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We discuss the static and dynamic multicritical behavior of three-dimensional systems of O(n)®
O(n.) symmetry as it is explained by the field theoretical renormalization group method. Whereas
the static renormalization group functions are currently known within high order expansions, we
show that an account of two loop contributions refined by an appropriate resummation technique
gives an accurate quantitative description of the multicritical behavior. One of the essential features
of the static multicritical behavior obtained already in two loop order for the interesting case of an
antiferromagnet in a magnetic field (nj = 1, n. = 2) is the stability of the biconical fixed point
and the neighborhood of the stability border lines to the other fixed points leading to very small
transient exponents. We further pursue an analysis of dynamical multicritical behavior choosing
different forms of critical dynamics and calculating asymptotic and effective dynamical exponents

within the minimal subtraction scheme.
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I. INTRODUCTION

Among the milestone contributions of N. N. Bo-
golyubov that shaped modern theoretical physics one
definitely should mention his and D. N. Shirkov’s work
on the renormalization group (RG) [1]. Three papers on
RG written in the mid-fifties by three different groups [2]
addressed quantum electrodynamics problems. However,
very soon their importance was realized in — at first sight
— the very different field of phase transition and crit-
ical phenomena. It is generally recognized by now that
the success in conceptual understanding and quantitative
description of behavior in the vicinity of critical points
in different condensed matter systems is due to the ef-
fective application of the RG ideas originating from the
above papers [3]. It is our pleasure to contribute to these
Proceedings' by a short review of recent work done by
the application of the field theoretical RG approach to
the analysis of multicritical phenomena.

Multicritical points appear on phase diagrams of var-
ious systems that contain several phase transition lines.
In the vicinity of the meeting points of such lines
the multicritical behavior is observed, which is char-
acterized by competition of different types of order-
ing. Prominent examples are given by the antiferromag-
nets in an external magnetic field like GAALO3, MnFs,
MnCl,4D20, MnyAS, (A = Sior Ge) [4]. Other examples

are given by the layered cuprate antiferromagnets like
(Ca,La)14Cu24041. Schematic phase diagrams of such
systems are shown in Fig. 1 in a H—T plane. There,
multicritical points of two different types are manifested.
At a bicritical point (Fig. 1a) three phases are in coex-
istence, whereas four phases coexist in the tetracritical
point (Fig. 1b). On a more general level, the multicriti-
cal behavior is inherent to a critical system when some
“nonordering” field is applied. Such a field (alongside the
magnetic field H this may be pressure, stress, etc.) may
alter non-universal parameters of the system and lead to
the appearance of lines of phase transition points. Be-
sides the above example that concern the shift of the
Néel point of anisotropic antiferromagnets by a uniform
magnetic filed, other examples of multicritical behavior
are observed at a shift of the Curie points under applied
pressure or depression of the A point in “He at dilution
by 3He [5].

A field theoretic description of multicritical behav-
ior starts with a static effective Hamiltonian for an n-
component field ® = (¢, ¢, ) of O(n)) ®O(n 1) symme-
try (n)+n, = n). An account of the interaction between
the two order parameters ¢ and ¢, leads to different
types of multicritical behavior connected with the stable
fixed point (FP) found in the RG treatment [6-11, 14].
In particular, the bicritical point (Fig. 1a) has been con-
nected with the stability of the isotropic Heisenberg fixed

'The paper is based on the invited lecture given by one of us (R.F.) at the Conference Statphys’09 dedicated to the 100-th
anniversary of N. N. Bogolyubov (23.06-25.06.2009, Lviv, Ukraine)
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point of O(n| +n) symmetry, whereas the tetracritical
point (Fig. 1b) corresponds to a FP of O(n)) @ O(n.)
symmetry, which might be either the so called biconi-
cal FP or the decoupling FP. In the last FP the parallel
and the perpendicular components of the order param-
eter are asymptotically decoupled. If no FP is reached
the multicritical point might be of the first order, i.e. a
triple point.

Quite recently the possible types of phase diagrams in
the H—T plane of three dimensional uniaxial anisotropic
antiferromagnets have been studied by Monte Carlo sim-
ulations [12]. For n = 1 and n; = 2 a phase diagram
with a bicritical point has been found in agreement with
earlier simulations [13], but contrary to the results of RG
theory in higher loop orders [11].

