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The specific heat for the square-lattice Ising antiferromagnet in a uniform magnetic field B is
obtained from its exact grand partition functions on L x L lattices (L = 4 ~ 16), in an arbitrary
nonzero external field at arbitrary temperature. In the limit L — oo, the antiferromagnetic (Néel)
critical points for B # 0 are estimated from the locations of the specific-heat peaks. For the first
time, the thermal scaling exponents y: of the square-lattice Ising antiferromagnet in a magnetic
field are obtained to be y:(B # 0) = 1.0 directly from its specific heat, at the Néel critical points

even in a uniform magnetic field.
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The Ising model with only the nearest-neighbor inter-
action J in a uniform external magnetic field B on a
lattice with Ny spins and N, bonds is defined by the
Hamiltonian

H=-J> (0ioc; +1)+ B> (1-0y), (1)
(i,5) @

where the magnetic spin o; at the lattice site ¢ takes

0; = £1 and (7,7) indicates the sum over all nearest-

neighbor pairs of lattice sites. The two-dimensional Ising

model is the simplest model showing phase transitions

at finite temperatures.

Since the Omnsager solution [1] of the square-lattice
Ising model in the absence of an external magnetic field,
the Ising model has played a central role in our un-
derstanding of phase transitions and critical phenom-
ena. The square-lattice Ising model for B = 0 has
the paramagnetic-ferromagnetic phase transition at the
critical temperature (the so-called Curie temperature)
Te = 2J/kpIn(v2 + 1) = 2.26919(J/kg) for the fer-
romagnetic interaction (J > 0) and the paramagnetic—
antiferromagnetic transition at Tn (Néel temperature)
Tx = 2J/kgIn(v/2 — 1) = 2.26919(—J/kg) for the an-
tiferromagnetic interaction (J < 0). In the case of the
square-lattice Ising model for B = 0, the logarithmic
singularity of the specific heat C(T") near the transition
temperature T3 (Curie or Néel temperature) is expressed
as

T—T) -1

C(T) ~ — [T~ T3] = lim )

@
with the critical exponent o = 0. Consequently, we have
the thermal scaling exponent y; = 1/v =d/(2 —a) =1
in two dimensions (d = 2).

However, the exact solution of the Ising model in an ar-
bitrary nonzero external magnetic field at arbitrary tem-
perature is not known even in two dimensions [2]. The
introduction of a nonzero magnetic field (B # 0) destroys
the phase transition of the ferromagnetic Ising model [3],
whereas the nonzero uniform field does not destroy the

transition of the antiferromagnetic Ising model [4-10].
Due to this fact, the properties of the antiferromagnet-
ic Ising model in a uniform external magnetic field are
much less well understood than those of the ferromag-
netic model. For example, we do not know even the ex-
act locations of Néel temperature Tn(B # 0), the most
fundamental information on phase transition, of the the
square-lattice Ising antiferromagnet in an external mag-
netic field. Instead, we have only the different approx-
imations [11,12] to the critical line (Néel temperature
Tn(B) as a function of B) for the square-lattice Ising
antiferromagnet in an external magnetic field.

We define the number of states, Q(E, M), with a given
exchange energy

1
E=; <Z)(oiaj +1) (3)
2,7

and a given magnetization

M=3Y -0, @

%

where ¥ and M are non-negative integers 0 < E < N,
and 0 < M < Ng. Introducing the number of states, the
grand partition function of the Ising model

2= e = Y 2oun-nu, 5)
{O'n} {o'n}

the sum over 2%+ possible spin configurations, can be
written as the simple sum over E and M,

NS

Z(a,z) = Z > Q(E,M)a"zM, (6)

E=0 M=0

where 8 = (kgT)™', a = €?#/, and = ¢~208. For an-
tiferromagnetic interaction the physical interval is 0 <
a <1 (0<T < o0), while for ferromagnetic interaction
itis1 <a<oo(co>T >0). The interval 0 < B < o0
(—00 < B < 0) corresponds to 1 >z > 0 (0o >z > 1).
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Because the Ising model has the symmetry « < 1/x, we
can consider only the interval 0 < x < 1.

Given the number of states Q(E, M), the grand parti-
tion function is a polynomial in a and x. The states with
E =0 (or E = Ny) correspond to the antiferromagnetic
(or ferromagnetic) ground states. The value of magneti-
zation M = 0 (or Ng) means that all spins have o = 1 (or
—1), corresponding to the ferromagnetic ground states.

