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According to the principles of thermodynamics any system being in contact with the thermal
bath passes in the equilibrium state for the relaxation time. The paper presents a model of Brownian
motion of the system which allows one to determine its stationary states far from the equilibrium.
The stationary distribution function of a nonequilibrium state can be represented by none of the
known equilibrium distributions. It is shown at which conditions the equilibrium states are realized,
and new stationary states of the nonequilibrium systems are predicted.
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According to the basic principles of thermodynam-
ics an arbitrary macroscopic system in contact with the
thermal bath reaches the equilibrium state for the relax-
ation time. The properties of such a system are deter-
mined by its peculiarities and the characteristics of the
thermal bath. Its equilibrium state can be completely
defined only under ideal conditions [1-3]. The establish-
ment of the equilibrium in a separate system results in
both the establishment of the identical thermodynami-
cal parameters equivalent to those of the thermostat and
the absence of flows in the system itself. In the case of
the nonequilibrium open systems, the flows always ex-
ist, and the definition of invariable parameters for such
a system seems impossible. Nevertheless, it is possible to
define the stationary states for open systems, whose dis-
tribution function will be different from the known equi-
librium distributions. Such a state can be interpreted as
“equilibrium” in the sense of its constancy in time, but
the thermodynamical parameters of the system and the
environment will be different. To such systems, can refer
hot electrons in semiconductors [4], a system of photons
on the inhomogeneous scattering where the diffraction
coefficient depends on the frequency of photons [5, 6],
a system of high-energy particles which is created as a
result of the collision of particles on accelerators and a
bigger particle in the dusty plasma [7], a system of Brow-
nian particles. Of course, the description of the behavior
of Brownian particles has had a long history [8,9], but it
seems interesting and appropriate to study the behavior
of such a system under conditions far from equilibrium
which can be a model for the description of the nonequi-
librium systems. The content of the model consists in
the following. A separate Brownian particle is a macro-
scopic system with many degrees of freedom. This par-
ticle (or a system) interacts with the environment (with
the thermostat) in two independent ways. The first way
consists in the direct influence of the environment on
a separate particle (system) via the introduction to or
the withdrawal of the energy from a separate system by
means of its dissipation into the thermostat or the ab-
sorption of the energy from it (the distinctive positive or

negative friction). Another way to change a state of the
separate system consists in the direct fluctuation effect
of the environment which is reduced to a rapid change
of the state of the system. Such a change can occur due
to both the influence of the other systems and a change
of the characteristics of the thermostat on the presence
of many degrees of freedom in it. Both the presence of
other systems and the direct effect of the chosen sys-
tem affect the thermostat. In this sense, the environment
where the chosen system is positioned, is not a fixed for-
mation like the thermostat, but affect directly the pro-
cesses running in the chosen system. It is easy to imagine
that a relaxation of the system occurs with respect to the
slowest variable which can be the energy. At every time
moment a change of the slowest parameter of the sys-
tem is known, but the effect of the other parameters on
its variation will have a random character. This pattern
corresponds to the stochastic dynamics of a separate sys-
tem, and the description of an ensemble of such systems
will correspond to the determination of the distribution
function of the system. Therefore, there appears a pos-
sibility to describe a system of Brownian particles (sys-
tems) which can be under nonequilibrium conditions and
to find the possible stationary states of such a system.
In this sense, we can obtain a possibility to describe the
nonequilibrium systems which are far from equilibrium.
Each macroscopic system can be considered as a Brow-
nian particle, and its state can be described in terms of
the energy of such a particle (system). It is obvious that
the state of a separate macroscopic system depends on
the environment which plays the role of the thermostat,
acts directly, in this interpretation, on the chosen system
with fluctuations in their exchange by energy, and is not
a fixed invariable structure. For this reason there arises
an urgent necessity to develop mathematical approaches
to a possible description of such nonequilibrium systems
with the purpose of defining their new states with the
possibility of foreseeing the plausible stationary states of
open systems and conditions of their existence.

In practice, the statistical description is based on the
knowledge of only several integrals of motion such as
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energy. The latter, as a controlling parameter of the
nonequilibrium system seems to be its slowest param-
eter. In the absence of another information about the
nonequilibrium system the determination of a state of
the system in terms of energy is attractive, the more so as
energy in the frame of equilibrium statistical mechanics
is the invariant of the system. Generally, one can assume
that this equation which describe the changing energy
in the nonequilibrium system has the form equivalent to
the nonlinear Langevin equation