The dynamics of antiferromagnets in a magnetic field
is quite complicated. To account for conservation laws
present in such systems, the dynamical equations of mo-
tion should contain coupling terms between the two order
parameters (the components of the staggered magneti-
zation parallel and perpendicular to the magnetic field,
¢ and ¢, ) and conserved densities (e.g. the parallel
component of the magnetization or energy density). The
first formulation of the equations of motion at multicrit-
ical points has been done in Ref. [17]. The simplest form
of dynamics assumes the relaxational behavior for the
two order parameters ¢” and ¢, (the so-called model
A) [15,18]. The dynamical multicritical behavior within
the one-loop approximation has been considered in [17]
on the basis of the static one loop results [9]. A further
step to the complete model is to include the diffusive dy-
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namics of the slow conserved density leading to a model
C like extension. This model has been studied in one
loop order in Refs. [17,19,20] taking into account only
a part of dynamical two loop order terms and one loop
statics. In order to get more insight in the dynamics in
the vicinity of multicritical points, recently we have re-
considered the above dynamical models within the two
loop approximation [16,21].

In what follows below we briefly summarize an out-
come of an RG analysis of the multicritical behavior pay-
ing special attention to an impact of the non-universal
contributions to an asymptotic behavior. In particular,
we will show that an account of two loop part of the RG
expansions refined by an appropriate resummation tech-
nique gives an accurate quantitative description of the
static multicritical behavior. Furthermore, we pursue an
analysis of dynamical multicritical behavior choosing dif-
ferent forms of critical dynamics and calculating asymp-
totic and effective dynamical exponents.

II. RG FLOWS AND STATIC MULTICRITICAL
BEHAVIOR

The generalized static O(n)) © O(n L )-symmetrical ef-
fective Hamiltonian that results from the decomposition
of the n-component order parameter field into two mutu-
ally interacting fields ¢ and ¢, of different irreducible
representations of dimensions n| and ny, n =n| +ny,
reads:

H
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Fig. 1. Typical phase diagrams of anisotropic antiferromagnets in a uniform parallel external magnetic field H. Types of
ordering are schematically shown by arrows. a: the bicritical point. Three phases — an antiferromagnetic (AF) phase, a spin
flop phase and the paramagnetic (PM) phase are in coexistence. The phase transition lines to the paramagnetic phase are
second order transition lines, whereas the transition line between the spin flop and the antiferromagnetic phase is of the first
order. b: the tetracritical point. Four phases — an antiferromagnetic phase, a spin flop phase, an intermediate or mixed phase
and the paramagnetic phase — are in coexistence. All transition lines are of the second order in this case. Also indicated is
the dynamical universality class of the transition from the paramagnetic to the corresponding ordered phase according to the
classification of Hohenberg and Halperin [15] for the three component antiferromagnet.
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Here, {t,1x,u)} = {u} and 71, 7| are couplings and masses, correspondingly, index 0 refers to the bare quantities,
and central dots stand for scalar products. The decomposition in parallel and perpendicular order parameter com-
ponents allows to describe the multicritical behavior at the meeting point of two critical lines: (i) the line where 7|
becomes zero and the n | -dimensional components ¢ o are the order parameter, and (ii) the line where 7| becomes
zero and the order parameter is d)HO. At the meeting point both quadratic terms become zero and both components
of ¢, have to be taken into account. As has been predicted already by the one-loop RG analysis [8,9], an effective
Hamiltonian (1) describes three different types of multicritical behavior that are governed by three different FPs:
(i) the isotropic n component Heisenberg FP, called below H(n), all fourth order couplings are equal in this FP, (ii)
the decoupling FP point D, which consists of a combination of the FPs H(n_1) and H(n) of two decoupled systems
and (iii) the biconical FP, B, with nontrivial nonzero couplings. As revealed by subsequent calculations [10,11] the
FP picture does not change qualitatively with an account of higher orders of the perturbation theory. However,
the one-loop results attain essential quantitative changes that lead to a drastic modification of the type of a phase
diagram. A typical example may be given by the behavior of the [-functions that describe the flow of the fourth
order couplings {@} under renormalization. The above functions, calculated in the two-loop approximation with the
minimal subtraction RG scheme read [14]:

