
ЖУРНАЛ ФIЗИЧНИХ ДОСЛIДЖЕНЬ

т. 13, № 4 (2009) 4707(6 с.)

JOURNAL OF PHYSICAL STUDIES

v. 13, No. 4 (2009) 4707(6 p.)

INVESTIGATION OF PHASE DIAGRAM OF HARD-CORE BOSON MODEL

WITH NON-ERGODIC CONTRIBUTIONS

I. Stasyuk, O. Menchyshyn
Institute for Condensed Matter Physics, 1, Svientsitskii St., 79011, Lviv, Ukraine

(Received October 16, 2009)

The hard-core boson model which is isomorph to the XXZ anisotropic Heisnberg model is inves-
tigated in the self-consistent field approach. The Helmholtz free energy, the set of self-consistency
equations and the pseudospin Green’s functions are obtained. The approach used corresponds to
random phase approximation with the inclusion of non-ergodic contributions. Their influence on
the shape of phase diagram and position of the phase transition lines is analysed.
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I. INTRODUCTION

The hard-core boson model is of great interest due to
its universality in the theory of condensed matter. It is
successfully applied to describe different physical phe-
nomena: upper λ point in 4He [1], supersolid state [2,3],
ionic conductivity [4], bipolaronic superconductivity [5].
The exact mapping of Pauli operators on spin opera-
tors makes the model isomorph to the XXZ anisotropic
Heisnberg model. The model was intensively studied by
Rudoy, Tserkovnikov and Lymar’ [6], basing on the orig-
inal method for the two-time Green’s functions (usually
named as Zubarev GF) developed by Tserkovnikov [7].
Also the method of equations of motion for the two-
time Green’s functions was used when considering quan-
tum criticality [8]. Some questions were examined within
the random phase approximation (RPA) by different au-
thors [9, 10]. Starting with pioneering works of Landau
and Binder [11] Monte Carlo simulations have become
a conventional method of the investigation of the XXZ
model [12] partially connected with an interesting crit-
ical behavior and existance of multicritical points [13],
also because of some opened questions concerning ther-
modynamic stability of supersolid phase [14].

In this work we pay our attention to the so-called
“non-ergodic contributions” to the thermodynamics of
the model. Isothermal response is expressed in terms of
the Matsubara Green’s function as

χT (ωn,q) =

∫ β

0

〈TτM(0)M(τ)〉
q

× eiωnτdτ − β 〈M〉
2
δ(ωn) (1)

and isolated response is described by means of the two-
time Green’s function

χI (ω,q) ∼ 〈〈M | M〉〉ω,q (2)

When χT (0,q) 6= χI (0,q) it means that the ergodici-
ty does not hold [15, 16]. It has been known for a good
while that isothermal and isolated susceptibility for the
transverse Ising model does not coincide [16, 17], it has
been also shown for the pseudospin-electron model [18].

Here we show that similar differences in responses appear
for the XXZ model too. There are some tricks which al-
low one to take into account static contributions when
applying the two-time Green’s functions, but then it is
not always clear if one keeps to the same precision in
different approximations. Common methods of the two-
time Green’s functions for spin operators suppose the use
of kinematical identities and spectral representation for
correlation functions. Obviously the paper of Kozitskij
and Levitskij [19] has been left unnoticed and a puzzle
with discrepancies when using different kinematical iden-
tities remains unclear and controversial sometimes [20].
In contrast, our approach is straight and self-consistent
as equations for order parameters and susceptibilities are
obtained from the Helmholtz free energy determining all
thermodynamic properties of system.

According to the sign of interaction constants in the
Hamiltonian the phase diagram of the model admits dif-
ferent phases. Owing to the fact that the model is ap-
plicable in various fields of the condensed matter theory
there is discrapency in terms. The following groups refer
to the same phases: disordered, normal liquid, paramag-
netic; superionic, superfluid, canted ferromagnetic, spin-
flop; mixed, supersolid, canted antiferromagnetic, biconi-
cal; and normal solid, charge ordered, antiferromagnetic.
In this paper we stick to the usual magnetic thesaurus —
paramagnetic, spin-flop, biconical and antiferromagnet-
ic.

