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We study energy spectrum for the hydrogen atom problem in Dirac theory with Lorentz-covariant
deformed algebra leading to minimal length. Developing perturbation theory free of divergencies we
calculate the correction to any energy level in a simple case of deformation when one deformation
parameter vanishes. Assuming that the effect of minimal length on energy spectrum cannot be seen
experimentally we find the upper bound of minimal length.
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I. INTRODUCTION

String theory and quantum gravity independently sug-
gest the existence of minimal length as a finite lower
bound to the possible resolution of length [1–3]. Kempf
et al. showed that minimal length can be introduced by
modifying a canonical commutation relation( [4–7]). The
deformed commutation relation according to Kempf et.
al in the D-dimensional space reads

[X̂i, P̂j ] = i~[(1 + βP̂ 2)δij + β′P̂iP̂j ],

[X̂i, X̂j ] = i~
2β − β′ + (2β + β′)βP̂ 2

1 + βP̂ 2
(P̂iX̂j − P̂jX̂i),

[P̂i, P̂j ] = 0. (1)

Here β and β′ are two small nonnegative parameters.
But it should be noted that originally the deformed

algebra leading to a quantized space-time was intro-
duced by Snyder in the relativistic case [8]. In paper
[9] (D+1)-dimensional two-parametric quantized space-
time Lorentz-covariant deformed algebra was proposed
as a generalization of Kempf’s D-dimensional one.

[X̂µ, P̂ ν ] = −i~[(1− βP̂ρP̂
ρ)gµν − β′P̂µP̂ ν ],

[X̂µ, X̂ν ] = i~
2β − β′ − (2β + β′)βP̂ρP̂

ρ

1− βP̂ρP̂ ρ

× (P̂µX̂ν − P̂ νX̂µ), (2)

[P̂µ, P̂ ν ] = 0,

with gµν = gµν = diag(1,−1,−1, . . . ,−1) being the met-
ric tensor.

Algebra (2) contains the Snyder algebra as a special
case (D = 3, β = 0). It is interesting to study the
influence of the minimal length assumption on the prop-
erties of quantum systems. Such an interest is motivated
by the perspective of checking the validity of such an
assumption and a possibility to obtain the constraints
on the deformation parameters. The hydrogen atom as a

quantum-mechanical system with a highly accurate theo-
retical prediction and the most precise experimental data
suits well for such an aim.

In the present paper we obtain a correction to the en-
ergy of some “problem” states of the hydrogen atom in
Dirac theory in space with a special case of the deforma-
tion β′ = 0 of Lorentz-covariant commutation relation
(2).

The paper is organized as follows. In Section II we
calculate the energy correction of the ground state both
for the hydrogen atom with Kempf’s deformation and
a relativistic hydrogen atom for Lorentz-covariant one
(β 6= 0, β′ = 0) using conventional perturbation theo-
ry and an expansion of the ground state wave function
over eigenfunctions of the distance operator. Consider-
ing the special case of deformation in Section III we ob-
tain a correction to the energy for states with j = 1

2 of
Coulomb problem in Dirac theory using modified per-
turbation theory. Finally, in Section IV we conclude the
obtained results.

II. CORRECTION TO THE GROUND STATE
ENERGY

In this section we calculate a correction to the ground
state energy of the hydrogen atom in Dirac theory with
Lorentz-covariant deformed algebra with the minimal
length using conventional perturbation theory and an
expansion of the ground state wave function over eigen-
functions of the distance operator.

We study the Dirac equation in the (3+1)-dimensional
case in the form of[
cρ̂a(σ̂xP̂

x + σ̂yP̂
y + σ̂zP̂

z) +mc2ρ̂c −
e2

R

]
ψ = P̂ 0cψ,

(3)

where operators of position X̂µ and momenta P̂µ satisfy
the deformed commutation relation (2).
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If we go to a stationary wave equation in the or-
dinary (undeformed) quantum mechanics, we will ob-
tain an eigenequation for the Hamiltonian. The same
eigenequation can be derived from the equality to zero of
the deviation of the Hamiltonian. Such a coincidence is
natural for undeformed quantum mechanics. For quan-
tum mechanics with Lorentz-covariant deformed algebra
(2) it is not the case. If β′ 6= 0, then [Ĥ, P̂0] 6= 0 and we
have a problem with deriving the stationary equation.
Therefore we consider a simple case of the deformation
β 6= 0, β′ = 0.