Bu, = —€uyl + LL; 8)ui + %ui - 7(37“‘1; 14) ui - %ului — %ui, (2)
_ ("L—;”uiul _ ("”(j?)uiun B 5(m72+ 22y 5(n!|72—|— Q)UXuﬁ, -
R B S L e i S 0

Here, {w1,ux,u)} = {u} are renormalized couplings and
the space dimension d enters the -functions via param-
eter ¢ = 4 — d. With the [-functions at hand, one can
analyze the flow equations of the fourth-order couplings

{u}:

dug

(22 = B, ({uh), %)

with a =1, ||, x and the flow parameter ¢, and find the
FPs {u*} of these equations as the solutions of the sys-
tem of equations

Buo ({u"}) = 0. (6)

Which of these FPs is the stable one depends on the
number of components n; and n| and the dimension d
of space. The scaling properties depend on the symmetry
of the stable FP.

There are two alternative ways to look for the solu-
tions of the FP equations (6) and, subsequently, for the
scaling properties of the system. In one approach, the
e-expansion, the solutions are obtained as a series in &
and then evaluated at the value of interest (at ¢ = 1 for
d = 3 theories). Alternatively, one may solve a system
of non-linear equations directly at the dimensionality of
space of interest (e.g. at € = 1) [22] and obtain the FP

coordinates numerically. The RG expansions being di-
vergent [23], special resummation techniques are used to
get convergent results [24]. As we have discussed already
above, depending on the values of n, ny, and d, the
multicritical behavior is governed by one of the three
non-trivial FPs: H {u = u} = uﬁ}, B {u* #ul # uﬁ},
and D {u} # 0,u} = O,UW # 0}. In Fig. 2 we show
how the stability of these FPs changes with n, n, for
d = 3. There, we compare the first order e-expansion re-
sults [8,9] with the two-loop results [14] obtained within
the fixed d = 3 technique [22]. The two-loop results were
obtained applying Padé-Borel resummation technique to
functions (2)—(4) [25]. One sees that the borderlines of
the FPs stability are drastically shifted to smaller values
of order parameter components. Thus, in the case n| =1
and n; = 2 FP B (connected with tetracriticality) is
stable in two-loop order contrary to the one-loop calcu-
lations where the FP H (connected with bicriticality) is
stable. The resummed higher orders of the perturbation
theory do not change this result and do not lead to es-
sential changes in the critical exponents either [11].

As usual, the asymptotic values of the critical expo-
nents are defined by the stable FP values of the corre-
sponding RG (-functions, which we do not expose here.
Note that in general, there are distinct exponents 7,
1. governing spacial decay of the order parameter cor-
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relations in directions parallel and perpendicular to the
anisotropy axis. As a consequence, there is a pair of -
exponents, |, 7L that govern corresponding isothermal
magnetic susceptibilities. However, the above RG proce-
dure assumes that the multicritical system is described
by a single diverging length scale and therefore by one
correlation length ¢ and one corresponding critical expo-
nent v. This does not hold for decoupled systems where
two length scales are present and the usual scaling laws
with one length scale break down [9]. We give typical
numerical values of the exponents in Table 1.

Nperp

Npar

Fig. 2. Regions of I'Ps stability in the in the n|; —n_-plane,
d = 3. The lines separate regions where Heisenberg FP H, bi-
conical FP B and decoupling FP D are stable (from left to
right). Shown are the HB-stability borderlines (dashed lines)
and BD-stability borderlines (solid lines), in one loop order
(thin lines) and resummed two loop order (thick lines). The
dots indicate low integer values for order parameter compo-
nents [26].

