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We discuss a system of the Kerr-like quantum nonlinear oscillator excited by a series of ultra-
short external pulses. These coherent excitations, along with the nonlinearity involved in the system,
can lead to the quantum chaotic behaviour. For that model, we calculate the fidelities of the wave
function which describe the system’s dynamics. We show that such defined fidelity and its decay
rate can be applied as an indicator of the quantum chaotic behaviour appearance. We also discuss
the problem of how the initial distance between the two close wave functions can influence the

fidelity changes.

Key words: quantum chaos, fidelity, entropy, Kerr nonlinear oscillator.

PACS number(s): 05.45.Mt, 42.50.Dv

I. INTRODUCTION

There are many problems concerning classical dynam-
ics of the physical systems that are treated as chaotic
ones. For these chaotically behaving models one can talk
about a chaotic motion when the system (whose dynam-
ics is described by the nonlinear equations) is sensitive
to initial conditions. In consequence, the system’s tra-
jectories defined in the phase space become unstable and
errors in the initial data grow exponentially. As a result,
the final state of the system is unpredictable. The meth-
ods for analysing such a situation are well developed.
For instance, one can numerically determine the chaotic
behaviour of the system analysing the Lyapunov expo-
nents. However, for quantum systems, as a result of the
linearity of the Schrodinger equation (for this case, the
system’s dynamics is governed by the unitary evolution
operator), small changes in the initial state do not cause
indefinite changes in the final state of the considered sys-
tem. Therefore, standard methods used for problems of
classical chaos are not useful for such cases.

In this paper, we shall concentrate on the method that
leads to a description of the quantum dynamics of sys-
tems behaving chaotically in the classical limit basing on
the time varying fidelity between quantum states. As it
has been shown the fidelity can be used as a signature of
chaos [1-3]. In fact, the fidelity is a measure of stability of
time evolution of quantum states. It is worth noting that
the fidelity can be used as a standard parameter which
allows a measure of decoherence in the systems applied
in quantum information theory. It has been proved that
whenever a quantum system begins to behave chaotical-
ly, the fidelity decreases exponentially [4-6]. The rate of
the fidelity decay has been the subject of several stud-
ies and depending on the perturbation character and its
strength, various types of that decay have been identi-
fied.

It has been shown that for the perturbative regime
(which corresponds to small perturbations) the fidelity
decay is of the Gaussian type. It is also characteristic of
integrable and quasi-integrable classical dynamics. The
increase in the value of the perturbation strength leads
to a golden rule regime of fidelity decay. Such a decay is
exponential [5] with the slope depending on the pertu-
bation strength. In general, one can say that the decay
of the quantum fidelity corresponding to the quantum
chaotic regions is slower than those for integrable ones.

The main aim of our considerations presented in this
paper is an analysis of the fidelity of the time-evolution
for the long-time limit, contrary to papers [2, 3] where
generally the short-time limit was considered. As we shall
show, the behaviour of this strictly quantum parameter
can indicate whether the considered system is located
within the area of regular or chaotic dynamics. More-
over, we shall show that the analysis of the influence
of the value of initial divergence between wave-functions
can give us the information concerning the character of
the system evolution.

For our considerations, we apply the quantum ana-
logue of a kicked Kerr-like nonlinear oscillator (some fea-
tures of which have been discussed in [7]). As was shown
in our previous papers [8,9], this model is a good example
of the quantum chaotic systems which can be used effec-
tively as a tool for various considerations of the quantum
chaos indicator.

II. THE MODEL

We consider the known model comprising the nonlin-
ear Kerr-like oscillator externally driven by a series of
ultra-short coherent pulses [7]. This model is often re-
ferred to as the “kicked nonlinear oscillator”. Moreover,
it is known that the classical counterpart of this model

1002-1



J. K. KALAGA, A. KOWALEWSKA-KUDLASZYK, W. LEONSKI, V. CAO LONG

may exhibit regular and chaotic behaviours as well. The
character of a such system’s dynamics depends on the
values of the parameters that describe the system.