Algebras (1) and (2) are rather similar. We can apply
our method to a less complicated problem of the hydro-
gen atom in space with Kempf’s deformed commutation
relation. Now we are going to obtain the correction to
ground state energy of the hydrogen atom problem in
space with deformed algebra (1) using the matrix ap-
proach. We choose the following representation for the
algebra in the case β 6= 0, β′ = 0:

X̂i = x̂i +
β

2
(p̂2x̂i + x̂ip̂

2); (4)

P̂i = p̂i,

with [x̂i, p̂j ] = i~δij . For the undeformed Heisenberg al-
gebra the position representation may be taken: x̂i =
xi, p̂i = −i~ ∂

∂xi
.

It can be shown that for s-states the distance operator
has a rather simple form

R̂ = r +
β

2

(
p̂2r + rp̂2 +

2~2

r

)
, (5)

with r =
√
x2

i . One can easily find the eigenvalues and
eigenfunctions of R̂:

ln = (2n+ 3)~
√
β, (6)

φn(r) =

√
2

~
√
β

1√
(n+ 1)(n+ 2)

%e−
%
2Q2

n(%).

Here % = 2r
~
√

β
and the normalization condition for φn(r)

is ∫ ∞

0

dr|φn(r)|2 = 1. (7)

It should be noted that our results are in good agree-
ment with the ones obtained in [10] where the eigenprob-
lem for squared distance operator in momentum repre-
sentation without any assumption on deformation pa-
rameters and orbital quantum number was considered.

Now let us calculate a correction to the ground state
of the hydrogen atom. We expand the wave function of
the ground state

ψ1s(r) =

√
4
a3
re−

r
a (8)

over the eigenfunctions of R̂

ψ1s(r) =
∞∑

n=0

Ynφn(r) (9)

with the expansion coefficients

Yn = 8

√
(n+ 1)(n+ 2)

2

(
a~
√
β
) 3

2 (~
√
β − a)n

(~
√
β + a)n+3

. (10)

We write the Hamiltonian of the problem under consid-
eration in the following form

Ĥ = Ĥ0 + V̂β . (11)

Here Ĥ0 = p̂2

2m−
e2

r is the Hamiltonian of the unperturbed
problem, V̂β = e2

r − e2

R̂
is the perturbation operator.

The mean value of the inverse distance operator is

〈ψ1s(r)|R̂−1|ψ1s(r)〉 =
∞∑

n=0

Y 2
n

(2n+ 3)~
√
β

=
8
√

~
√
β

3(a+ ~
√
β)3 2F1

(
−1

2
,
3
2
;
5
2
;− (a− ~

√
β)2

4a~
√
β

)
,

with 2F1 (a, b; c; z) being the hypergeometric function.
Expanding the latter expression over small β we obtain

〈ψ1s(r)|R̂−1|ψ1s(r)〉 =
1
a

+
~2β

a3

(
4 ln

~
√
β

a
+ 3
)

+ O(β2). (12)

And a correction to the energy of the ground state is

∆E1s = 〈ψ1s(r)|e2r̂−1 − e2R̂−1|ψ1s(r)〉

= −~2βe2

a3

(
4 ln

~
√
β

a
+ 3
)

+O(β2). (13)

A similar result was obtained in [12] using the so-called
shifted expansion

∆E1s = −~2βe2

a3

(
4 ln

~
√
β

a
+ 2 ln 2 + 4γ − 1)

)
+ o(β) (14)

The difference is in the coefficient near the linear over β
term and it insignificantly affects the estimation of min-
imal length.