de

5 = ) +aE)L). (1)
The dynamical equation for a change of the energy re-
minds, in our interpretation, the Langevin equation, but
it has a more profound content because it accounts for
both the direct action of the environment on a chosen
system (the first term of the equation) and the connec-
tion of the chosen system with the environment via possi-
ble fluctuations of the conditions under which the system
is placed (the second term of the equation). The exter-
nal influence is reduced, in the first turn, to a change
of the system’s energy which the system obtains from
or gives back to the environment. But a change of the
state of the system is not defined by only this point.
First of all, each parameter of the system varies by the
fluctuations corresponding to the possible ones which de-
pend on the energy of the system through the coefficient
g(€). The ground state of any system is determined with-
in fluctuations whose mean value can be zero, but the
correlations are conserved in this case. In addition, an
arbitrary system can be in contact with a nonlinear en-
vironment, whose behavior is not fully unambiguous. A
random migration of the system over various states is a
result of both the direct action of the environment and
a random action due to the contact of the system with
the nonlinear environment, where it is placed. A random
influence of the environment can be taken into account
only in the form of the correlations between fluctuations
at different time moments (L(¢t)L(t')) = ¢(t — t') be-
cause the mean value of such fluctuations is equal to
zero. The mean value (...) of the correlations is nonzero
only during the time interval of the action. Therefore, the
function ¢d(t — t') must have a sharp peak as the time
interval tends to zero, which corresponds to the condi-
tion [ ¢(7)dr = o? characterizing a white noise [8]. The
energy representation holds also for ordinary Brownian
particles, but it was not in use for unknown reasons. It is
worth noting that such a representation seems the most
expedient for the description of the behavior of nonequi-
librium systems. The dynamics of an ordinary Brownian
particle is described in terms of velocity v with the help
of the Langevin equation:

dv

— = F(t 2

~ = o+ F(), 2)
where v is the coefficient of friction, and F(t) is a random
force accounting for the irregular action of the environ-
ment on a separated particle. The mean over the statis-
tical ensemble (F(t)) = 0, but (F(t)F(t')) = ¢>5(t —t'),
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which corresponds to the condition for a white noise and
thus accounts for the correlations in the movement of
particles under the action of a random force. For a Brow-
nian particle, a change of the energy ¢ = MTvz can be
presented as

d d
dé - Mvd—;} = —2ye + V2MeF(t), (3)

which corresponds to the initial equation with f(g) =
—27ve, g(e) = /e and L(t) = vV2MF(t). By using a so-
lution of the Langevin equation for velocity [8], one can

2 © &
find that (v(oc0)) = % = WT and () = 7T7
the temperature of the thermostat, i.e. that of the en-

vironment. By solving the equation for a chagnge of the
, f

energy, we can also find that \/(g)2 = %7 = %2M = kT
where many-time correlations of the energy are not tak-
en into account. The obtained relation corresponds to
the equilibrium conditions when a system of Brownian
particles is in equilibrium with the environment playing
the role of the thermostat for them. As seen from the
above-presented consideration various representations of
the Brownian motion are equivalent, but the energy rep-
resentation acquires for more general nonequilibrium sys-
tems. For this reason, it will be more expedient to consid-
er the definition of the nonequilibrium distribution func-
tions of states from nonlinear Fokker—Planck equation.
Such an approach will be suitable for the description of
the behavior of the nonequilibrium system on the receipt
of the relevant energy from outside, its loss on the direct
action of the environment, and the dissipation of energy
on a random influence of the environment. In view of pos-
sible complex processes which can run in the system itself
and under the exchange with the environment, it is nec-
essary to use a more general approach with the nonlinear
Langevin equation. Though the Langevin equation dif-
fers from the Fokker—Planck equation in form, but they
are mathematically equivalent [8]. If we assume that the
coefficient g(e) depends on energy at the initial time mo-
ment, then it is necessary to use the Fokker—Planck equa-
tion in the It6 form. If this coefficient depends on energy
prior to and after the transition, one uses the Fokker—
Planck equation in the Stratonovich form [8]

where T is

% = —% (f(e)p) + %%9(6)%9(5)” @)

In what follows, will be used only the Stratonovich repre-
sentation, the more so as there exists a direct connection
between the two approaches [8,9]. Both the equations
have no particular physical content until a physical pro-
cess under consideration is specified. In most cases, var-
ious possible states of the system depend on both the
initial value of the energy and possible subsequent val-
ues. The above-presented equation for the nonequilibri-
um distribution function of the system can be rewritten
in the form of the law of conservation for the distribution
function

Op(E,t)  9J(p(e )
ot de (5)
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where the probability flow can be represented in the form

o? 3] o o, .0
1= (160 o)) p+ G Lo (0)

The general stationary solution of the Fokker—Planck
equation in the absence of the flow, J(p(e,t)) = 0, looks
as

_ [2/()de | gle)
ps(e) = Aexp /0292(€/) _lng(Eo) . (7)

€0

The equilibrium distribution function as a stationary so-
lution under nonlinear properties of the environment can
be rewritten in the form p,(e) = Aexp {—U(e)} where

5]

U - 9 /2f(€’)d5’ .