Whereas the asymptotic critical exponent values are
determined strictly at the FP and correspond to the scal-
ing behavior at the multicritical point, of special interest
are the effective critical exponents which are observed in
the vicinity of the multicritical point. These are the ef-
fective exponents that often are observed experimentally
and are measured in MC simulations. In the RG frame-
work, one may estimate the effective exponents from the
values of corresponding RG (-functions calculated along
the RG flow and relate the flow parameter ¢ to the dis-

tance to the multicritical point. In Fig. 3 we show the re-
summed [25] RG flow of Egs. (5) for different initial con-
ditions [14]. The unstable FPs are shown as filled spheres,
the stable biconical FP as a filled cube. Let us note that
the neighborhood of the stability border lines to the other
FPs leads to very small transient exponents. Therefore,
the stable FP is not reached for the value of the flow pa-
rameter chosen in Fig. 3 (there, the flow parameter has
been changed in the interval —40 < In¢ < 0).

0,8
0,6

1,4 0.2 0.4 \.\QG‘Q
0,0

Fig. 3. Resummed RG flow of Egs. (5) for different initial
conditions at d = 3, n| = 1, n. = 2. The unstable FPs are
shown as a filled spheres, the stable biconical FP as filled
cube. The FPs points are connected by separatrices defining
the surface which encloses the attraction region [26].

Defining the effective exponents as explained above,
one can evaluate their numerical values along the RG
flows of Fig. 3 and in this way predict possible outcome
of measuring the scaling properties of different observ-
ables at the multicritical point. As two typical examples,
we show in Fig. 4 the change of values of isothermal sus-
ceptibility effective exponents 7, 7. and of the correla-
tion length critical exponent v as the multicritical point
is being approached, the limit 7' — T, corresponds to
the limit £ — 0.

Table 1. Critical exponents of the O(1) @ O(2) model obtained in different approximations. [14]: resummation of the two-loop
RG series at fixed d = 3; [6]: first order e-expansion, [11,27]: resummed fifth order e-expansion. Numbers, shown in italic were

| Reference | FP [y [0y |7L [ v |
[14] B 0.037 0.037 1.366 1.366 0.696
[14] H(3) |0.040 0.040 1411|1411 |0.720
[6] B o 0 1222|1222 |0.611
[6] H(3) [0 0 1227|1227 |0.611
1] B [0.037(5) [0.037(5) |1.37(7) |1.37(7) |0.70(3)
27] H(3) 0.0375(45) [0.0375(45) |1.382(9) |1.382(9) [0.7045(55)

obtained via familiar scaling relations.
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Fig. 4. Effective exponents of different observables in the vicinity of a multicritical point for the the flows of Fig. 3. a:
isothermal magnetic susceptibility (solid curves: |, dashed curves: v, ); b: correlation length [26].

Before passing to a discussion of some peculiarities of
the dynamic multicritical behavior, let us note a partic-
ular feature of the O(n|) ® O(n.) model that becomes
evident from the above analysis of the statics. As the sta-
bility analysis shows, for the physically interesting case
d=3,n =1, n, =2 the asymptotic behavior is gov-
erned by the biconical FP B. Therefore, the tetracritical
point is realized (cf. Fig. la). However, depending on
the particular microscopic non-universal characteristics
of a given system, one may expect a variety of differ-
ent scenarios for the multicritical behavior, including the
triple point (that corresponds to the run away solutions
of the RG flow equations, cf. Fig. 3) and bicritical point
(when for certain initial condition the Heisenberg FP H
is reached).

III. DYNAMICS IN THE VICINITY
OF MULTICRITICAL POINTS

The above-sketched particular features of the static
multicritical behavior are further manifested if the crit-
ical dynamics is addressed. Below, we briefly analyze
three different forms of dynamical behavior in the vicin-
ity of multicritical points.

A. Relaxational dynamics (model A)

Let us start from the simplest dynamical model, model
A, when one assumes relaxational behavior for the two
order parameters ¢ and ¢ . This model has been stud-
ied in the one-loop approximation in [17], the two-loop
results have been obtained in [14]. The model A type
Langevin equations of motion describe two order param-
eters that relax to equilibrium with the relaxation rates
(kinetic coefficients) I' | and I':

¢ o . OH

ot = _FL 5¢L0 + 0¢L) (7)
990 . OH
—at = 7FH —5d)”0 + Od’H' (8)

Here, H is the static effective Hamiltonian (1), index
0 refers to bare (unrenormalized) quantities and the
stochastic forces 8y, , 84, fulfill Einstein relations

(05, (,1) 05 (2/,1)) =20 6(z — &)3(t — t)5°%,  (9)
( 25“ (z,t) H;H (x',)) = 206(a — 2')o(t — )6, (10)

with indices o, 3 = 1,...,n, and i,j = 1,...,n) corre-
sponding to the two subspaces.