The same procedure can be provided for the deforma-
tion algebra (2). We choose the representation

X̂µ = x̂µ +
β

2
(
x̂µ(p̂2 − (p̂0)2) + (p̂2 − (p̂0)2)x̂µ

)
; (15)

P̂µ = p̂µ,

with x̂µ = xµ, p̂µ = i~gµν ∂
∂xν and find out that for the

states with zero orbital quantum number the distance
operator equals

R̂ = (1− β(p̂0)2)r +
β

2

(
p̂2r + rp̂2 +

2~2

r

)
. (16)
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We find eigenfunctions and eigenvalues from the follow-
ing equation

R̂e−iEt/~ϕn(r) = λne
−iEt/~ϕn(r). (17)

Thus, we obtain

λn = (2n+ 3)~
√
θ(1− βE2/c2), (18)

ϕn(r) =

√
2

~
√
θ

1√
(n+ 1)(n+ 2)

ρe−
ρ
2Q2

n(ρ).

Here Q2
n(ρ) are the Laguerre polynomials and we denote

θ = β
1−βE2/c2 and ρ = 2r

~
√

θ
. For the ground state of a rel-

ativistic hydrogen atom we can separate the radial part
of the wave function from the spherical and spinor parts.
So the radial part of the wave function is

ψ01(r) =
1√

Γ(s+ 1)

(
2
a

) s+1
2

r
s
2 e−

r
a (19)

with the normalization condition∫ ∞

0

dr|ψ01(r)|2 = 1 (20)

and s = 2
√

1− α2, α being the fine structure constant.
Expanding ψ01(r) over the eigenfunctions ϕn(r)

ψ01(r) =
∞∑

n=0

Υnϕn(r) (21)

for the expansion coefficient we find

Υn = 2
s+2
2
√

(n+ 1)(n+ 2)
Γ
(

s
2 + 2

)√
Γ(s+ 1)

a
3
2

(
~
√
θ
) s+1

2

(
a+ ~

√
θ
) s+4

2
2F1

(
−n, s+ 4

2
; 3;

2a
a+ ~

√
θ

)
. (22)

The mean value of the inverse distance operator in this case equals

〈ψ01(r)|R̂−1|ψ01(r)〉 =
∞∑

n=0

Υ2
n

(2n+ 3)~
√
θ(1− βE2/c2)

. (23)

We failed to summarize this sum exactly, but preserving the leading term over the deformation parameter β and the
fine structure constant α we obtained

〈ψ01(r)|R̂−1|ψ01(r)〉 = 〈ψ01(r)|r−1|ψ01(r)〉+
~2β

a3

(
4 ln

~
√
β

a
+

1
α2

)
. (24)

Thus, the correction to the ground state energy of the hydrogen atom in space with Lorentz-covariant deformed
algebra is

∆E01 = 〈ψ01(r)|e2r̂−1 − e2R̂−1|ψ01(r)〉 = −~2e2β

a3

(
4 ln

~
√
β

a
+

1
α2

)
. (25)

III. MODIFIED PERTURBATION THEORY

In our previous paper [11] we chose the following rep-
resentation for algebra (2)

X̂µ = x̂µ − β
2 [p̂ρp̂

ρx̂µ + x̂µp̂ρp̂
ρ)] ,

P̂µ = p̂µ,

x̂µ = xµ,

p̂µ = i~gµν ∂
∂xν

(26)

and obtained the expansion up to the first order over the
deformation parameter for the inverse distance operator

R̂−1 =
1
r
− β

2

(
1
r
(p̂2 − (p̂0)2 + (p̂2 − (p̂0)2

1
r

+
2~2

r3

)
(27)

as well as calculated a correction to any energy lev-
el besides some “problem states” in a simple case of
deformation when one deformation parameter vanish-
es, namely β′ = 0, β 6= 0. For the states with k = ±1
(j = |k| − 1/2 = 1/2) we obtain the divergent mean val-
ue of the operator in square brackets in (27). It means
that such an expansion is not correct for the mentioned
states, that is we have to preserve all the terms of the
series.

In this section we consider a modified perturbation
theory, which was proposed in [12] to avoid divergences
of the correction to s-levels of the nonrelativistic hydro-
gen atom problem with Kempf’s deformed commutation
relations. As we see in the previous section the result
of [12] slightly differs from the exact one.

In our case such a modification of the perturbation
theory gives a possibility to obtain a correction for the
energy spectrum of the problem under consideration in
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the case of states with k = ±1. Mind that we work with
a simple case of deformation β 6= 0, β′ = 0.

