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We present study concerns a generalization of the model for extended stochastic systems with
a field-dependent kinetic coefficient and a noise source satisfying fluctuation-dissipation relation.
Phase transitions with entropy driven mechanism are investigated in systems with conserved and
nonconserved dynamics. It is found that in stochastic systems with a relaxational flow and a symmet-
ric local potential reentrant phase transitions can be observed. We have studied the entropy-driven
mechanism leading to stationary patterns formation in stochastic systems of reaction diffusion kind.
It is shown that a multiplicative noise fulfilling a fluctuation-dissipation relation is able to induce
and sustain stationary structures. Our mean-field results are verified by computer simulations.
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I. INTRODUCTION

It is well known that nonlinear systems that exhibit
disordered behaviour in the absence of fluctuations can
be organized to sustain ordered states when an additional
amount of noise is added [1, 2]. In recent decades, many
studies have focused on investigations of noise-induced
phenomena which demonstrate a counterintuitive role
for fluctuations leading to self-organization effects, such
as noise-induced transitions in zero-dimensional systems
(see Ref. [1] and citations therein), stochastic resonance
[3], noise-induced spatial patterns and phase transi-
tions [2, 4, 5], and phase transitions induced by cross-
correlations of noises [6, 7]. As will be discussed in this
paper, one of the most interesting effects is an order-
ing phase transition in extended systems, where the or-
dered phase (in a thermodynamic sense) results only if
a randomly fluctuating source is introduced into the dy-
namical system, which must possess spatial degrees of
freedom. Such problems are actual not only in statisti-
cal physics. They arise naturally in the physics of lasers
and electronics [8, 9], in physics of irradiation induced
effects and microstructure transformations [10], in solid-
state physics to describe the reconstruction of a defect
structure [11], chemistry and biology [12], etc.

Most of the works concerning the above phenomena
have focused on the problems concerning the influence
of external noise. Analytically, numerically, and experi-
mentally it was found that an external noise source only
plays an organizing role if its amplitude depends on the
field variable (see Refs. [1, 2, 13,14]). This result was ex-
plained as follows: in systems with fluctuations having
a bounded frequency spectrum, the ordered phase exists
for a particular range of the system parameters such as
the control parameter, the noise intensity, and the inten-
sity of spatial coupling (see Refs. [2,7,13]). Such reentrant
phase transitions correspond to cases wherein an increase

in one of the above parameters leads to an ordering dy-
namics once a first critical threshold is crossed, but after
a second threshold is passed, the system becomes disor-
dered. The above reentrance appears as a result of the
combined effect of the nonlinearity of the system, the
spectrally variant nature of the noise, and the spatial
coupling. From a fundamental point of view, such effects
have a dynamic origin: in the short-time limit, exter-
nal fluctuations destabilize the disordered homogeneous
state.

Recently, a new class of phase transitions was found
[15] where fluctuations do not lead to instability in the
disordered phase (homogeneous mixture). Here, the or-
dered (separated) phase appears due to the balance be-
tween relaxing forces moving the system to the homo-
geneous state, and field-variable dependent fluctuations
pulling the system away from the disordered state. This
mechanism belongs to a set of entropy driven phase
transitions, which are the extension of noise-induced
unimodal-bimodal transitions in zero-dimensional sys-
tems [1]. The origin of such phase transitions is in chang-
ing the form of the nonequilibrium potential [15–17]. The
novelty of this phase transition lies in the fact that it
arises entirely from an energy functional-like relaxation
dynamics. Its occurrence indicates the presence of two
elements in the stochastic dynamics: a field-dependent
kinetic coefficient and a fluctuation dissipation relation.
It allows on to interpretate the corresponding fluctua-
tions as internal noise with intensity proportional to the
bath temperature. For such a class of stochastic sys-
tems, the corresponding distribution function, free en-
ergy and an associated effective potential are known ex-
actly. Therefore, noise-induced phase transitions can be
analyzed without any dynamic reference.

