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The quasi-stationary electron states in open semiconductor cylindrical quantum dot embedded
into quantum wire and in spherical anti-dot with donor impurity are studied. The problems are
solved using the probability distribution function of electron location in the respective closed nano-
systems. The method verified for the first nano-system allowed the investigation of quasi-stationary
spectrum of electron interacting with donor impurity in quantum anti-dot without using the S-
matrix method.
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I. INTRODUCTION

The number of investigations concerning open or
resonance-tunnel semiconductor structures has essential-
ly increased. This is caused by the unique perspectives
of their utilization for the creation of field transistors,
diodes and quantum cascade lasers [1–3].

In the series of theoretical papers the calculation of res-
onance energies and resonance widths of electron quasi-
stationary states (QSSs) in nano-systems have been per-
formed using the permeability coefficient or S-matrix
methods [4]. Both of them allow obtaining the depen-
dences of energy spectra and quasi-particles life times
on geometrical parameters of resonance-tunnel structure.
However, the S-matrix method is rather cumbrous or
principally impossible for the establishing of the exciton
spectrum theory or study interaction between electron
and impurity in open nano-systems.

In Ref. [5] it is shown that the electron QSSs in sin-
gle spherical quantum dot can be found using the re-
spective parameters of distribution function W (over the
energy) of probability density of electron location in a
nano-system. Just this function makes possible to get
the limit transition from closed to open nano-systems.
It is very important for the establishment of the exci-
ton theory and electron — impurity interaction in open
nano-systems.

In the paper, using the probability distribution func-
tion of quasi-particle location in a nano-system, the elec-
tron QSSs are investigated for:

1. Open semiconductor cylindrical quantum dot
(CQD) embedded into the cylindrical quantum wire
(CQW).

2. Quantum anti-dot (QAD) with donor impurity in
the center.

II. EVOLUTION OF ELECTRON ENERGY
SPECTRUM IN THREE-WELL CLOSED CQD

EMBEDDED INTO CQW

The combined CQW containing three quantum dots of
the same material (medium “0”) separated by the shell of

the other material (medium “1”) is under study. The ra-
dius of CQW (ρ0), quantum dots heights (h0, h1, h2) and
different barrier thicknesses (∆1, ∆2) separating quan-
tum dots are fixed and shown in Fig.1b. It is clear that
such a nano-system is the closed one and quasi-particle
energy spectrum is stationary.

From Fig. 1 it is also clear that at h1 → 0, h2 → 0 the
complicated closed three-well CQD transforms into the
single closed CQD inside CQW (Fig. 1a) and at h1 → ∞,
h2 → ∞ — into the single open one (Fig. 1c). Obviously,
the electron spectrum, herein, transforms into the quasi-
stationary one with the respective resonance energies and
resonance widths.

In order to obtain the electron spectrum and wave
functions in the closed three-well CQD (Fig. 1b), the
stationary Schrödinger equation is solved

ĤΨ(r) = EΨ(r) (1)

with the Hamiltonian

Ĥ = −~
2

2
∇ 1

µ(r)
∇ + U(r). (2)

The electron effective masses and potentials are the
following

µ(r) ≡ µ(z) =







µ0, medium “0”

µ1, medium “1”
,

U(r) ≡ U(ρ, φ, z) =



















∞, ρ > ρ0

0, medium “0”

U0, medium “1”

(3)

In the cylindrical coordinate system the variables in
Eq. (1) are separated when the wave function is written
as
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Ψnznρm(r) =
1

√

πρ2
0

∣

∣Jm−1

(

Xnρm

)

Jm+1

(

Xnρm

)
∣

∣

Jm

(

Xnρm

ρ0
ρ

)

eimϕFnznρm(z), (4)

where Jm is the cylindrical Bessel function, m is the magnetic quantum number, Xnρm are zeroes of Bessel function,
nρ is the radial quantum number determined by the number of zeroes of Bessel function at fixed m.