Application of the RG procedure to study dynami-
cal multicritical behavior relies on the Bausch—Janssen—
Wagner approach [28], where the appropriate Lagrangian
of the model is studied and dynamic vertex functions
are calculated in perturbation theory and renormalized.
In such a technique, an essential simplification of calcu-
lations is achieved due to the possibility to single out
a static part of every dynamic vertex function [29,30].
Renormalization of the kinetic coefficients gives rise to
appropriate S-functions. Here, we reveal the two-loop (-
function for the time-scale ratio v = I') /T',. between the
renormalized kinetic coefficients FII and I' | . The function
reads [16]:

By = %{ [(TLH + 2)uﬁ —(nL + Z)Uﬂ (6111% - 1)

4 2(1 1 2
—n u? |=In (1+v) 2111( +v) -1
v 24w v(2 4 v)
2(1+v) (1+wv)?
2 l4vln =——F 4+ 2In—2 —1| 3. (11
+"“‘X[”n1+zu+ Y (11)
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As we have noted in the preceding section discussing the
static critical behavior, a non universal effective criti-
cal behavior may be observed if the values of the static
couplings and the time scale ratio are not in a FP but
rather are described by the flow equations. For v the flow
equation reads

dv

E% = ﬂv(un(g),’(u_(g),ux(ﬁ),’U(f)) (12)

5 T T T T
4 . .
weak scaling
Zpar=2+cnpar
e— 3 i - Zper=2+cnperp ]
O N
o
cC 2F .
strong scaling
biconical dynamics
1+ . . -
strong scalin
I g 9 '\
z=2+cn
0 n 1 1 n n
0 1 2 3 4 5

Npar

Fig. 5. Regions of different types of the dynamic scaling
behavior, € = 4 — d = 1. The rest of notations are as in Fig.
2 [31].

Below we will show some results about non-universal

dynamic multicritical behavior obtained with two-loop
accuracy. The numerical results for the static part of the

2.06

2.04

Zeft

2.02

2.00
-40

a.

RG function were obtained by means of the resumma-
tion technique [25], whereas no resummation has been
applied to the dynamic functions [16].

One of the quantities of interest that characterize dy-
namic critical phenomena is the autocorrelation time 7.
It is known to diverge as the critical point T, is ap-
proached, the divergency is described by the power law:

T~ |T —Tec|™" 13
| ,

with the universal correlation length and dynamic crit-
ical exponents v and z, correspondingly. In the multi-
critical phenomena we consider, one distinguishes two
dynamical critical exponents, z| and 2, that govern the
power law increase of the autocorrelation time for the or-
der parameters ¢ and ¢, correspondingly. In asymp-
totics they are defined by the stable FP values of the cor-
responding RG functions. At the strong scaling FP there
is only one dynamic time scale and the two exponents are
equal whereas at the weak scaling FP they are different
and define for each component, parallel and perpendicu-
lar, the time scale. As follows from our calculations [16]
and as one may see from Fig. 5, the region of stability
of the biconical FP B (physically important case d = 3,
ny = 1, ny = 2 belongs to this region) is characterized
by the strong scaling dynamics: the time relaxation of
both order parameters, ¢ and ¢, is governed by the
same exponent. In Fig. 6 we show an evolution of this
exponent z.g to its asymptotic value z = 2.05 when the
time-scale ratio v is set to its FP value and the static
couplings u change along the RG flows of Fig. 3. Since
the exponents have not reached their (equal) asymptotic
values differences between the parallel and perpendicular
components of the order parameter remain.