The main goal of this work is to study the internal
noise influence onto the system evolution and formation
of stationary states in cases of both nonconserved and

4005-1



D. O. KHARCHENKO, A. V. DVORNICHENKO, V. O. KHARCHENKO

conserved dynamics. We shall show that phase transi-
tions and phase separation processes are driven by spe-
cial types of mechanism with no short-time instability
of a disordered state. Considering systems of reaction-
diffusion kind we study the ability of the noise to sustain
stationary spatially patterns.

II. STOCHASTIC SYSTEMS WITH INTERNAL
FLUCTUATIONS

Let us consider the following generic deterministic
model for a real field x(r, t)

∂tx(r, t) = −M[∇, x(r, t)]
δF

δx(r, t)
. (1)

This equation corresponds to a relaxational flow in a
potential F [x] with a field dependent kinetic coefficient
M [∇, x] [18]. For the systems with nonconserved dynam-
ics (models of A class with

∫

drx(r, t) 6= const) the kinet-
ic coefficient can depend on the field x only, if dynamics
is conserved (models of B class with

∫

drx(r, t) = const),
then M depends on the operator ∇ = ∂r and x.

As was shown by Ibanes, et al [15] the introduction of a
stochastic source into Eq. (1) for the system with noncon-
served dynamics according to the fluctuation-dissipation
relation leads to the Langevin equation of the form

∂tx(r, t) = −M [x(r, t)]
δF

δx(r, t)
+

√

M [x(r, t)]ζ(r, t). (2)

Here the Gaussian noise ζ has the following properties
〈ζ(r, t)〉 = 0, 〈ζ(r, t)ζ(r′, t′)〉 = 2σ2δ(r − r′)δ(t − t′), σ2

is the noise intensity. Considering the system with con-
served dynamics, the corresponding Langevin equation
can be rewritten as follows [2]:

∂tx = ∇·

(

M [x(r, t)]∇
δF

δx

)

+∇
√

M [x(r, t)]ζ(r, t). (3)

With this construction a stationary distribution Ps[x] ob-
tained as a solution of the corresponding Fokker-Planck
equation has the Boltzmann form

Ps[x] = N exp
(

−Ueff [x]/σ2
)

,

(4)

Ueff [x] = F [x] +
σ2

0

2

∫

dr lnM [x],

here σ2
0 is the renormalized noise intensity proportional

to σ2 including the ultraviolet cut off (see [15]). For the
system with conserved dynamics the form of the effec-
tive potential is the same [19]. It is principally important
that this potential can be bistable only in the presence
of noise. From the formal viewpoint if we associate the
Lyapunov functional F with the free energy, then the
second term in Ueff is reduced to the nonequilibrium en-
tropy, whereas the noise intensity σ2 has the meaning of
the nonequilibrium temperature. Therefore, using ther-
modynamic relations one associates the functional Ueff

with the effective internal energy for the model.

We shall show in what manner this class of sys-
tems can exhibit noise induced phase transitions. Sup-
pose that F is described by a deterministic free ener-
gy potential of the usual Ginzburg-Landau form F =
∫

dr
[

f(x) + (β/2)(∇x)2
]

, where f(x) is the free ener-
gy density, β is the gradient energy term related to
the interaction radius r0 ≡

√

∂2F/∂(∇x)2|
∇x=0 as

β = r2
0. In our study we use the following construction

f(x) = −ε/2x2 + x4/4, where ε is the control param-
eter, related to the temperature counted off a critical
one. The kinetic coefficient we assume in a bell-shaped
form. This kind of model describes large fluctuations
in disordered/diluted state and small fluctuations in or-
dered/dense state. In our study we use the following ap-
proximation M [x] = (1 + αx2)−1, α > 0.