9(e0) o?g*(e')

€0

This distribution function has the extremal value at the
energy which can be found from the equation U’(g) =
% (D’'(e) — f(e)) where the symbol ' stands for the
derivative with respect to the energy. This equation is
completely equivalent to D’(€) = f(€) which determines
the conditions of the equilibrium between the diffusion
over states of the environment and the dissipation in the
system under which the stationary solution is realized
and defines completely the energy of a new equilibrium
state. The stationary nonequilibrium distribution func-
tion under the given conditions can be defined as
pel&) =exp (U@} exp (-U"@)?),  (9)
where —U"(g) = D%a (D"(2) — f'(€)). This distribution
function has the form of the Gauss distribution. If the
dissipation in the system is described by a nonlinear
function f(e) of energy, and the coefficient of diffusion
depends on the system’s energy, a number of situations
characterized by new equilibrium states of the nonequi-
librium system can be realized. We will try to describe
some possible cases:
(a) If the coefficient of diffusion is constant g(e) = 1,
the stationary solution can be written in the form

p(e) = Aexp /%da’ , (10)

where g is the initial value of energy. If the energy of
the system is conserved, f(g) = 0, the stationary dis-
tribution function can be transformed into a constant.
One can note that the value € = ¢ is not only a limit-
ing point, but also the stationary point of the system in
the absence of the dissipation and a random walk over
possible energies. The given value of energy is such at
which a stationary probability distribution of the system
is concentrated according to the conditions of normaliza-
tion [9]. Only in this case, the distribution function is a
microcanonical distribution.

(b) If the coefficient of diffusion is constant, g(¢) = 1,
the equation for the nonequilibrium distribution func-
tion takes the form of the ordinary diffusion equation,

1 (e—e0)?
T P (f o2 ) It de-

scribes the migration of the system over arbitrary values
of energy. The probability decreases, and the distribu-
tion function spreads by the law ((¢ —&0)?) = 207t
This solution describes the evolution of the system in
the case where the initial state is represented by the
delta-function p(e) = (e — €p). All states of the sys-
tem are located on the constant energy surface on which
the migration of the system occurs. Fluctuations of the
environment are absent in this case, and the equilibrium
distribution function corresponds to the microcanonical
ensemble.

(c) If the coefficient of diffusion depends on the ener-
gy, but energy of the system is conserved, f(g) = 0, the
stationary distribution function takes the form

whose solution is p(e) = A

9(eo)

which corresponds to the canonical equilibrium distri-
bution, p(g) = Aexp{—pB(c = e¢)}, only if g(e) = e,
where (3 is the reciprocal temperature. Such a distribu-
tion can be realized only if the coeflicient of diffusion de-

pends specifically on energy: D(e) = %2g2(5) = %2€2ﬁ5.
The physical conditions correspond to the peculiarities
of the interaction of the system with the environment
and account for the processes of dissipation for such a
system through interaction.

The equilibrium relation for fluctuations of the energy

can be given in the form [3]

2 a(0) _a* ,

() = 45 = For0. (12)
where «(0)is the susceptibility of the system, a(0) = ¢,
is the heat capacity, and 3 is the reciprocal temperature.
For a nonlinear environment and a nonequilibrium sys-
tem, a more general representation for the susceptibility
of the system depends on the state of the system and,
hence, on energy and can be written in the form

e (13)

where a possible reaction of the system to the external
influence is taken into account. Now, if g(¢) = 1, it is easy
to determine the relation between the temperature and
the characteristics of noise or fluctuations of the environ-
ment, ¢, T = ﬂ%, which characterizes the susceptibility
of the system to the environment or the thermostat. The
previous equality can be interpreted as the definition of

the system’s temperature, T' = 22(25)92 (e).

ps(e) = Aexp{—ln 9(c) } (11)

a(e)

(d) Let now a change of the energy of the system be
nonzero, f(e) # 0. In view of the dependence of the
coefficient of diffusion on energy one can write the equi-
librium distribution function as

ps(€) = Aexp {25 <25 - J;g) 52} . (14)
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The coefficient of diffusion plays the role of a universal
characteristic of the environment. The stationary distri-
bution function can be realized now only if the supplied
and dissipated energies are in balance. If the system ob-
tains a greater amount of energy than it can dissipate,
being in contact with the environment, the stationary
distribution function cannot be defined, and a new equi-
librium state cannot be realized.