II. RPA WITH NON-ERGODIC
CONTRIBUTIONS

Hamiltonian of hard-core bosons on lattice reads

HHCB = −µ
∑

i

ni −
1

2

∑

ij

Vijninj −
1

2

∑

ij

tijb
+
i bj

where µ is chemical potential, sums over {i, j} describe
interaction and hopping of particles, respectively, and
bi, b

+
i are Pauli operators of annihilation and creation of
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particles. Using pseudospin representation for the occu-
pation number of lattice gas and Pauli operators





Sz
i = ni −

1

2
S+

i = bi

S−

i = b+
i

(3)

we can consider an equivalent XXZ anisotropic Heisen-
berg model

HXXZ = −h
∑

i

Sz
i −

1

2

∑

ij

JijS
z
i Sz

j −
1

2

∑

ij

KijS
+
i S−

j

with magnetic the field h and sums over {i, j} describing
the interaction between spins (we consider nearest neigh-

bors only). Making the following unitary transformation
we pass to coordinate system with the only one order
parameter 〈σz〉 in the mean-field approximation (MFA)





Sx
i = σx

i cos θi − σz
i sin θi

Sy
i = σy

i

Sz
i = σx

i sin θi + σz
i cos θi

(4)

So we rewrite the Hamiltonian as

HXXZ = −h cos θ
∑

i

σz
i −h sin θ

∑

i

σx
i −

1

2

∑

ij

V αβ
ij σα

i σβ
j

where

V ++ =
1

4

(
Jq sin2 θ + Kq

(
cos2 θ − 1

))
,

V +− =
1

4

(
Jq sin2 θ + Kq

(
cos2 θ + 1

))
,

V +z =
1

2
(Jq − Kq) cos θ sin θ,

V zz = Jq cos2 θ + Kq sin2 θ,

V ++ = V −−,

V +− = V −+,

V +z = V −z = V z+ = V z−

(5)

Now 〈σx〉 = 0 is the condition for the angle θ in the
MFA. Thus we have

sin θ = −
K0ξ

λ
, cos θ =

h + J0η

λ
(6)

with the introduced notations

η = 〈Sz〉 , ξ = 〈Sx〉 ,

J0 =
∑

j

Jij , K0 =
∑

j

Kij ,

λ =

√
(h + J0η)2 + K2

0ξ2. (7)

The approach can be presented in a general form also
applicable in the antiferromagnetic case when two sub-
lattices are to be introduced, but in the following we
restrict our selves to the uniform paramagnetic and spin-
flop phases only.

To obtain the first correction to MFA results due to
the finite interaction radius we apply a diagrammatic
technique based on Wick’s theorem for spin operators
developed by Vaks et al. [21] and slightly modified by
Izyumov and Skriabin [22]. After making all possibles
pairing of σ+ and σ− operators, the semi-invariant ex-
pansion must be done to calculate the mean values of the
remaining products of σz operators, i.e.

〈
Tτσz

i (τi)σ
z
j (τj)

〉
0

= b2 + b′δij〈
Tτσz

i (τi)σ
z
j (τj)σ

z
k(τk)

〉
0

(8)

= b3 + bb′ (δij + δik + δjk) + b′′δijδjk ,

etc. Here

b = b(βλ) =
1

2
tanh

(
βλ

2

)
,

b′ =
∂b

∂(βλ)
, b[n] =

∂[n]b

∂(βλ)[n]
. (9)

If the interaction constants Jij and Kij have an effec-
tive range R0, their Fourier transforms Jq and Kq are

effectively non-zero when | q |< R−1
0 . Hence every sum

over momentum is proportional to (a/R0)
3, where a is

some typical distance, for instance lattice constant. The
simplest approximation implies that analytical expres-
sions of the considered quantities do not hold the sum
over momentum. It is realized when the diagrams do not
contain the closed loops formed by the lines of Green’s
functions, interactions or blocks, for example Fig. 1.

G 12

+-

σ1
+ σ -

i

σk
z

σ j
z

σ l
-

σm
+

σn
...

σp
...

σq
+ σ2

-
G 0

+-

V
 ij

-+

V
kl

z-

V
mn

+..

V
pq

..+

G 0
+-

G 0
-+

G 0
zz

Fig. 1. The diagram corresponding in RPA to G
+−
ij in co-

ordinate space (an example).
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The selection for Green’s functions of this class of diagrams only corresponds to the random phase approximation.
Diagrammatically, the RPA correction to the Helmholtz free energy calculated in MFA looks like
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� � � � � � �
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� � � � � � �
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� � � � � � �
� � � � � � �
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� � � � � � �
� � � � � � �
� � � � � � �

+ + +... =
1

2βN

∑

q

∑

ωn

ln det
∥∥1̂−Σ̂V̂

∥∥

The wavy lines refer to interactions V αβ and filled blocks to Σαβ — irreducible (according to Larkin) parts. So we
write for the Helmholtz free energy

