρ0T̃

[
σ2

(
1

ωcτp
− 1− b

ωcτε

)
− σ1ωc(τp − aτε) cos2 ϕ

]
, (27)

Pxy = ρ0T̃

[
σ2

(
1

ωcτp
− 1− b

ωcτε

)
− σ1ωc(τp − aτε) sin2 ϕ

]
, (28)

Pzx = ρ0T̃

[
σ2

(
d

ωcτp
− 1− b

ωcτε

)
+ σ1

(
ωc(τp − aτε) cos2 ϕ +

d

ωτp

)]
tan θ, (29)

Pzy = ρ0T̃

[
σ2

(
−1 + (d + b)

τε

τp

)
+ σ1

(
ωc(τp − aτε) sinϕ cos ϕ + (d + b)

τε

ωτp

)]
tan θ (30)

also contain great terms proportional to γ−1, the T -
dependence of which is described by the expression anal-
ogous to formula (26).

It is easy to see that the Nernst–Ettingshausen effect is
most pronounced when the temperature gradient is not
orthogonal to the velocity v1.

The electric field along the normal to the layers grows
with the angle θ increasing and exceeds the electric field
along the layers at tan θ > 1.

When tan θ > eBτ/mc = 1/γ0, an electron has no
time to perform a complete revolution along the closed
cross-section of the Fermi surface during its free path
time. An electron drifts to a small distance along the
normal direction, and at θ = π/2 its mean velocity along
the normal to the layers equals to zero. As a result, in
the main approximation in the quasi-two dimensionality

parameter the conductivity component σzz is

σzz = η2γ2
0gσ2, (31)

where g is the number of the order of unity. This is the
case when the components of the tensor Pik, determining
the thermoelectric field along the normal to the layers,

Pzx = T̃ [ωcτp − ρ0σ2(1 + b)ωcτε] sinϕ, (32)

Pzy = −T̃ [ωcτp − (1 + b)ωcτε] cos ϕ, (33)

grow linearly with the magnetic field increasing, while
the components

Pxx = ρ0T̃ [σ2(1 + b) + σ1(a + b)]
τε

τp
(34)

and

Pyy = T̃ (1 + b)
τε

τp
(35)
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come up to saturation in the strong magnetic field. The
electric field in the layers plane is directed mainly along
the temperature gradient because the components

Pyx = Pxy(1 + q)

= T̃ η2g

[
(1 + b)

τε

τp
− 1

]
sinϕ cos ϕ (36)

are proportional to η2 and, similarly to the diagonal com-
ponents, tend to saturation at γ0 � 1.

The presence of the charge carriers group with
quasi-one-dimensional dispersion law does not influence
markedly the thermoelectric effect when the magnetic

field is almost parallel to the layers plane. If the vector
B is deviated from the plane, both the T -dependence and
the dependence on the magnetic field of the thermoemf
prove to be essentially different for the conductor with
one quasi-two-dimensional charge carriers group and for
the conductor whose Fermi surface contains the plane
sheets as well. The variety of these dependencies gives
rich material for studying theproperties of charge carri-
ers in low dimensional conductors and allows to reveal
not only the presence of the plane sheets of the Fermi
surface, but to determine the preferred direction of the
velocity of electrons whose states belong to these sheets.
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ЕЛЕКТРОННИЙ ТРАНСПОРТ У СИЛЬНО АНIЗОТРОПНИХ СТРУКТУРАХ
У МАГНIТНОМУ ПОЛI

О. В. Кириченко1, В. Г. Пiщанський1, О. Галбова2

1Фiзико-технiчний iнститут низьких температур iм. Б. I. Вєркiна
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2Факультет природничих наук i математики, фiзичний iститут, Скоп’є, Македонiя

Теоретично дослiджено лiнiйний вiдгук електронної системи шаруватого провiдника на наявнiсть ґра-
дiєнта температури. Знайдено залежнiсть термоедс вiд температури та зовнiшнього магнiтного поля, дослi-
дження якої дасть змогу вивчити рiзнi механiзми релаксацiї в системi електронiв провiдностi та визначити
структуру електронного енерґетичного спектра.
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