The last model presented here is the model for
reaction-diffusion systems where the noise can sustain
stationary patterns. Usually to investigate the patterns
formation the Swift-Hohenberg operator (1 − ∇2)2 is
introduced into the evolution equation instead of the
Laplacian ∇2. In our model we start with the determin-
istic dynamics given by Eq. (1) and add the term related
to the local dynamics R(x). It describes possible chemi-
cal reactions in the system. Therefore, the deterministic
model for reaction-diffusion system takes the form

∂tx = R(x) + ∇

(

M [x]∇
δF

δx

)

. (5)

Formally, Eq. (5) can be written in a variational form as
∂tx = −(M [x])−1δU [x]/δx, where the functional U [x] is
determined through R[x], M [x] and F [x]. It plays a role
of a Lyapunov functional for the deterministic dynamics.
One can obtain the first variation of U [x] exactly,

δU [x] = −

∫

drδx {R[x]M [x]

+ M [x]∇ (M [x]∇δF/δx)} . (6)

Substituting variational derivative into the reduced equa-
tion for x, one arrives at Eq. (5) immediately. In stochas-
tic analysis we introduce a related multiplicative noise in
an ad hoc form [20],

∂tx = −
1

M [x]

δU [x]

δx
+

1
√

M [x]
ζ(r, t), (7)

where the fluctuation dissipation relation holds. The sta-
tionary distribution can be obtained exactly in the Boltz-
mann form (4) with

Ueff [x] = U [x] +
σ2

0

2

∫

dr ln (M [x])
−1

. (8)

For a general model one can find only first variation of the
nonequilibrium potential Ueff [x]. It allows one to study
stationary patterns xs(r). For the simplest case for the
Fickian diffusion the mobility M [x] can be considered as
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effective diffusion coefficient in the form D[x(1 − x)]α,
α > 01.

III. ENTROPY DRIVEN PHASE TRANSITIONS

To study noise induced phase transitions is systems
of the class A analytically one can use the mean-filed
approach. To that end we consider the system in a d-
dimensional square lattice, and instead of Eq. (2) we get
a set of ordinary differential equations for every i-cell

variable from the set {xi}
Nd

i=1. In the Weiss mean field
approach one can rewrite the discrete gradient operator
as follows (∇x)2 → (η − x)2, with the mean field value
η≡〈x〉.

As a result, the effective potential acquires a depen-
dence on an unknown mean-field value η:

Ueff(x; η) = f(x) +
β

2
(η − x)2 +

σ2
0

2
lnM(x). (9)

The value η can be calculated as the solution of the self-
consistency equation

η =

∫

xPs(x; η)dx ≡ Φ(η),

Ps(x; η) = Z−1(η) exp(−Ueff(x; η)/σ2
0). (10)

Here, Z satisfies the normalization condition, and η plays
the role of the order parameter.

From a physical viewpoint, the solution η = 0 defines
the disordered homogeneous phase, and the correspond-
ing distribution function is symmetrical with respect to
the origin x = 0. If the distribution function is asymmet-
rical, then the order parameter takes a nontrivial value,
η 6= 0, and the system is ordered. To solve Eq. (10)
the standard Newton-Raphson procedure is used. One
should note that the right hand side of the function Φ(η),
formally, can intersect the left hand side of the function
η more than once. A number of intersections gives an
equal number of roots of the equation η = Φ(η) at the
related values of the order parameter η. Generally, the
number of roots depends on the form of the function
Ueff(x; η) and the related construction of the normal-
ization constant Z(η). In the case under consideration,
if the local potential V (x) is of symmetrical form, i. e.
V (−x) = V (x), then two equivalent oppositely signed
nontrivial solutions +η and −η appear for a particu-
lar range of control parameters. If the potential V (x) is
asymmetrical or shifted with respect to the origin x=0,
then one can expect more than a unique non vanishing
solution (η 6= 0).

The critical values for the system parameters giving
the phase transition line can be obtained from the solu-
tion of the problem dΦ(η)/dη|η=0 = 1. It is easy to see
that such derivative defines the generalized susceptibility
χ = µ2 ≡ 〈(x−η)2〉 (cumulant of the second order), that

measures fluctuations around the critical values of the
system parameters. The third order derivative of Φ(η) at
η = 0 gives the fourth order cumulant, µ4 ≡ 〈(x−η)4〉. If
µ4 < 0 and µ2 = 1, then the corresponding phase transi-
tion is of the second kind. After simple algebra one finds
the conditions for the critical phase transition:

dΦ(η)

dη

∣

∣

∣

∣

η=0

=
2β

σ2
0

µ2, µ2 =
σ2

0

2β
;

d3Φ(η)

dη3

∣

∣

∣

∣

η=0

=

(

2β

σ2
0

)3

µ4, µ4 < 0. (11)