F = FMFA + ∆FRPA,





FMFA = 1
2J0η2 + 1

2K0ξ2 − 1
β

ln
(
2 cosh

(
βλ

2

))

∆FRPA = 1
2βN

∑
q

∑
ωn

ln det
∥∥1̂ − Σ̂V̂

∥∥ (10)

Only the next three irreducible parts are nonzero in the lowest approximation

Σ+−

0 = −2bg0(iωn) = −
2b

iωn − λ
= G+−

0

Σ−+
0 = −2bg0(−iωn) =

2b

iωn + λ
= G−+

0

Σzz
0 = βb′δ(ωn) = Gzz

0

After summation over Matsubara’s frequencies one gets

∆FRPA =
1

βN

∑

q

[
ln

(
sinh

(
βΛq

2

))
− ln

(
sinh

(
βλ

2

))

+
1

2
ln

(
1 − βb′

λ
(
cos2(θ)Jq + sin2(θ)Kq

)
− bJqKq

λ − b
(
sin2(θ)Jq + cos2(θ)Kq

)
)]

(11)

here

Λq =
√

(λ − bKq) (λ − bP ),
P = Jq sin2 θ + Kq cos2 θ
R = Jq cos2 θ + Kq sin2 θ

(12)

and the last term in the sum corresponds to non-ergodic contributions. The quasiparticle spectrum Λq coincides with
the one obtained in [9].

There are two ways to obtain an equation for the order parameter: a) by direct construction using diagrams of
certain class; or b) from the extremum condition of the Helmholtz free energy. Either one can be used to verify
the results obtained with the other. The state of thermodynamic equilibrium corresponds to the minimum of the
Helmholtz free energy, as a function of η and ξ with fixed β and h. Thus

(
∂F

∂η

)

β,h

= 0,

(
∂F

∂ξ

)

β,h

= 0 (13)

give us




η =
cos θ

2
tanh

(
βλ

2

)
+

cos θ

2

1

N

∑

q

(
Λh coth

(
βΛq

2

)
− coth

(
βλ

2

)
+ Ch

)

ξ =
sin θ

2
tanh

(
βλ

2

)
+

sin θ

2

1

N

∑

q

(
Λg coth

(
βΛq

2

)
− coth

(
βλ

2

)
+ Cg

) (14)

where

Λh
g =

1

2Λq

(
(1 − βb′Kq) (λ − bP ) + (λ − bKq)

(
1 − βb′P ±

sin2 θ
cos2 θ

2b

λ
(Jq − Kq)

))
,

Ch
g =

1

λ − bP + βb′ (bJqKq − λR)
[βb′′ (bJqKq − λR) + (βb′JqKqb′ − R

∓
sin2 θ
cos2 θ

2 (Jq − Kq) −
bJqKq − λR

λ − bP

(
1− βb′P ±

sin2 θ
cos2 θ

2
b

λ
(Jq − Kq)

))]
(15)
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One should take the upper or lower sign and the cor-
responding factor when the first or second equation is
considered. The terms Ch

g are non-ergodic contributions.
Let us consider the first equation only. If we neglect

the last term in the sum and formally put η = b cos θ,
we come to the equation for order parameter obtained
by Alexandov et al. [9] within the decoupling approach
for the two-time Green’s functions. Also it is interesting
to consider the self-consistency equation in the limit case
K → 0, when the first two terms of the sum cancel each
other, and we have

η =
1

2
tanh

(
βλ

2

)
−

1

2N

∑

q

βJqb′′

1 − βJqb′
(16)

that is a well known equation for order parameter of the
Ising model with O(1/z) corrections [23].

Transverse and longitudinal Green’s functions

G+− (iωn,q) =
〈
Tτσ+(τ)σ−(0)

〉
q,iωn

(17)

Gzz (iωn,q) = 〈Tτσz(τ)σz(0)〉
q,iωn

(18)

are obtained from the set of equations which is sim-
ilar to the Larkin equation written in the matrix
form (the corresponding sets for {G++, G−+, Gz+} and
{G+z, G−z, Gzz} are written by analogy)




1 − Σ+−

0 V −+, −Σ+−

0 V −−, −Σ+−

0 V −z

−Σ−+
0 V ++, 1 − Σ−+

0 V +−, −Σ−+
0 V +z

−Σzz
0 V z+, −Σzz

0 V z−, 1 − Σzz
0 V zz






G+−

G−−

Gz−


 =




Σ+−

0

0
0


 . (19)