The dynamics of the system is governed by the follow-
ing Hamiltonian (we use the units of i = 1):

gZﬁNL+ﬁKa (1)

where H ~1 describes the evolution of the system be-
tween the two subsequent pulses and is defined as

Hyp = g(af)%?. 2)
The parameter x is a nonlinearity constant, whereas a
(a') is a bosonic annihilation (creation) operator.
The Hamiltonian H corresponds to the interaction
of the system with a single infinitesimally short external
pulse and is given by

Hy =ce(al +a))_o(t—kT) (3)
k=1

where T is a time between the two subsequent pulses
and € is the strength of the external field — nonlinear os-
cillator interaction. As was mentioned above, the pulse-
duration is assumed to be extremely short. In fact, the
time-duration of the pulse is much smaller than the time
T. Therefore, we can model such series of pulses by a
sum of the Dirac-delta functions.

Since, we neglect all damping processes, the system’s
evolution can be examined by unitary evolution opera-
tors. They are defined on the basis of the above Hamil-
tonians. Thanks to the fact that the pulses are extreme-
ly short, the whole evolution can be divided onto two
stages. The first one corresponds to the “free” nonlinear
evolution, whereas the second is related to the action of
the pulses. Thus, for the period of time between the two
subsequent external pulses the evolution operator can be
expressed as:

UNL _ e—ixTﬁ(ﬁ—l)/Q7 (4)

whereas that for the interaction with a single pulse is
related to

UK = eiis(d“rd) . (5)

We assume that the system is prepared initially in the
vacuum state | ¢(0)) =| 0). For the time just after the k-
th external pulse the wave-function describing the state
of the system can be determined by action (k times) of
the above operators on | ¢(0)). It can be expressed as:

| (k) = (UxUnp)* | $(0)) . (6)

It should be stressed that in fact we perform a quantum
mapping procedure.

As we shall compare the dynamics of the quantum
system with its classical counterpart we need to deter-
mine the classically regular and chaotic motion regions.
To do it we perform the procedure presented in |7, 9]
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to find the classical regular and chaotic regions. Within
this procedure we define the parameter « that is a classi-
cal counterpart of the bosonic annihilation operator. The
recurrence mapping formula for this parameter has the
following form [7,9]:

ary1 = (ag — ie) e ixlar—iel )T (7)
In fact, the quantity |ax|? denotes the classical system’s
energy and corresponds to the mean number of pho-
tons (afa) for the quantum case. Assuming that for the
case discussed here T = 7 and x = 1 and offering the
discussion analogous to that presented in [7], we have
determined the regions of the classically regular and
chaotic motion regions. Thus, we have stated that for
0 < € < 0.344 and 0.356 < € < 0.47 the system exhibits
regular behaviour whereas for € > 0.47 and € ~ 0.35 a
chaotic evolution can be observed. If the value of € ex-
ceeds ~ 0.47 considerably, we can say that the system
reaches “deep chaos” regime. The determination of these
conditions will help us to further discuss the results ob-
tained for the quantum system.

III. THE RATE OF FIDELITY DECAY

Similarly to [1,2] we define the fidelity F'(k) as an indi-
cator of the quantum chaotic system’s behaviour. How-
ever, one should keep in mind that papers [2,3] were de-
voted to the short-time behaviour of the fidelity whereas
in the present paper we shall concentrate on its long-
time evolution. We believe that such an attempt is more
appropriate, it is more related with the philosophy of
deterministic chaos investigations.

Thus, we define the fidelity between the wave-function
corresponding to the unperturbed system and that for
the system affected by some tiny perturbation. To intro-
duce such a perturbation we define new unitary evolution
operator corresponding to the action of a single external
pulse. This operator can be expressed as:

Ugep = e~ EXA@+D) (8)

where we have introduced some tiny perturbation A < €.
This operator can be used in the quantum mapping pro-
cedure analogous to that defined by eqgs.(4-6).