The solutions of Schrödinger equation for Fnznρm(z) function for all parts of three-well CQD are written as

Fnznρm(z) =



























































































F
(0)
nznρm = A0 exp[k1z], −∞ < z ≤ −z4

F
(1)
nznρm = B1 cos(k0z) + B2 sin(k0z), −z4 ≤ z ≤ −z3

F
(2)
nznρm = C1 exp[k1z] + C2 exp[−k1z], −z3 ≤ z ≤ 0

F
(3)
nznρm = D1 cos(k0z) + D2 sin(k0z), 0 ≤ z ≤ z0

F
(4)
nznρm = L1 exp[k1z] + L2 exp[−k1z], z0 ≤ z ≤ z1

F
(5)
nznρm = M1 cos(k0z) + M2 sin(k0z), z1 ≤ z ≤ z2

F
(6)
nznρm = G1 exp[−k1z], z2 ≤ z < ∞

(5)

where k2
0 = 2µ0E/~

2 − X2
nρm/ρ2

0, k2
1 = 2µ1(U0 − E)/~

2 + X2
nρm/ρ2

0.

h0 h0h1 h0
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U0
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Fig. 1. Geometrical and potential energy schemes of single closed (a), three-well closed (b) and single open CQD in CQW (c).

Using the conditions of wave function and its density
of current continuity at all nano-systems media interfaces
(z = −z4, z = −z3, z = 0, z = z0, z = z1, z = z2) and
the normalizing condition

+∞
∫

−∞

∣

∣Fnznρm(z)
∣

∣

2
dz = 1 (6)

there have been obtained an analytical expressions for
all the coefficients A0, Bi, Ci, Di, Li, Mi, G1, (i = 1, 2)
(since the electron wave functions are already fixed) and
dispersion equation for the electron energy spectrum
(Enznρm). The latter is not presented due its sophisti-
cated form. The axial quantum number (nz) numbers
the solutions of dispersion equation at the fixed quan-
tum numbers nρ, m. As a result, the electron energy
spectrum (Ee

nznρm) and wave function (Ψe
nznρm(r)) in

three-well closed CQD in CQW are completely defined.

In order to analyze in details the process of transfor-
mation of stationary spectrum in three-well closed CQD
into the quasi-stationary spectrum in single open CQD,
according to the theory one has to investigate the behav-
ior of probability of electron residence inside the inner
CQD at h1 → ∞, h2 → ∞

W e
nznρm =

z1
∫

−z3

∣

∣Fnznρm(z)
∣

∣

2
dz. (7)

All numeric calculations were performed for the β-
HgS/β-CdS nano-system with the well known materi-
al parameters, ref. [4]. Geometrical parameters of the
three-well closed CQD were the following: quantum wire
radius: ρ0 = 8aHgS, barrier thickness: ∆ = ∆1 = ∆2 =
2aCdS, height of inner CQD: h0 = 15aHgS. The sizes of
equal (h = h1 = h2) outer wells of CQD varied from zero
to physical infinity.
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Fig. 2. Evolution of probability W e

nz1m(E) of electron residence in three inner parts of three-well closed CQD (a)–(c) at

different h and W
(o)e
Nz1m

(E) dependence in single open CQD inside of CQW (d) at ρ0 = 8aHgS, ∆ = 2aCdS, h0 = 15aHgS.
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Before the analysis of the dependences of electron res-
idence in three inner parts of the nano-system (W e

nznρm)
at h varying, it is convenient to introduce the concept
of pra-resonance energy (Ẽe

Nznρm) corresponding to the

Nz-th value of the energy at which W e
nznρm is maximal

and pra-resonance widths of Nz-th discrete states band
(Γ̃e

Nznρm) — the interval of energies in the vicinity of

pra-resonance one (Ẽe
Nznρm). At the boundaries of this

interval the probability of electron residence in three in-
ner parts of three-well closed CQD are two times smaller
than the maximal probability (W e

nznρm) in the state with

the pra-resonance energy (Ẽe
Nznρm).

Fig. 2 presents the results for the probability W e
nz1m

(m = 0, 1) of electron residence in three inner parts of
the three-well closed CQD calculated at different h mag-
nitudes. From Fig. 2а it is clear that when the outer
CQDs height is rather small (h = 500aHgS), the prob-
ability of electron residence at all three pra-resonance
levels (Ẽe

Nz1m) are more than two times bigger than the
probability of its location at both (or one) neighbour lev-
els. Thus, the concept of these QSSs width still does not
appear.