In the paramagnetic phase Green’s functions are

G+− (iωn,q) =
Σ+−

0

1 − Σ+−

0
Kq

2

(20)

Gzz (iωn,q) =
Σ+−

0 Σ−+
0 Σzz

0
K2

q

4(
1 − Σ+−

0
Kq

2

)(
1 − Σ−+

0
Kq

2

)
(1 − Σzz

0 Jq)
. (21)

We obtain the equations for lines of phase transitions
from the instability conditions for susceptibilities and re-
spectively for Green’s functions. Namely, from the diver-
gence of G+− (iωn = 0,q = 0) we get the equation for
paramagnetic-spin-flop transition

λ − K0b = 0 (22)

and the divergence of Gzz
(
iωn = 0,q = π

a

)
should we

take into account that Jq= π

a

= −J0 gives the equation
for paramagnetic-antiferromagnetic transition

1 + βJ0b
′ = 0. (23)

They are identical to the equations obtained in the MFA
and should be considered together with the set of self-
consistency equations (14).

III. DISCUSSION

Below we illustrate some differences in numerical re-
sults for the paramagnetic-antiferromagnetic phase tran-
sition line irrespective of whether non-ergodic contribu-
tions in the set of self-consistency equations (14) are tak-
en into account or not. Here we employ semielliptic den-
sity of states for Iq(Kq) taken in the model form

1

N

∑

q

f (Iq) =

I0∫

−I0

dωρ(ω)f(ω),

ρ(ω) =
2

πI2
0

√
I2
0 − ω2. (24)

Using equation (23) we can formally express η as a
function of h and T

η = f(h, T ). (25)

In the paramagnetic phase ξ = 0, so we can treat the first
equation from the set of self consistency equations (14)
as a condition of equality to zero of the function

Φ(h, T, η) = η −
1

2

(
tanh

(
βλ

2

)
− coth

(
βλ

2

))

−
1

N

∑

q

(
Λh coth

(
βΛq

2

)
+ Ch

)
. (26)

For fixed h, change of sign of Φ(h, T, η) when tabulating
over T , corresponds to the temperature of phase transi-
tion T ∗.

We plot the results on Fig. 2 with solid (2) and dashed-
dot (3) curves for cases without and with non-ergodic
contribution in the self-consistency equation, respective-
ly. Curve (1) corresponds to the MFA result, when no
RPA corrections in the set of self-consistency equations
are taken into consideration. Dashed lines, obtained in
MFA, separate different phases: paramagnetic (P), anti-
ferromagnetic (A) and spin-flop (S) ones.
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Fig. 2. The (h,T) phase diagram J < 0: (a) K

|J|
= 0.5; (b) K

|J|
= 0.9.

It is seen that the temperature of A→P phase tran-
sition is higher due to the non-ergodic contribution. Its
influence is stronger in the Ising limit, when K is small,
and, vice versa, it weakly affects the phase diagram when
approaching the isotropic Heisenberg limit, K → 1.

CONCLUSIONS

In this paper we propose the self-consistent approach
for the description of thermodynamics of the XXZ
anisotropic Heisenberg model which allows to take in-

to account the non-ergodic contributions. The approach
corresponds to the random phase approximation. In the
limit of low temperature it resembles the results of the
spin-wave approximation and non-ergodic terms con-
tribute negligibly. One should pay attention to the re-
gion of finite temperatures when the phase diagram can
be significantly affected. Certainly the method is unsat-
isfactory in the critical temperature region when the ap-
proach of the renorm group to be employed.

One of us (O. M.) cordially thanks Anton Kuzyk for
his friendly help.
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ДОСЛIДЖЕННЯ ФАЗОВОЇ ДIАГРАМИ МОДЕЛI ЖОРСТКИХ БОЗОНIВ
З УРАХУВАННЯМ НЕЕРГОДИЧНИХ ВНЕСКIВ

I. Стасюк, О. Менчишин
Iнститут фiзики конденсованих систем, вул. Свєнцiцького, 1, Львiв, 79011, Україна

Дослiджено модель жорстких бозонiв, яка є iзоморфною до XXZ анiзотропної моделi Гайзенберґа, у
пiдходi самоузгодженого поля. Отримано вирази для вiльної енерґiї, побудовано системи рiвнянь самоузго-
дження та розраховано псевдоспiновi функцiї Ґрiна. Використаний метод вiдповiдає наближенню хаотичних
фаз з урахуванням неергодичних внескiв. Проiлюстровано їх вплив на форму фазової дiаграми й розташу-
вання лiнiй фазових переходiв.
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