2.06 T T T T T T
1,2,4
------ 1- TT T TN S

2.04 - E
=
()
N

202 B

2.00 L

-40 -30 0

Fig. 6. Model A multicritical dynamics. The effective dynamical exponent for different RG flows in the vicinity of a multi-
critical point at d = 3, n = 1, n. = 2. The labeling of the flows corresponds to Fig. 3. The exponents for the perpendicular
(dashed curves) and parallel (solid curves) components of the order parameter differ in the non asymptotic region [31].
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Fig. 7. Model C effective dynamical multicritical behavior at d = 3, n = 1, n. = 2. a: dynamical RG flow for different
initial conditions numbered from 1 to 4. b: effective dynamical exponents 2|, z., and zm calculated along the RG flows of Fig.
7a, as indicated by the numbers [32].

B. Conservation of magnetization (model C 0 ¢ . OH©)
( ) L (15)
10
A step towards making the description of dynamic phe- ofaTm . 0H(©)
. ... . —:7F|‘—+0¢, (16)
nomena in the vicinity of a multicritical point more re- ot 5¢”0 I
alistic is to take into account possible couplings between P 5H(©)
the order parameters and conserved densities, that is to Mo _ {22t~ +6,,. (17)

consider the model C dynamics [15,18]. In the problem ot omo
under consideration, there are two types of conserved
densities: one is magnetization-like (more precisely, it is
the parallel component of the magnetization), another is
the energy density. We will not consider this second den-
sity here, as far as up to the two-loop order the specific
heat critical exponent « is negative for the case d = 3,
n =1,n, =2 which is of most interest here. Therefore,
a coupling to the energy density is irrelevant in the RG
sense — it vanishes at the FP [30]. An account of both
the order parameter and the (conserved) scalar density
is achieved by an extension of the static functional (1).
Now, the corresponding model C static functional reads:

Here, the static functional H(“) is given by (14), A is a ki-
netic coefficient of a diffusive type for the scalar density,
the rest of notations is as in (7),(8). The stochastic forces
0y, , 04, satisty the Einstein relations (9), (10), with an
additional Einstein relation for the new stochastic force
0,:

(O (2,) O (2 1) =—2AV26 (. — 2)S(t — /). (18)

The renormalization of the above introduced asymmetric
couplings 77, 7} and kinetic coefficient A leads to new
RG functions. In particular the RG flow of the time scale
ratios

1 1,
H =H "'/ddJj §m(2J + §7LmO¢L0 “P1 I LT
1 .
+ §V|‘m0¢||0 “Plo — hm0>. (14)  is now governed by the appropriate functions 3,,, and
B, , correspondingly. Note that defined for model A time

scale ratio v is equally well defined in terms of (19):
Here, the first term in the right hand side is given by Eq.

(1), the density mg = mo(z) is a scalar quantity, h is a v = Iy wy (20)
field conjugated to mo, v and v are asymmetric static T, wy
couplings between the corresponding order parameters
and the conserved density. Therefore, the dynamical FP equations:
In their turn, the relaxational equations of motion . w x s
(7),(8) are now extended by including a diffusion equa- B, (Wi, wjj, v7) = fu (WL, wjj, v)
tion for the scalar density: = Bo(w?, wj,v") =0 (21)
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are now not independent: one of these equations can be
eliminated by the relation (20).

Equations of motion (15)—(17) describe time evolution
of three different observables. Each of them has its own
autocorrelation time which, as the multicritical point is
reached, may be governed by an independent dynamical
critical exponent. In addition to the two exponents de-
fined in the former subsection, z and 2z, the dynamical
critical exponent z,, for the scalar density is to be con-
sidered. Similarly to, as in the model A case, these three
exponents may coincide, in the strong scaling dynamical
FP or they may differ, in the weak scaling dynamical FP.
Complete stability analysis of the model C RG equations
in two-loop approximation is given in Ref. [16]. In partic-
ular, it is shown that for the case d =3, n| =1, n, =2,
where the static FP is the biconical FP B, the strong scal-
ing dynamical FP is stable. Physically this means that in
asymptotics the multicritical dynamics is characterized
by one time scale, and three dynamical exponents coin-
cide. In particular, their asymptotical value was found
to be 2| =z, =z, =2.18 [14]. However, as was revealed
in the former sections, the effective multicritical behav-
ior is much richer. In particular, in Fig. 7a we show the
RG flows calculated for different dynamical initial condi-
tions when the static couplings are chosen to be fixed at
their biconical FP values. The stable dynamical (strong
scaling) FP lies outside the region shown. Also shown is
the surface v = w) /w1 to which the flow is restricted by
condition (20). The RG flows of Fig. 7a give rise to a dif-
ference in the effective dynamical critical exponents, as
shown in Fig. 7b. The insert of the figure shows that even
for flow parameters as small as In £ = — 2000 the effective
exponent z; has not reached its asymptotic value 2.18.