From the exact integer values for the number of states
Q(E, M) of the Ising model on L x L square lattices (up
to L = 16) [13], we construct the exact grand partition
functions Z(a,x) in an arbitrary nonzero uniform mag-
netic field at arbitrary temperature. For L = 16, the to-
tal number of states (i.e., the number of all possible spin
configurations) is equal to 216%16 = 2256 ~ 1,158 x 107".
Given the grand partition function, we obtain the exact
specific heat

_, 0?
C(a,x) = (NskpgT?) 18—62 InZ(a,z)
_ ks 2 2 2
= o (na)“((E%) = (E)7) (7)
S

as a function of a for a fixed value of x. In this paper,
we estimate the critical points and the thermal scaling
exponents for the square-lattice Ising antiferromagnet in
nonzero uniform magnetic fields using its specific heat.

25

specific heat
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Fig. 1. The specific heat (in unit of k) of the Ising antifer-
romagnet on L x L square lattices, as a function of a = %7,

for z = e 278 = 1/10.

Figure 1 shows the exact specific heat of the Ising an-
tiferromagnet on L x L square lattices (L = 4, 10, and
16) for x = 1/10, as a function of a. Here, the dimen-
sionless variable a is used instead of real temperature
T because the short finite interval a = [0,1] covers the
whole temperature range T = 2J/(kglna) = [0,00] (in
unit of —J/kp). As L increases, the specific heat be-
comes sharper and the height of the specific-heat peak
increases. Also, the second column of Table 1 shows the
locations a(L) of the specific-heat peaks of the Ising an-
tiferromagnet on L x L square lattices (L = 4 ~ 16) for
x = 1/10. As the system size L increases, the values of
the specific-heat peak locations a(L) increase slowly. By
using the Bulirsch-Stoer (BST) algorithm [14], we ex-
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trapolated our results for finite lattices to infinite size,
and we obtained the extrapolated value of the Néel crit-
ical point, ax(xz = 1/10) = 0.33771(3), corresponding
to the Néel temperature Ty = 1.8424(1)(—J/kp) in a
uniform magnetic field B = 2.121(—J).

L a(L) y+(L)

4 0.303071 1.074031
6 0.315300 1.077952
8 0.321275 1.067096
10 0.324758 1.056631
12 0.327027 1.048369
14 0.328621 1.041984
16 0.329802

Table 1. The locations a(L) of the specific-heat peaks of the
Ising antiferromagnet on L x L square lattices for z = 1/10.
Here, y¢(L) denotes the thermal scaling exponents for finite
lattices.

Assuming that the locations a(z, L) of the specific-heat
peaks scale like [15]

a(z, L) - ax(z) = Aa(z, L) ~ L79), (8)
we can define the thermal scaling exponent

In[Aa(L +2)/Aa(L)]
In[(L +2)/L]

yt(L) = (9)

for finite lattices [9]. The third column of Table 1 shows
the values of y;(L) for © = 1/10. Here, as the value of
an(z), our estimated value 0.33771(3) is used because
the exact location of an(z) is not known for « # 1. The
extrapolated value by BST algorithm is y:(z = 1/10) =
1.000(1). To test the validity of our approach, we evalu-
ated the Néel critical point and the thermal scaling ex-
ponent for B = 0 (z = 1) where the exact values are
known [1]. The estimated values are an = 0.41423(6)
and y; = 1.01(1) in excellent agreement with the exact
values ay = V2 — 1 = 0.414214 and y: = 1, clearly vali-
dating the approach.

z__|an(w) In(z)  |yi(z)

1 ]0.41423(6) [2.269(6) [1.01(1)
1/2 ]0.40584(2) |2.218(6) |1.00(2)
1/5 10.37286(8) |2.0273(2)|1.00(1)
1/10 |0.33771(3) [1.8424(1)[1.000(1)
1072 [0.21449(3) [1.2991(2)|1.00(5)
1073 [0.12525(6) [0.9627(3)|1.00(3)
107 [0.07124(10){0.7571(4)|1.00(13)
1075 [0.04021(4) ]0.6224(2)|1.010(6)