The principle feature of the model with the multi-
plicative noise satisfying the fluctuation dissipation re-
lation lies in the fact that phase transitions are not
related to the short-time instability. Indeed, consider-
ing linearized equation for the first moment ∂t〈x〉 =
(ε − ασ2)〈x〉 + β∆〈x〉, one can see that at early stages
the noise leads to stabilization of the disordered state
〈x〉 = 0. At late stages and in the stationary case the
main mechanism of noise induced phase transitions is
related to the effective entropy Seff variations. There-
fore, the corresponding phase transitions are known as
entropy driven phase transitions.

Let us consider solutions of the self-consistency equa-
tion for the model with M(x) = (1 + αx2)−1. The order
parameter and the generalized susceptibility dependen-
cies versus the noise intensity are shown in Fig. 1a. It is
seen that in the case of the bistable potential f(x) with
ε > 0 the system undergoes disordering phase transition
with an increase in σ2, for the generalized susceptibility
we obtain the peak with the height 1 at the critical σ2

with µ4 < 0. If the potential f(x) is monostable (ε < 0),
then the reentrant phase transition can be observed: the
ordered state exists inside the domain of the noise in-
tensity values [σ2

c1, σ
2
c2], the quantity χ has two peaks

placed at critical noise intensity values. Let us consider
the phase diagram shown in Fig. 1b. Here the solid lines
define critical values for the system parameters, whereas
dotted and dashed lines correspond to modality change of
the distribution function calculated at the corresponding
η values in the denoted domains of the phase diagram.
It is seen that during phase transition the probability
density function (see insets) changes the modality. At
ε < 0 with small β and σ2 (see point a) the system
is disordered, the probability density is of symmetrical
form and has one peak centered at x = 0. In the domain
with point d the system is disordered too, here Ps(x; η)
is of symmetrical form and has two equivalent peaks. In
the domain with point c despite Ps(x; η) has one peak,
it has broken symmetry due to η 6= 0. When the dashed
line is crossed the modality of Ps(x; η) is changed and
due to η 6= 0 the symmetry is still broken. Therefore, the
obtained phase transition related to the symmetry break-
ing of the distribution function is accompanied with its
modality change.

1A construction for the effective kinetic coefficient can be derived from the nonlinear Fokker–Planck equation containing only
the diffusion term and q-deformed version of the logarithm proposed by Tsallis [21].
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Fig. 1. Mean field diagrams for the entropy-driven phase transitions: order parameter η and susceptibility χ dependencies
a) and phase diagram b) at different α with ε = −0.2 for the model with M = (1 + αx2)−1; c) phase diagram for the
reaction-diffusion model with M = D[x(1 − x)]α: curve 1 and 2 correspond to D = 10, 20 (order parameter is shown in
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Our results are in good correspondence with numerical
simulations on 2-dimensional lattice (see Fig. 2). Here
the order parameter and the generalized susceptibility
are evaluated according to the formulas: η = 〈

∑

i xi〉,

χ = 〈
∑

i x2
i 〉 − η2, where · · · and 〈· · · 〉 means average

over time and ensemble, respectively.

IV. PHASE SEPARATION WITH INTERNAL
MULTIPLICATIVE NOISE

Let us consider a model related to the class B. At first,
we investigate the internal multiplicative noise influence
on an instability of a homogeneous phase. In the system
with conserved dynamics (see Eq. (5)) the linear stabil-
ity analysis should be done for the structure function
Sk(t) = 〈xk(t)x−k(t)〉. Following the standard approach
a linear evolution equation for the spherically averaged

structure function can be derived in the form [19,22]

dSk(t)

dt
= −k2

(

βk2 − ε + ασ2
)

Sk(t)

+ 2σ2k2 − 2ασ2k2 1

(2π)d

∫

dqSq(t). (12)