In the same representation (26) we rewrite R̂ as follows

R̂ =
√
r2 + b2 − β(r2p̂ν p̂ν + p̂ν p̂νr2 − ~2D + b

2
), (28)

where βb
2

= b2. Similarly to the nonrelativistic case we
provide a shifted expansion in the vicinity of a new point
r2 + b2. We consider the introduced parameter b to be
sufficiently small to discard terms of higher order in the
series expansion, but not zero.

We present the result of the extraction of the square
root (28) in the following form

R̂ =
√
r2 + b2 + Ĉ(β), (29)

where

Ĉ(β) = βĈ1 + β2Ĉ2 + β3Ĉ3 + . . . (30)

If we equate squared right hand sides of (28) and (29)
we obtain the equations for operators Ĉ1, Ĉ2, . . . . For Ĉ1

we have

Ĉ1

√
r2 + b2 +

√
r2 + b2Ĉ1 = −β(r2p̂ν p̂

ν + p̂ν p̂
νr2 − ~2D + b

2
). (31)

and

Ĉ1 =
1
2

(
r2√
r2 + b2

p̂2 + p̂2 r2√
r2 + b2

− 2p2
0r

2

√
r2 + b2

+
2~2 − b

2

√
r2 + b2

+
~2b4

(r2 + b2)5/2

)
. (32)

Expanding the inverse distance R−1 in the series over the parameter of deformation up to the first order β we
have:

R̂−1 =
1√

r2 + b2
+
β

2

(
r2

r2 + b2
p̂ν p̂

ν 1√
r2 + b2

+
1√

r2 + b2
p̂ν p̂

ν r2

r2 + b2

)

− 2~2β − b2

2(r2 + b2)3/2
− ~2βb4

2(r2 + b2)7/2
. (33)

Now the perturbation operator reads

V̂β =
e2

r
− e2√

r2 + b2
− e2β

2

(
r2

r2 + b2
p̂ν p̂

ν 1√
r2 + b2

+
1√

r2 + b2
p̂ν p̂

ν r2

r2 + b2

)
+
e2(2~2β − b2)
2(r2 + b2)3/2

+
e2~2βb4

2(r2 + b2)7/2
. (34)

We calculate the correction to the ground state (p = 0, k = 1) caused by perturbation V̂β .

∆E(1)
01 (b) = −sβ~2e2

a3α2
+

8β~2e2

a3

1
s(s− 1)(s− 2)

− e2β~2

a3

2
s(s− 1)

(35)

+
e2

a

21−sπ

sin πs
2 Γ( s

2 )2

(
2
a

)s(2β~2bs−2

s
+

2− s

s2
bs +

2β~2bs−2(2− s)(s+ 6)
12s

)
.

Here s = 2
√

1− α2 and α is the fine structure constant.
Expanding (35) into a series over the small α we obtain

∆E(1)
01 = −e

2~2β

a3α2
− 2e2~2β

a3
ln

~2β

a2
+
e2~2β

a3

(
−25

12
− 4γ + q2 − 2 ln q

)
+O(α0) (36)

Here we denote b = q~
√
β.

As we see the calculated correction (36) depends on
the unknown parameter q. Of course, if we calculate the
mean value of the exact perturbation operator V̂β =

e2
(
r−1 − R̂−1

)
, we would not obtain any dependance

on q. But if we assume that q does not depend on the
parameter β, the contribution to the energy correction of
the third term can be neglected in comparison with the
former two terms and we obtain (25). Thus, this means
that the proposed method of shifted expansion gives a
result sufficiently close to the correct one.
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We also calculate a correction to any excited state with
k = ±1 (see Appendix A). Our result can be presented
as

∆̃E
(1)

pk = ∆E(1)
pk + Θ(1)

pk . (37)

Here

Θ(1)
pk =

e2

48a

(
2
√

2~
√
β

an∗

)s
sk(n∗ + k) + 2pk2

n∗3

× π
3
2 4−s(s3 + 4s2 − 12sk2 − 24)Γ(p+ s)

p!Γ(s/2 + 1)3Γ(s/2 + 1/2) sin(π/2(s+ 2))

the expression for ∆E(1)
pk is see in [11]. The quantum

number p is connected with the main quantum number
n by p = n− k and the quantum number k is connected
with the total angular momentum quantum number by
|k| = j + 1/2 and s = 2

√
k2 − α2, n∗ =

√
p2 + 2ps+ k2.