Table 2. The Néel critical points an(z), the Néel temper-
atures In(z) (in unit of —J/kg), and the thermal scaling
exponents y¢(x), in the limit L — oo, for the square-lattice
Ising antiferromagnet, estimated from the specific-heat data
on finite lattices L = 4 ~ 16 (even sizes only).
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T Wu-Wu Wang-Kim
1/2 0.40581 0.40578
1/5 0.37283 0.37280
1/10 0.33768 0.33802
10—2 0.21440 0.21625
10-3 0.12516 0.12677
1074 0.07125 0.07215
10~° 0.04022 0.04068

Table 3. The results of the closed-form approximations,
Wu-Wu approximation [11] and Wang-Kim approximation
[12], for the antiferromagnetic critical line an(x).

Table 2 shows the Néel critical points an(z) (equiva-
lently, the Néel temperatures Tn(x)) and the thermal
scaling exponents y:(z), in the limit L — oo, of the
square-lattice Ising antiferromagnet for various values of
x, estimated from the specific-heat data. The estimated
values for y;(x) imply that the exact value of the thermal
scaling exponent is y;:(x) = 1 (equivalently, a(z) = 0) for
the square-lattice Ising antiferromagnet in a nonzero uni-
form magnetic field (B # 0). Therefore, we may assume
that its specific heat retains the logarithmic singularity

at the Néel critical points, based on the fact that the spe-
cific heat for the two-dimensional super-exchange Ising
antiferromagnet diverges logarithmically in a magnetic
field [4,5]. Also, we compare our results for the Néel crit-
ical points with the closed-form approximations [11,12],
as shown in Table 3. Our results agree well with those of
the closed-form approximations. Especially, the results
of Wu-Wu approximation [11] are closer to ours.

In conclusion, the specific heat for the Ising antiferro-
magnet in a uniform external magnetic field hase been
investigated using its exact grand partition functions on
L x L square lattices (L = 4 ~ 16). The Néel critical
points for B # 0 have been estimated from the loca-
tions of the specific-heat peaks and compared with the
closed-form approximations, preferring Wu—Wu approx-
imation. The thermal scaling exponents y:(x # 1) = 1.0
of the square-lattice Ising antiferromagnet in a magnetic
field have been obtained directly from its specific heat
for the first time. It is also possible to calculate the mag-
netic scaling exponent (y) using the specific heat. For
example, for a = 1/5, the estimated value of the magnet-
ic exponent is y, = 1.04(9), in excellent agreement with
the result obtained from Yang—Lee zeros [7].
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IINTOMA TEIIJIOEMHICTD ISMHIIBCHKOI'O AHTU®EPOMATHETUKA
HA KBAJIPATHINI I'PATIII B MATHITHOMY ITOJII

Cpour-Hon Kim
LIxona sinvHur mucmeuyme ma Hayx, Hayitonasvhuti ynisepcumem Yynedorcy,
Yynedorcy, 380-702, 1liedenna Kopes

PospaxoBaHo nuToMy TeNIOEMHICTH 13MHIIBCHKOro aHTH(EpOMAarHeTHKa Ha KBaJAPAaTHIN 'PATI B OHOPI/IHO-

My MarHiTHomy nosii B 3 BUKOpHCTaHHSIM TOYHOI BeJMKOI KaHOHIUHOI cymu jyuisti rpatku L X L (L =4 ~ 16) y

JIOBIJIBHOMY HEHYJILOBOMY 30BHIIIIHBOMY II0JI IIPH JOBinbHIN TeMieparypi. ¥ rpauuri L — 0o 3pobJIeHO OIIHKY aH-

tudepomaruitanx (Heenst) kpurnanux To9ok ays B # 0, BUXOAAHA 3 PO3TAILYBAHHS MIKIB TMTOMOI TEIJIOEMHOCT.

Yuepiie 6e3mocepeIHbO 3 MUTOMOI TEIJIOEMHOCTI OTPUMAHO, IO TEIJIOBUN MAaCIITAOHUI MMOKA3HUK I3UHI'iBCHKOIO

aHTH(deEpOMarHeTHKa Ha KBaAparTHiil rpaTni B MaraitaoMy nomi y:(B # 0) = —1.0 B kpurnunux Toukax Heess B

OJHOPITHOMY MAarHiTHOMY ITOJIi.
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