It is principally important that the noise contribution
denoted as ασ2 stabilizes the homogeneous state. From
exponential solutions of Eq. (12) one can see that only

modes with k < kc =
√

(ε − ασ2)/β are unstable and
grow at early stages of evolution. With an increase in α
or σ2 the size of the unstable modes domain k < kc de-
creases. The modes with k > kc remain stable during the
linear regime. One needs to stress that unstable modes
cannot be realized at condition ε < ασ2. As it follows,
the domain growth should be different for additive and
multiplicative noise.
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Fig. 3. Evolution of the system at initial concentration difference 〈x〉 = 0.2 (left) and 〈x〉 = 0.0 (right) (a). The structure
function behaviour (b) at early stages at different α: solid and dashed lines correspond to α = 0 and α = 0.8, respectively.
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In Fig. 3 we present solutions of the Langevin equa-
tion (5) at different initial values for the concentration
difference 〈x〉 and solutions of the evolution equation (12)
at different values of the parameter α. From Fig. 3a it is
seen that at 〈x〉 6= 0 the nucleation process is observed, at
〈x〉 = 0 the spinodal decomposition is realized. Consider-
ing the structure function dynamics one can see that an
increase in α leads to a shift of the peak position toward
smaller values of k. The peak of S(k) is less pronounced
in the multiplicative noise case than in the case of the
additive noise. It follows that, if the multiplicative noise
is considered, then the dynamic is slowed. A decrease in
the peak height means that an interface is more diffuse in
the case of multiplicative noise (see insertions in Fig. 3b).

To investigate the steady states we can use an exten-
sion of the mean field theory developed for the systems
with conserved dynamics [23]. In the framework of this
theory one can use thermodynamic suppositions for the
deterministic dynamics and afterwards apply it to the
stochastic one.

To begin with, let us define transition and critical
points [24]. Considering the deterministic case, we use
the model ∂tx = ∇M∇δF/δx, where the restriction
x0 =

∫

V
drx(r, t) is taken into account, x0 is fixed by the

initial conditions. For such a system the transition point
is εT (x0): at ε < εT (x0) the homogeneous state x0 is sta-
ble; at ε > εT (x0) the system separates in bulk phases,
x1 and x2, with 〈x〉 = x0. The transition point coincides
with critical one for x0 = 0 only, i. e. εT (0) = εc.

The corresponding steady state solutions are given as
solutions of the equation ∇M∇δF/δx = 0. If no flux
condition is applied, then stationary solutions can be
obtained from the equation ∇2δF/δx = 0, due to the
fact that mobility M does not affect the number and ex-
treme positions of the functional F ; the mobility leads
to the change in the dynamics of the the phase transi-
tion only. Hence, the bounded solution is δF/δx = h,
where h is a constant effective field of the system, in
equilibrium systems h is a chemical potential. In the
homogeneous case the value h does depend on the ini-
tial conditions x0. Above the transition point the steady
state is not globally homogeneous, here the system sep-
arates into two bulk phases with the values x1 and x2.
The fraction u of the system can be defined by the lever
rule ux1 + (1 − u)x2 = x0. In the case of the symmetric
form of the free energy functional where two phases with
x1 = −x2 are realized we get h = 0 [23]. Hence, if the
field h becomes trivial, then the transition point can be
defined.

As in the previous case we pass to the discrete repre-
sentation of the system and use the mean field approx-
imation (∇x)2 → (〈x〉 − x)2, the mean field value 〈x〉
should be defined self-consistently. A stationary proba-
bility density function in the mean field approach takes
the form [19]

Ps(x, 〈x〉, h) = N exp

(

−
1

σ2
0

[

f(x) +
β

2
(〈x〉 − x)2

+
σ2

0

2
lnM(x) − h

∫

dx′

M(x′)

])

. (13)

In order to determine the unknown quantities h and
〈x〉 we recall that the considered mean field approach
is local and expresses Ps of a field at a given site of
the lattice as a function of the field h and of the mean
field 〈x〉 in a neighborhood of the given cell. In the ho-
mogeneous case (below the threshold) the mean field is
the same everywhere and equals the initial value, i. e.
〈x〉 = x0. Hence, at the fixed mean field value, solving
the self-consistency equation 〈x〉 =

∫

xPs(x, 〈x〉, h)dx we
obtain the constant effective field h. Above the thresh-
old the system is separated into two phases with equal
〈x1〉 = −〈x2〉 and h must be the same for these two
phases and must be zero. Hence, above the threshold on-
ly 〈x〉 should be defined by solving the self-consistency
equation with Ps(x, 〈x〉, 0).