C. The complete dynamic model (model G)

We now restrict ourselves to the case of ny = 1,n, =2
and include mode coupling terms, which correspond to
Larmor terms describing the precession of the alternating
magnetization and the magnetization around each other.
They are well known from the isotropic antiferromagnet
without an external field [33]. Then within an external
magnetic field the corresponding equations read

« . (&) N (©)
ad)LO _ —F’J_ 5Hﬁ JrF/J/_eaﬁz 57'(&

ot 5, 0o,

2 apPz 6H(C) (67
9 €5 05 (22)

ad)HO o 5']—[(0)
— = -T——+0 2
1oy Tl 29)
Omo o 0H s, OHO
— = 0Bt = + . (24

ot Y Gy "9 o O (2

Now a and ( indicate the planar components z,y and
the Levi-Civita tensor e*%# with the third index fixed to
z has been introduced. The parallel component of the
order parameter is its z-component. This component re-
mains just relaxing, whereas the planar components of
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the order parameter are coupled to the z-component of
the magnetization by the precession terms.

A new feature arises because of the simultaneous pres-
ence of the mode coupling ¢ and the asymmetric static
couplings 7 and v} in H(©) (14). The perpendicular re-
laxation coefficient I'; has to be considered a complex
quantity where the imaginary part constitutes a preces-
sion term (second term on the right hand side of (22)).
Even if in the background such terms are absent they are
produced by the renormalization procedure.

The stochastic forces 8y, , 05, and 6,, fulfill Einstein
relations

(05, (z,t) 05 (' ,1)) = 21" 6(x — 2)(t — ¢)5°7,  (25)
(O, (2,1) O, (', ) = 206(x — 2")o(t — 1), (26)
(O (2, 1) O (2, 1)) = —2AV20(z — 2)6(t — t').  (27)

This model has been solved in one loop order in [17]
using the one loop results of statics. As has been already
seen for the simpler dynamics models changes are ex-
pected in two loop order both by the statics as well as
by the dynamic terms especially of the model C type. We
have calculated the complete field theoretic functions in
the two-loop order [34] necessary to calculate the critical
(effective) dynamical exponents. Independent of whether
the Heisenberg or biconical is the stable static FP the
first inspection of the flow of the dynamical parameters
shows the following: (i) The imaginary part of the per-
pendicular relaxation rate renormalizes to zero, (ii) the
times scale ratios v (20), wy (19) approach zero and the
real part of w still increases. Irrespective of the kind of
the stable dynamic FP — whether it is a strong scaling
FP with very small but finite values or a weak scaling FP
with zero values for v and w| — the physical observable
features of the magnetic transport coefficient are the ef-
fective ones. A range of effective values for the dynamic
exponents corresponding to the relaxation of the per-
pendicular and parallel alternating magnetization and
the magnetization is starting around its Van Hove val-
ues 2z ~ z| ~ zx ~ 2 in the background and approach
for the biconical FP deep in the asymptotic regime

z; ~1.6 2z~ 2 zy~1.6. (28)
The main prediction according to this result would be
that the perpendicular and the parallel component of
the order parameter would scale differently in this re-
gion. Note added in proof: Further calculations showed
that a stable FP can only be reached in the subspace where
both wy — 0, wy — 0 and w)/w, finite, nonzero. Then
Z| =21~ 2 and zy ~ 1.1 for the biconical FP. The re-
sults presented here although very near the multicritical
point turned out to be only effective exponents. Thus one
concludes that the true asymptotics is not reachable in
experiments. More details will be published elsewhere.