When the outer CQDs have the size: h = 2000aHgS

(Fig. 2b), the lower QSSs with pra-resonance energies

(Ẽe
110, Ẽe

210, Ẽe
111) still have not widths but for the up-

per QSSs with the resonance energies (Ẽe
310, Ẽe

211, Ẽe
311)

there are the conditions for the appearence of the dis-
crete bands widths (Γ̃e

310, Γ̃e
211, Γ̃e

311). When the height
of outer CQDs is: h = 20000aHgS (Fig. 2c) already all
quasi-discrete bands are characterized by pra-resonance
energies (Ẽe

Nznρm) and widths (Γ̃e
Nznρm).

Comparing Fig. 2c with Fig. 2d one can also see that
the pra-resonance energies (Ẽe

Nznρm) and the respec-

tive widths (Γ̃e
Nznρm) in the three-well CQD inside of

CQW are almost coinciding with the resonance energies

(E
(o)e
Nznρm) and widths (Γ

(o)e
Nznρm) in the single open CQD

in CQW obtained within the S-matrix method [4]. We
must note that the probabilities are naturally differently
normalized.

III. QUASI-STATIONARY ELECTRON STATES
IN QAD WITH DONOR IMPURITY

The electron energy spectrum in ZnS/CdS semicon-
ductor QAD with donor impurity, placed into the center
of a nano-system is studied. The Coulomb potential of
the impurity together with the rectangular potential of
QAD create two potential wells for the electron: deep —
near the center of spherical nano-system and shallow —
near its boundary (Fig. 3). The depth of shallow well
and barrier width between the potential wells depend
on QAD radius. Evidently, the stationary spectrum of
electron localized out of the QAD is observed for the
negative energies and for the positive ones — the series
of QSSs of electron localized in the deep potential well,
characterized by the finite life times due to the ability of
quasi-particle tunneling through the potential barrier.
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Fig. 3. Potential energy scheme and electron energy spec-
trum in ZnS/CdS QAD.

The study of energy spectrum in this nano-system in
the framework of scattering matrix method meets the
problem of finding the S-matrix poles in the complex
energy plane. Therefore, the investigation of QSSs of
electron interacting with donor impurity placed into the
center of QAD is performed according to the method
developed in the previous Section.

The closed semiconductor spherical nano-system —
QAD with r0 radius is embedded into the spherical shell
with radius r1 being impenetrable for the electron. The
limit case of r1 increasing transforms the closed nano-
system into the open one. Thus, the electron energy spec-
trum in QAD with donor impurity can be obtained as
limit transition at r1 → ∞ of energy spectrum for the
closed nano-system.

Solving again the Schrödinger Eq. (1) in spherical co-
ordinate system with the amiltonian

Ĥ = −~
2

2
∇ 1

µ(r)
∇− e2

εr
+ V (r), (8)

where

µ(r) =







µ0, r < r0

µ1, r ≥ r0

, V (r) =







V0, r < r0

0, r ≥ r0

(9)

and introducing the values

ξ0 =

√

8µ0(En` − V0)

~
, ξ1 =

√
8µ1En`

~
, (10)

η0,1 =
2µ0,1e

2

εξ0,1~2
(11)

the radial wave function can be written as

Rn`(r) =











χ0(ξ0r)
r , r < r0

χ1(ξ1r)
r , r > r0

. (12)

Finally, two differential equations are obtained
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1

ξ2
0

∂2χ0 (ξ0r)

∂r2
+

(

−1

4
− η0

ξ0r
+

1/4− (` + 1/2)
2

ξ2
0r2

)

χ0 (ξ0r) = 0, r < r0, (13)

1

ξ2
1

∂2χ1 (ξ1r)

∂r2
+

(

−1

4
− η1

ξ1r
+

1/4− (` + 1/2)2

ξ2
1r2

)

χ1 (ξ1r) = 0, r > r0. (14)

Their general solution can be written within the Whittaker functions [6, 7]

χ0(ξ0 r) = A0M(η0, ` + 1/2, ξ0 r), χ1(ξ1 r) = A1 W (η1, ` + 1/2, ξ1 r). (15)

The Whittaker functions are expressed through the hyper geometrical functions of the first and second kind F (α, γ, z),
G(α, γ, z). Finally, the radial wave function is written as

Rn`(r) =







A0 exp [ − ξ0 r/2] r` F (` + 1 + η0, 2` + 2, ξ0r), r < r0,

A1 exp [ − ξ1 r/2] r` G(` + 1 + η1, 2` + 2, ξ1r), r > r0.
(16)
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Fig. 4. Evolution of energy spectrum on radius (r1) for the electron bound by donor impurity in nano-system: (a) r0 = 6aZnS;
(b) r0 = 30aZnS.
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Using the conditions of wave function and density of
current continuity at the media interface at r = r0 [7]
together with the condition χ1(r1) = 0, the dispersion
equation for the defining of discrete energy spectrum of
electron in closed nano-system is obtained. At the base
of the latter at r1 → ∞, likewise in the previous Section,
the quasi-stationary spectrum of electron in QAD with
donor impurity is studied.