The energy representation can be more illustrative if
wewish to understand the conditions of the formation of
equilibrium (stationary) states for a nonequilibrium sys-
tem. For example, let us return to an ordinary system
of Brownian particles. The stationary distribution func-
tion of Brownian particles can be written in the energy
representation as

ps(e) = Aexp{—ifys—ln\f} EA\% exp(—pe), (15)

where we use the well-known relation 2 2 = . In view of
the conditions of normalization [ ps(e)de = [ ps(p)dp,
the equilibrium distribution function can be rewritten in
the momentum representation in the well-known form

2
M > . (16)
2kT
The given stationary distribution function reproduces
completely the well-known equilibrium Maxwell distri-
bution function for ordinary Brownian particles.

The dependence of the coefficient of diffusion on ener-
gy can be determined from the linear Langevin equation,
by using the theory of Markov processes and by account-
ing for the nonequilibrium fluctuations of arbitrary co-
efficients in the function describing the direct action of
the environment f(g). Can set f(¢) = ve — &2 where the
second term accounts for the restriction to the absorp-
tion of the energy by the system. The energy absorption
parameter can be given, as above, in the form v = y+&;,
where the second term accounts for a random influence

of the environment on the given coefficient. In this case
the Fokker—Planck equation takes the form [9]

p2
ps(p) = Aexp (—52M> = Aexp <—

op(e,t) 0 o? §?

ot 85 ((W‘g —€ )p(&,t)) + ?@EQP(U,t). (17)

The stationary solution of the equation looks as

2y 2

which is not equivalent to the equilibrium distribution
function.

Let us consider also the so-called phenomenological
Rayleigh model of active friction [11] when the coeffi-
cient of friction can be written in terms of the velocity
in the form v = —yo 4+ av® = a(v?) — v, v§ = 2. This
model describes a restriction to the coefficient of frlction.
It becomes negative if v?> < v, which corresponds, in our
representation, to the absorption of energy by the sys-
tem from the environment. In this case, the stationary
distribution function for velocities can be write as

ps(v,t) = Nexp{ vg)g} (19)

In the energy representation at the constant coeflicient
of diffusion, this formula takes the form

2
i

pulet) = Nexp { — (e —=0)* (20)

which corresponds to the Gauss distribution over the en-
ergy of the system. In the limit of a low noise 2 — 0, the
largest probability for the system to have the correspond—
ing energy is close to the limiting value, and a station-
ary distribution is transformed into the delta-function
ps(e,t) = Nd(e — ep).

Thus, there has been proposed a model describing the
nonequilibrium systems with the purpose of determining
new stationary states of such a system which are far from
equilibrium. There been obtained the stationary distri-
bution functions of nonequilibrium systems for various
mechanisms of absorption and dissipation of energy by
a system in contact with a nonlinear environment. New
admissible states of a nonequilibrium system are defined
and a method for their determination is proposed. The
conditions under which an equilibrium distribution is re-
alized in the system are determined. Some simple cas-
es can be experimentally verified. In the first turn, this
concerns the system of macroscopic particles in a dusty
plasma or a system of Brownian particles with the inho-
mogeneous coefficient of friction.
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BPOYHIBCBKUN PYX SIK MOJEJIb EBOJIIOLIII HEPIBHOBAYKHOI CUCTEMU

B. Jles
Inemumym meopemuunoi gisuru im. M. M. Boeoawbosa HAH Yxpainu,
eys. Mempoaoziuna, 14-6, Kuis, 03680, Yxpaina

3rigHO 3 TPUHIIAIIAMU TEPMOJIUHAMIKN BCSIKA CHCTEMA, siKa MepebyBa€ B KOHTAKTI 3 TEPMOCTATOM, YIIPOIOBXK
qacy peJIakCallil MepexoIuTh Y PIBHOBAaXKHUI cTaH. Y CTATTi IPEICTABIEHO MOJEIb OPOYHIBCHKOIO PyXY CHUCTEMH,
sKa J1a€ 3MOI'y O3HAYWTH CTAIJOHAPHHI CTaH CHCTEMH 3aJ0BrO J0 Iepexojay B piBHOBakHUil craH. CramioHnapHa
BYHKIlS pO3IMO/ILTY HEPIBHOBAYKHOTO CTAHy HE MOXKe OYTH IpeCTaBIeHa *KOIHOIO 3 BITIOMUX PIBHOBaXKHUX (DyH-
Kiiit posmoziny. [lokazamo, mpu KX yMOBax piBHOBaXKHI CTaHU peasi3yiOThCs, Ta HepeadavIeHO HOBI CTalioHAPHI

CTaHU HepiBHOBaPKHI/IX CHUCTEM.
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