As we noticed the correction to the energy slightly de-
pends on the parameter q, thus here we choose q =

√
2

to vanish the term proportional to (r2 + b2)−3/2 in (34).
To check the validity of our calculus let us discuss the

obtained result for the correction to any excited state
with k=-1 (or orbital quantum number l = 1). If we ne-
glect the term connected with (p0)2

r in the expression for
this correction and take the nonrelativistic limit (α→ 0)
we obtain the well known result for a correction to energy
levels with l = 1 of the hydrogen atom in space with de-
formed algebra (1). This fact ensures us that expressions
(35) and (37) are correct.

Finally, we mention that the average 〈 (p0)2

r 〉 has a sig-
nificantly larger contribution to the energy correction
than other terms. This result can be predicted as far
as p0 contains the rest energy, which considerably ranks
over the bound state energy.

We can make an estimation of the minimal length com-
paring our results with the experimental data of the fre-
quency emitted during the transition 1s− 2s. The accu-
racy of the measurement is of the order 100 Hz [13]. If
we assume that the effect on the hydrogen atom ener-
gy spectrum caused by the deformation of commutation
relations is less than the measurement accuracy, we find

∆X ≤ 10−19 m. (38)

IV. CONCLUSION

We study the hydrogen atom problem in the space
with Lorentz-covariant deformed algebra with the mini-
mal length. In our previous paper [11] using ordinary per-
turbation theory we calculated the correction to the ener-
gy spectrum for all states besides some “problem states”
with |k| = 1. The problem is connected with the terms
proportional to 1/r3 and 1

r p̂
2 + p̂2 1

r contained in the per-
turbation operator, because of their divergent contribu-
tion to the energy correction. To overcome these diver-
gencies, in the present paper we develop the modified
perturbation theory by analogy with the nonrelativistic
case. It gives us a possibility to calculate a correction
to the energy spectrum for any eigenstate including the
“problem states”. Assuming that the effects of minimal
length on the energy spectrum of the hydrogen atom can-
not yet be seen experimentally we find that the upper
bound of the minimal length is of the order 10−19 m.
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APPENDIX A: CALCULATION OF THE CORRECTIONS TO ANY ENERGY LEVEL
OF THE HYDROGEN ATOM WITH |k| = 1

Let us calculate the mean value
〈

e2

r − e2
√

r2+b2

〉
in the state with |k| = 1 preserving the leading terms over small b

only 〈
e2

r
− e2√

r2 + b2

〉
=

4~2C2(p, k)
a2α2

(
IFF (p, k) + (n∗ − k)2IGG(p, k)− (2p+ s)(n∗ − k)

n∗
IFG(p, k)

)
. (A.1)

Here

IFF (p, k) =
∫ ∞

0

Fpk(x)

(
e2

x
− e2√

x2 + b̄2

)
Fpk(x)dx,

IGG(p, k) =
∫ ∞

0

Gpk(x)

(
e2

x
− e2√

x2 + b̄2

)
Gpk(x)dx, (A.2)

IFG(p, k) =
∫ ∞

0

Fpk(x)

(
e2

x
− e2√

x2 + b̄2

)
Gpk(x)dx,

and b̄ = 2b
an∗ . The expressions for the functions Fpk(x) and Gpk(x) are:
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Fpk(x) = x
s
2 e−

x
2Qs

p(x),

Gpk(x) = x
s
2 e−

x
2Qs

p−1(x) (A.3)

C(p, k) =

√
(n∗ + k)

p!Γ(p+ s+ 1)
α2

n∗4
.

To recall the structure of the relativistic hydrogen atom wave function see [14].
To calculate integrals (A.2) let us introduce the function f of positive s and non-negative small b̄ by the following

integral

f(s, b̄) =
∫ ∞

0

xse−x

(
1
x
− 1√

x2 + b̄2

)
dx. (A.4)

In the asymptotic of small b we find the following expression for the latter function

f(s, b̄) ≈


1
2 b̄

2Γ(s− 2)− 1
2
√

π
b̄sΓ

(
− s

2

)
Γ
(

s
2 + 1

2

)
, if s ≤ 2

1
2 b̄

2Γ(s− 2), if s > 2 .