Let us discuss the mean field 〈x〉 behaviour. Here we
solve the self-consistency equation, setting h = 0. The de-
pendence of the constant effective field h and the mean
field value η versus noise intensity is shown in Fig. 4a.
Here one can see reentrant phase transitions at negative
values of the control parameter at large spatial coupling
intensity. With an increase in ε the first threshold σ2

1c is
shifted toward small values whereas the second one σ2

2c

becomes larger. Transition points σ2
1T and σ2

2T are re-
lated to the condition 〈x〉=x0. With an increase in the
noise intensity at ε > 0 the disordering phase transition
is observed. The corresponding phase diagram illustrat-
ing reentrant behaviour of the mean field is shown in
Fig. 4b. Here the solid and dotted lines correspond to
critical noise intensity values, whereas dash-dot line re-
lates to transition points. Here as in the previous case
phase separation processes are accompanied with the
modality change of the stationary distribution function
at h = 0 [25].

Our results are in good correspondence with computer
simulations on a 2-dimensional lattice. Here due to the
fact that the dynamics is conserved the effective order pa-
rameter for the phase separation is the second moment

of the concentration field J = 〈
∑

i x2
i 〉, whereas the effec-

tive susceptibility is χ = 〈(J − 〈J〉)2. The corresponding
stationary behaviour of such the order parameter and
the susceptibility is shown in Fig. 5a. We have studied
the system dynamics at late stages. Here we analyzed the
domain size growth law R(t) ∝ tz. Our calculations show
that the variation of the parameter α that governs the ki-
netic coefficient x-dependence can lead to deviation from
the well-known Lifshitz-Slyozov law with the dynamical
exponent z = 1/3. Indeed, at α = 0 that corresponds to
additive noise with M = const the magnitude z = 1/3 is
revealed. However, with an increase in α the exponent z
becomes smaller and at α = 1 one has z = 1/4. It means
that in the case of the multiplicative noise influence with
M = M(x) the dynamics is slowed. The corresponding
results are shown in Fig. 5b.

V. NOISE INDUCED PATTERNING

Considering the system described by the evolution
equation (7) let us assume that the reaction term R(x)
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can be defined according to a chemical kinetics. Gener-
ally, it can be represented through a potential function
V (x) in the standard way: R(x) = −∂V/∂x. As an im-
portant special case, we consider in this work the non-
linear force of the form R(x) = −

∏

i(x − x0
(i)), where

the set {x0
(i)} corresponds to zero values of the force and

relates to stationary points of the deterministic system.
In our model this force is associated with the potential
V (x) = x4/4 + µx3/3 − νx2/2, here µ and ν are con-
stants to control the chemical kinetics. This potential

has three extrema located at x±

0 = −µ/2±
√

µ2 + 4ν/2,
and at x0 = 0. A spinodal is given by the equation
ν = −µ2/4. A prototype model of chemical reactions
is A ⇄ B, with transient reactions A + 2X ⇄ 3X,
X ⇄ B [26]. The quantity x ∈ [−1, 1] measures con-
centration deviations of spices X from the constant val-
ue controlled by parameters ν and µ, related to chemi-
cal reaction rates. Another model considered here takes
into account the local dynamics described by R(x) =
ε(x−1/2)−(x−1/2)3, the diffusion dynamics is described
by the term ∇· [D[x(1−x)]α]. As follows from naive con-
sideration such a model can describe phase transitions
with pattern formation.

Let us study the short-time instability of the disor-
dered state. The linear stability analysis of the Langevin
equation (7) allows to find an evolution equation for the
structure function S(k, t) = 〈xk(t)x−k(t)〉. For the first
model the dynamics of the structure function at early
stages is given by a linear equation

1

2

dS(k, t)

dt
= −(k2(βk2−ε)−ν−ασ2)S(k, t)+σ2. (14)

It follows that such internal multiplicative noise leads to

an instability of the null state due to quantity M [x] aris-
ing in the denominator of Eq. (7). The same situation is
observed for the second model.