The increasing of the potential well width (∆r =
r1−r0) brings to the decreasing of the distance be-
tween the discrete energy levels of a closed nano-system.
Among the great number of levels there are the ones,
corresponding to the states of electron bound by the im-
purity in the core of a nano-system. They can be defined
by the probability of electron residence in the core of
nano-system

W e
n` =

∫ r0

0

|Rn`(r)|2 r2dr. (17)

When r1 → ∞, at the background of the continuous
spectrum, the quasi-stationary spectrum of the electron
bound by donor impurity in QAD appears.

The numeric calculation of electron energy spectrum
was performed for ZnS/CdS QAD at ` = 0. Fig. 4 shows
the dependence of electron spectrum in a nano-system
with the donor impurity on r1 radius. It is clear that
when the radius increases the width of the outer poten-
tial well increases too. Consequently, the size quantiza-
tion becomes smaller and energy levels, corresponding
to the states of electron localized in the outer well, shift
into the region of lower energies and become closer to
each other. The anti-crossing effect is observed for the
states of the electron localized in the nano-system core.
The increasing of the core radius (r0) causes that of the
number of states of electron localized by the impurity in
the inner potential well. It is reflected in the behavior of

En`(r1) (Fig. 4b). When r1 → ∞, these stationary states
are transformed into the quasi-stationary with the ener-
gy coinciding to the energy of the respective stationary
states where the electron with bigger probability is in the
core of a nano-system. The finite life time is determined
by the semi-width of the respective levels.

Fig. 5 presents the energy spectrum of the electron
bound by the impurity in QAD with different radii (r0)
calculated at r1 > 5000aCdS. It is clear that at the in-
creasing of the QAD radius the QSSs energies shift into
the region of lower energies. Herein, the widths of the lev-
els become smaller. It is to be noted that even higher of

the potential barrier: − e2

εr0
+V0, there are the resonance

states of electron characterized by the finite width.

IV. CONCLUSIONS

In the paper the theory of origin and evolution of elec-
tron discrete bands of probability distribution over the
energy in the closed three-well CQD in CQW depending
on the sizes of outer wells was developed.

It is established that the spectral parameters of elec-
tron in single open two-barrier CQD in CQW can al-
ways and with good exactness be approximated by the
respective spectral parameters in three-well closed CQD
in CQW.

The approved method allows obtaining QSSs of the
electron bound by donor impurity in QAD (without us-
ing the S-matrix method) and studying their depen-
dences on geometric parameters of a nano-system.

It is shown that at the increasing of the QAD radius
the energies of quasi-stationary states of the electron
bound by donor impurity are shifting into the low-energy
range of spectrum. Herein, their semi-widths are decreas-
ing.
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CТАЦIОНАРНИЙ I КВАЗIСТАЦIОНАРНИЙ СПЕКТРИ ЕЛЕКТРОНА
У КВАНТОВОМУ ДРОТI ТА КВАНТОВIЙ АНТИТОЧЦI З ДОМIШКОЮ

М. В. Ткач, В. А. Головацький, О. М. Маханець, М. М. Довганюк

Чернiвецький нацiональний унiверситет, вул. Коцюбинського, 2, Чернiвцi, 58012, Україна

У роботi дослiджено квазiстацiонарнi стани електрона у вiдкритiй напiвпровiдниковiй цилiндричнiй

квантовiй точцi, що розташована у квантовому дротi та сферичнiй квантовiй антиточцi з донорною домiш-

кою. Задачi розв’язано за допомогою функцiї розподiлу ймовiрностi знаходження електрона у вiдповiдних

закритих наносистемах. Обґрунтований на прикладi першої наносистеми метод дав змогу дослiдити ква-

зiстацiонарний спектр електрона, зв’язаного донорною домiшкою у квантовiй антиточцi без використання

методу S-матрицi.
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