If we present the Laguerre polynomial as

Qs
p(x) =

p∑
i=0

(−1)ixi

i!
Γ(p+ 1)Γ(s+ p+ 1)

Γ(p− i+ 1)Γ(s+ i+ 1)
, (A.5)

we find that

IFF (p, k) =
p∑

i=0

p∑
j=0

(−1)i+jΓ2(s+ p+ 1)Γ2(p+ 1)f(s+ i+ j, b̄)
i!j!Γ(s+ i+ 1)Γ(s+ j + 1)Γ(p− i+ 1)Γ(p− j + 1)

. (A.6)

Next, substituting (A.5) in (A.6) we obtain

IFF (p, k) =
b̄2

2

p∑
i=0

p∑
j=0

(−1)i+jΓ2(s+ p+ 1)Γ2(p+ 1)Γ(s+ i+ j − 2)
i!j!Γ(s+ i+ 1)Γ(s+ j + 1)Γ(p− i+ 1)Γ(p− j + 1)

− b̄s

2
√
π

Γ2(s+ p+ 1)
Γ2(s+ 1)

Γ
(
−s

2

)
Γ
(
s

2
+

1
2

)
. (A.7)

We have already dealt with the same sum as in the first term of the latter expression when we calculated the integral∫∞
0
Fpk(x) 1

x3Fpk(x)dx from
〈

e2~2β
r3

〉
with the only difference that in that case the parameter s was larger than 2.

Analyzing this sum we arrive at the conclusion that nothing changes for the case when
s = 2

√
1− α2. Therefore we write

IFF =
b̄2

2
Γ(s+ p+ 1)Γ(p+ 1)

s2 + 6ps+ 3s+ 6p2 + 6p+ 2
s(s2 − 1)(s2 − 4)

−

− b̄s

2
√
π

Γ2(s+ p+ 1)
Γ2(s+ 1)

Γ
(
−s

2

)
Γ
(
s

2
+

1
2

)
(A.8)

and similarly for IGG, IFG. Finally, we obtain〈
e2

r
− e2√

r2 + b2

〉
=

8e2~2β

a3n3

(
− 1

2s(s2 − 1)
+

3k2 (2p+ s) (2n+ k(2p+ s))
2n2s(s2 − 1)(s2 − 4)

)
+

e2

2
√
πa

(
2
√

2~
√
β

an∗

)s
sk(n∗ + k) + 2pk2

n∗3
Γ
(
− s

2

)
Γ
(

s
2 + 1

2

)
Γ(s+ p+ 1)Γ(p+ s)

p!Γ(s+ 1)2
.

Of course, modified perturbation theory works also in the case Eigenfunctions and eigenvalues |k| > 1. Since in such
circumstances the second term in the last expression can be omitted due to its higher infinitesimal order over the
deformation parameter β.

Thus, the eigenstates with |k| > 1 obey〈
e2

r
− e2√

r2 + b2

〉
=
〈
e2~2β

r3

〉
, (A.9)

in linear approximation over a small β, as it has to be.
A similar calculation can be provided for other mean values. As a result we obtain (37).
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МОДИФIКОВАНА ТЕОРIЯ ЗБУРЕНЬ ДЛЯ АТОМА ВОДНЮ
У ПРОСТОРI З ЛОРЕНЦ-КОВАРIАНТНОЮ ДЕФОРМОВАНОЮ АЛҐЕБРОЮ

З МIНIМАЛЬНОЮ ДОВЖИНОЮ

М. I. Самар
Кафедра теоретичної фiзики, Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Драгоманова, 12, Львiв, 79005, Україна

Ми вивчаємо енерґетичний спектр атома водню в теорiї Дiрака з Лоренц-коварiантною деформованою
алґеброю, що веде до мiнiмальної довжини. Розвиваючи вiльну вiд розбiжностей теорiю збурень, ми об-
числили поправки до всiх енерґетичних рiвнiв у простому випадку деформацiї, коли один iз параметрiв
деформацiї дорiвнює нулевi. Припускаючи, що вплив мiнiмальної довжини на енергетичний спектр не мож-
на спостерегти експериментально, ми знайшли верхню межу для мiнiмальної довжини.
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