Since the fidelity is defined as

F (k) = [(ulk) [ p(F)), 9)

we can write the following formula determining its quan-
tum mapping
F(k) = |t = OO0k, ) OxUxs) it = 0))
(10)
Such a defined fidelity parameter allows us to determine

the system’s characteristics concerning its chaotic or reg-
ular behaviours.
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Fig. 1. The fidelity F versus the number of pulses for vari-
ous values of the strength of the external pulse for A = 0.001:
a) regular region for classical system; b) chaotic region for
classical system.

It is known that for the short-time regime the fideli-
ty decay is quadratic [2]. However, after some period of
time, the character of decay changes considerably and
comes to depend on the strength of perturbation. In par-
ticular, when the value of the perturbation parameter is
much smaller than that describing the strength of the ex-
ternal pulse (A < ¢), the decay is of the Gaussian type.
However, if we increase the perturbation strength (A),
the decay becomes exponential [2].

In this paper, we shall study the case when the de-
cay of the fidelity has the Gaussian character showing
how the fidelity decay changes with the varying external
pulse’s strength . Therefore, we intend to concentrate
our discussion on fidelity and its decay rates for various
values of €. Thus, from Fig. 1 we can see that the decay
rate changes depending on the strength of the external
pulse. For regular regions (Fig. 1a) we can observe that

the decay rate is smaller if the value of ¢ is larger. More-
over, the first minimal value of fidelity (seen in Fig. 1a)
is reached earlier if we decrease external coupling. For
the chaotic regions (Fig.1b) the situation becomes more
complicated. It is difficult to determine for which value of
€ the rate reaches the smallest value, especially if we are
inside the deep chaos regime. However, we can see that
the system needs more time to reach the first minimum
of the fidelity. Moreover, for higher values of the excita-
tion strength instead of the well pronounced minimum
we can observe a few shallow ones.
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Fig. 2. The number of pules for which fidelity F = 0.5
versus the strength of the external pulse (A = 0.001).

To show the unpredictable character of the fidelity evo-
lution for the chaotic cases we have plotted (Fig.2) the
number of external pulses necessary to achieve by F the
value equal to 1/2 as a function of €. This number gives
us the information about the fidelity decay rate. We see
that for the cases when ¢ < 0.52 the number of pulses
grows slightly. For higher values of ¢ it changes its val-
ue in a completely chaotic way. Moreover, it should be
stressed that if the value of € corresponds to the first,
narrow chaotic band (for the classical system), we can
see the same smooth e-dependence as for the regular re-
gion. So, this chaotic behaviour band is characteristic
only for the classical system [6] and it does not appear
for the quantum system. However, when the value of ¢
corresponds to the “deep chaos” region for the classical
system, changes of the rate have an irregular character.

Such behaviour can be observed for various values of
the initial perturbation parameter A (Fig.3). However, if
we increase the value of A, the first maximum is shifted
slightly towards higher values of . Moreover, the high-
er values of A we assume (stronger initial perturbation),
the lower the curves corresponding to them are located.
We see that the number of pulses necessary to get 1/2
by the fidelity is much smaller when the initial diver-
gence A is greater. In addition, for higher values of A
and “deep chaos” regime although we observe the rapid
changes in the values of the plotted parameter, the char-

acter of these changes is not so rapid as for smaller values
of A.
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Fig. 3. The number of pules for which fidelity F = 0.5 ver-
sus the strength of the external pulse for various values of the
perturbation parameter A.

We see that the character of changes of the rate of fi-
delity decay depends on the region in which the system
evolution is located. The changes of the rate are sensi-
ble if the system evolution is characteristic of the “deep

chaos” regime. However, if we examine the plots shown
in Fig. 2 and 3, we see that the rate is not sensible for
narrow chaotic bands and appearances of regular win-
dows.