To make an appropriate analysis of pattern formation
scenario, let us consider a zero-dimensional system, i. e.
x(r, t) = x(t). Due to the entropy driven mechanism re-
lated to the modality change of the stationary probability
let us discuss at first this problem. For zero-dimensional
system the stationary probability density function has
the Boltzmann form, Pst ∝ exp(−Ueff(x)/σ2). To find
the corresponding bifurcation diagrams illustrating the
modality change we solve the problem dUeff/dx = 0
and find most probable values for x. After simple al-
gebra one can find that the trivial root, x0 = 0, of
such an equation exists always. Another two roots x± =

−(µ/2) ± 1
2

√

µ2 + 4ε − 4σ2α are realized if σ2 < σ2
c ,

where σ2
c = α−1

(

ν + µ2

4

)

. At σ2 = σ2
c solutions x−

and x+ degenerate, and at σ2 > σ2
c only the trivial

one, x0 = 0, remains. As follows from naive consider-
ations, the bimodal stationary distribution Pst(x) be-
comes unimodal with an increase in the noise intensi-
ty σ2. At σ2 = 0 a form of the effective potential, Ueff ,
is identical topologically to the form of the initial po-
tential, V (x). With an increase in the noise intensity
a minimum Ueff(x−) tends to zero, at σ2 = σ2

s = ε/α
the effective potential has a double degenerated point,
x0 = x− = 0. Therefore, σ2

s values define a spinodal
curve. At σ2

s < σ2 < σ2
0 the point x0 relates to a min-

imum, whereas x− defines a maximum position of the
function Ueff . At σ2 = σ2

0 one has Ueff(0) = Ueff(x+),
therefore, σ2

0 defines a coexistence line (binodal). With
a further increase in σ2 we get Ueff(0)<Ueff(x+). The
equality Ueff(x−) =Ueff(x+) is satisfied at σ2 =σ2

c , hence
the bifurcation point, σ2

c , defines another spinodal. At
σ2 >σ2

c the effective potential has one minimum only.
Therefore, at this noise induced transition we have a shift
of the potential extreme, transformation of the global
minimum into a local one, loss of its stability and, fi-
nally, change of number of the extreme of the function
Ueff .
❉✳❖✳ ❑❤❛&❝❤❡♥❦♦✱ ❆✳❱✳ ❉✈♦&♥✐❝❤❡♥❦♦✱ ❱✳❖✳ ❑❤❛&❝❤❡♥❦♦
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Fig. 5. Results of computer simulations of the stochastic phase separation processes: (a) effective order parameter and the
generalized susceptibility versus noise intensity illustrating reentrant phase transition (typical patterns are shown at σ2 < σ2

c1,
σ2 ∈ [σ2

c1, σ
2
c2] and σ2 > σ2

c1); (b) domain size growth law at late stages, R(t) ∝ tz
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Fig. 6. Bifurcation diagram (a) illustrating modality change of the stationary distribution Ps(x). Phase diagram (b) of
reentrant behaviour of self-organization process at ν = 0.2, µ = −0.5, β = 1, ε = 1.0. Domains of stable solutions are dashed:
domain (a) corresponds to a stable stationary structures xs(r) around the point x = x

−
); domain (c) is addressed to stable

structures around x = 0; double filed domain (b) relates to a stable structures around x = x
−

and x = x+.
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Fig. 7. Two-dimensional solutions of the problem (15): a) σ2 = 0.2, x(0) ≈ x
−

; b) σ2 = σ2
0 , x(0) = x+; c) σ2 = 2,

x(0) = 10−5. Other parameters are: α = 0.2, ν = 0.2, µ = −0.5, β = 1.0, ε = 1.0; initial conditions for spatial derivatives are
zero.