The importance of this magnetic system lies in the
physical accessibility of the order parameter, contrary to
the superfluid “He or superfluid mixture of He and 3He
whose dynamics is described by model F [35]. Here all
quantities are in principle measurable quantities. Thus
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the prediction of the different dynamic scaling of the or-
der parameter components can be tested.

IV. CONCLUSIONS AND OUTLOOK

By this review we wanted to summarize recent progress
achieved in the theoretical description of the multicriti-
cal phenomena. Whereas traditionally RG techniques ad-
dress critical points in their different realizations, the de-
scription of multicritical phenomena is possible both on
quantitative and accurate qualitative levels. Moreover,
the problem appears to be tractable analytically even if
the complicated forms of multicritical dynamics are con-
fronted. As is revealed by the theoretical analysis, a par-
ticular feature of static and dynamic behavior inherent to
multicritical points is the multitude of fixed points that

describe the RG flow. In its turn, this gives rise to a rich
effective behavior that may be characterized by different
types of multicritical points. A natural continuation of
performed studies would be to analyze cumulative effects
caused on the multicritical behavior by symmetry break-
ing factors of different forms (single-ion anisotropies, dis-
order, frustrations) that might be present in a system.
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TEOPETUKO-IIOJIbOBUN IIIOXIO 0 AHAJII3Y BIKPUTHUYHOI TA
TETPAKPUTUYHOI IIOBEAIHKN: CTATUKA I TUHAMIKA

P. ®onsk!, 10. Tonosau®?, T. Mozep®
! Inemumym meopemuunot isuru, Ynisepcumem Hozana Kenaepa 6 Jlinyi, Aavmenbeprepwmpace, 69,
A—4040, Jliny, Ascmpis
2 Inemumym. disuru xondencosarnux cucmem HAH Yrpainu, eya. Ceenyiyvrozo, 1, 79011, Jlveis, Yrpaina
3 Biddinenna mamepianosnascmsa i isuxu, Ynieepcumem Iapica Jlodpona 6 Bavubypsi, Teavbpynepumpace,
34, A-5020, Barvubyps’, Aecmpis

3a JI0IOMOr0I0 TEOPETHKO-TIOJILOBOI'O PEHOPMIPYIIOBOTO MiAXOAY MU JIOCTIIXKYEMO CTATUYIHY f JUHAMIYHY KPH-
THYHY TIOBeAiHKY TpuuMipHuX cucrem 3 O(n)) @ O(nL) cumerpieto. Toni sik craruyani peropMrpynosi dymkiii
BijioMi Telep y BHCOKHX IOpPsiKaX Teopil 30ypeHb, MM IIOKA3YEMO, IO BPaXyBaHHS JIBOIETIEBUX BHECKIB, Cy-
MIPOBO/?KEHE BIITOBIIHIM I€PEeCyMOBYBaHHSIM ACHMITOTHYHUX DPSiB, 3a0e3ledye akKypaTHUHl KiTbKiCHHMI ommc
MyJAbTUKPAUTHYIHOL TIoBeMiHKU. OMHIE0 13 CyTTEBUX PUC CTATHIHOI MYJILTUKPUTUIHOI IOBEIHKU, 10 BUSBJIAETHCS
B2Ke Ha J[BOIETJIEBOMY DPiBHI J/Isl aHTH(DEPOMArHeTHKa B 30BHIIHBOMY MaraiTHOMy noui (n) = 1, n. = 2), € criii-
KicTb GIKOHIYHOI HEpYXOMOI TOUYKY Ta 11 GIM3BbKICTE /10 MeXK CTifKOCTI iHIMX HepyxoMmux To4oK. Lle nmpuBoguTs 10
Jy2Ke MaJINX 3HAY€HDb [MOKA3HUKIB KpocoBepy. Mu Takok aHAII3yeMO MUHAMIYHY KPUTHIHY MOBEIIHKY, OOMPAIOYN
pisHi dpopMu KPUTUIHOT AUHAMIKH i OOYUCITIOIYHN y cXeMi MiHIMAJIBHOTO BiHIMAHHS aCUMITOTHYHI Ta epeKTUBHL
JUHAMIYHI KDUTHYHI IOKA3HUKH.
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