IV. SUMMARY

Applying the model of the externally kicked nonlin-
ear Kerr-like oscillator we have shown that the fidelity
between wave-functions can be applied as an indicator
of quantum chaos. In particular, we have concentrated
on the fidelity decay rate. As was shown this rate can be
used as an indicator of the chaotic behaviour of the quan-
tum system for the “deep chaos” regime. However, the
indicators discussed here are not sensible for sufficiently
narrow chaotic bands and for regular windows inside re-
gions of chaos, as well. Moreover, we have shown that the
parameters discussed here can exhibit irregular, chaotic
behaviour in the classical sense despite their strict quan-
tum nature. The results presented here strengthen our
belief that the fidelity (and other parameters defined on
its basis) can be a useful tool for further investigations
in the field of quantum chaos.

V. ACKNOWLEDGMENT

J.K.K. and W. L. acknowledge support from the Na-
tional Science Centre under Grant No. N N202 195240.

[1] A. Peres, Phys. Rev. A, 30, 1610 (1984).

[2] Y. S. Weinstein, S. Lloyd, C. Tsallis, Phys. Rev. Lett. 89,
214101 (2002).

[3] Y. S. Weinstein, J. V. Emerson, S. Lloyd, D. G. Cory,
Quantum Information Processing 1, 439 (2003).

[4] R. A. Jalabert, H. M. Pastawski, Phys. Rev. Lett. 86,
2490 (2001).

[5] P. Jacquod, P. G. Silvestrov, C. W. J. Beenakker, Phys.

Rev. E 64, 055203 (2001).

[6] T. Prosen, Phys. Rev. E 65, 036208 (2002).

[7] W. Leonski, Physica A 233, 365 (1996).

[8] A. Kowalewska-Kudlaszyk, J. K. Kalaga, W. Leonski,
Phys. Lett. A 373, 1334 (2000).

[9] A. Kowalewska-Kudlaszyk, J. K. Kalaga, W. Leoriski,
Phys. Rev. E 78, 066219 (2009).

EBOJIIOIIIA “TOYHOCTI” KBAHTOBOI'O XAOTUYHOTI'O 3BYA2KEHOI'O
KEPPIBCBKOTI'O HEJITHIMHOT'O OCIHHMNJIATOPA I BIIJINB BIJICTAHI
MIZK ITOYATKOBMMU XBUJIbOBNMU ®YHKIIIAMMN

M. K. Kansara!, A. Kosanescka-Kymnamuk!, B. Jleonscki?, B. Kao Jlour?
L Biddin meainitinot onmuxu, gisuwrul dakysomem, Ynisepcumem Adama Miykesuua, Hosnans, Hoivwa
Biddia xearnmosoi onmuru ma inorcenepii, Incmumym disuru,

Yuieepcumem 3eavonoi Typu, 3eavona Typa, Hosvua

VY crarTi PO3IVISTHYTO CHCTEMY KE€PPIBCHKUX KBAHTOBHX HEIHIHHUX OCIMIATOPIB, 30YIKEHUX CEPI€I0 yIbTpa-

KOPOTKUX 30BHIIIHIX iMirysbciB. 11 KorepenTHi 30y12KeHHs Pa30M 13 HEJIIHIRHICTIO B CHCTEMI MOXKYTb CHPUIUHSATH

KEAHMOBY TaomuyHy nosedinky. st Takol Mojeni po3paxoBaHO TOYHICTH BiITBOPEHHSI XBUJIBOBOI (PYHKIIIT, sIKa,

onucye aguHamiky cucremu. [lokazano, mo Tak Bu3HaYeHA “TOYHICTH’ 1 MBUAKICTD i1 po3maay MoXKe CJIyryBaTH iH-

JIUKATOPOM TIOSIBH K8AHM 0601 Taomuuhoi nogedinku. Takox o6ropopeHo mpobjeMy TOro, siK MoYaTKOBa BiJICTaHb

MIXK JABOMa OJIMBLKUMU XBUJILOBUMU (i)yHKLI‘iHI\H/I MOXKe BIIJIUBATHU Ha& 3M1Hy TOYHOCTI.
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