Considering a spatially extended system to study patterns formation one needs to solve the variational problem
δUeff/δx = 0. The corresponding equation takes the form

M

[

β∇4x −
∂2f

∂x2
∇2x −

∂3f

∂x3
(∇x)2

]

−
∂M

∂x

∂2f

∂x2
(∇x)2 = R +

σ2

2M

∂M

∂x
. (15)

To proceed, we have performed a stability analysis
of solutions of Eq. (15) in the r-space. It follows that
with the noise intensity increase unstable homogeneous
solutions become stable at fixed noise intensity interval
σ2 ∈ [σ2

s , σ2
T0], where σ2

T0 = σ2
s + ε2/4α. Therefore, we

get a reentrant picture of self-organization. The corre-
sponding phase diagram illustrating pattern formation
is shown in Fig. 6.

The solutions of the variational problem at different
σ2 are shown in Fig. 7. It is seen that at small noise in-

tensity (Fig. 7a) the nuclei are formed, at intermediate
values (σ = σ2

0) a picture type of spinodal decomposition
is realized (see Fig. 7b), at large σ2 (see Fig. 7c) linear
defects (dislocations) are observed.

Considering the second model with the Fickian diffu-
sion one can see that here in the ordered state described
by the mean field order parameter η 6= 0 and bimodal
stationary distribution the corresponding stationary pat-
terns are described by the harmonic equation following
from Eq. (15). Moreover, the corresponding phase tran-
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sitions can be of critical (µ2 = 1 and µ4 < 0) and non-
critical (µ2 6= 1) character (see Fig. 1c). The character
of the order parameter evolution versus noise intensity
is shown with the help of insertion in Fig. 1c for the
different values of α. Analytical results are verified by
computer simulations shown in Fig. 2b.

VI. CONCLUSIONS

We have considered two possible generalizations of
entropy-driven phase transitions in physical systems with
a relaxation flow and a field-dependent kinetic coefficient.
It is shown that the internal multiplicative noise induces
the reentrant behaviour of the order parameter in the
case of a monostable, symmetrical local potential for the
systems with nonconserved dynamics. The phase separa-
tion scenario with an entropy driven mechanism of the
system with internal multiplicative noise is examined.

It was shown that the field-dependent mobility leads to
delays in dynamics at early stages and, therefore, leads
to delays in domain growth law at late stages. We have
found that the system can undergo a reentrant phase
transitions when the the mean field becomes nontrivial
inside the fixed domain of the noise intensity. A simple
model of stochastic reaction-diffusion systems which can
qualitatively describe stationary noise patterns is stud-
ied. It was found that the stationary distribution can be
obtained exactly. Comparing noise induced transitions
picture and pattern formation scenario it was shown
that the system follows the entropy driven mechanism
by analogy with entropy driven phase transitions theory.

Our results can be applied to the investigations of
polymer mixtures where relaxational flows are driven by
field-dependent coefficients, phase separation in binary
alloys, and microstructure phase transitions in systems
subjected to irradiation influence.
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ЕНТРОПIЙНИЙ МЕХАНIЗМ УПОРЯДКУВАННЯ, ПРОЦЕСИ ФАЗОВОГО
РОЗШАРУВАННЯ ТА ФОРМУВАННЯ ПРОСТОРОВИХ СТРУКТУР У

СТОХАСТИЧНИХ СИСТЕМАХ

Д. О. Харченко1, А. В. Дворниченко2, В. О. Харченко1
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2Сумський державний унiверситет, вул. Римського-Корсакова, 2, 40007, Суми, Україна

Проведенi дослiдження стосуються узагальнення моделi розподiлених стохастичних систем iз залежним

вiд поля кiнетичним коефiцiєнтом i флюктуацiйним внеском, що задовольняє флюктуацiйно-дисипацiйну

теорему. Фазовi переходи з ентропiйно керованим механiзмом дослiджено в системах iз динамiкою, що збе-

рiгається та не зберiгається. Знайдено, що в стохастичних системах iз релаксацiйним потоком i симетрич-

ним локальним потенцiалом вiдбуваються реверсивнi фазовi переходи. Вивчено ентропiйно керований меха-

нiзм, що приводить до формування стацiонарних просторових структур у стохастичних системах реакцiйно-

дифузiйного типу. Показано, що мультиплiкативний шум, що задовольняє флуктуацiйно-дисипацiйну теоре-

му, може iндукувати й пiдтримувати стацiонарнi структури. Результати теорiї середнього поля пiдтвердженi

комп’ютерними симуляцiями.
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