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The proof of the Khalfin Theorem for the neutral meson complex is analyzed. It is shown that
the unitarity of the time evolution operator for the total system under considerations assures that
the Khalfin’s Theorem holds. The consequences of this Theorem for the neutral mesons system
are discussed: it is shown that diagonal matrix elements of the exact effective Hamiltonian for the
neutral meson complex cannot be equal if CPT symmetry holds and CP symmetry is violated. The
properties of time evolution governed by a time–independent effective Hamiltonian acting in the
neutral mesons subspace of states are considered. Using the Khalfin’s Theorem it is shown that if
such Hamiltonian is time–independent then the evolution operator for the total a system containing
the neutral meson complex cannot be a unitary operator. It is shown graphically for a given specific
model how the Khalfin’s Theorem works. It is also shown for this model how the difference of the
mentioned diagonal matrix elements of the effective Hamiltonian varies in time.
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I. INTRODUCTION

The standard method used for the description of the
properties of two particle (two state) complexes is the
Lee–Oehme–Yang (LOY) approximation [1–7]. This ap-
proximation was applied by LOY to the description and
analysis of the decay of neutral kaons. Its source is the
well known Weisskopf–Wigner (WW) theory of the de-
cay processes [8]. Within this approach the solutions of
the Schödinger equation

i
∂|ψ; t〉
∂t

= H |ψ; t〉, |ψ; t = 0〉 = |ψ0〉, (1)

(where H is the total selfadjoint Hamiltonian for the
system containing neutral kaons and units ~ = c = 1
are used) describe time evolution of vectors |ψ; t〉 in the
Hilbert space, H, of states of the total system under con-
siderations and the Hamiltonian H for the problem is
divided into two parts H(0) and H(1):

H = H(0) +H(1), (2)

such that |K0〉 ≡ |1〉 and |K0〉 ≡ |2〉 are discrete eigen-
states of H(0) for the 2–fold degenerate eigenvalue m0,

H(0)|j〉 = m0|j〉, (j = 1, 2); (3)

where 〈j|k〉 = δjk and H(1) induces the transitions from
eigenstates |j〉 to other (unbound) eigenstates |ε, J〉 of
H(0),

H(0)|ε, J〉 = ε |ε, J〉,

and, consequently, also between |K0〉 and |K0〉. (We have
〈ε′, J1|ε, J2〉 = δJ1 J2

δ(ε − ε′), 〈ε, J |k〉 = 0, j, k = 1, 2,
and J denotes such quantum numbers as charge, spin,
etc.). So, the problem which one usually considers is the
time evolution of an initial state, which is a superposition
of |1〉 and |2〉 states [1].

In the kaon rest–frame, this time evolution for t ≥ t0 ≡
0 is governed by the Schrödinger equation (1), whose so-
lutions |ψ; t〉 have the following form [1, 4, 5]

|ψ; t〉 = a1(t)|1〉 + a2(t)|2〉 +
∑

J, ε

FJ (ε; t)|ε, J〉, (4)

where

|a1(t)|2 + |a2(t)|2 +
∑

J, ε

|FJ (ε, t)|2 = 1, (5)

FJ (ε; t = 0) = 0. (6)

Here
∑

ε FJ (ε; t)|ε, J〉 represents the decay products in
the channel J .

Inserting (4) into the Schrödinger equation (1) leads
to a system of coupled equations for amplitudes a1(t),
a2(t) and FJ(ε; t). Adopting the WW approximations to
these equations and solving them LOY obtained their
approximate equations for a1(t), a2(t) [1,4,9]. From this
we get:

i
∂

∂t
|ψ; t〉‖ = HLOY|ψ; t〉‖, (t ≥ t0), (7)

where

|ψ; t〉‖ = a1(t)|1〉 + a2(t)|2〉,

and

HLOY ≡MLOY − i

2
ΓLOY. (8)

HereMLOY = M+
LOY, ΓLOY = Γ+

LOY.HLOY is (2×2) ma-
trix acting in a two–dimensional subspace (let us denote
it by H||) of H spanned by vectors |1〉, |2〉. Thus |ψ; t〉‖ ∈
H‖ and hLOY

jk = 〈j|HLOY|k〉, MLOY
jk = 〈j|MLOY|k〉,

ΓLOY
jk = 〈j|ΓLOY|k〉.
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The eigenvectors, |KS〉, |KL〉, for HLOY to the eigen-
values, µS = mS − i

2γS and µL = mL − i
2γL, have the

following form

|KS〉 = pS |K0〉 − qS |K0〉, (9)

|KL〉 = pL |K0〉 + qL |K0〉, (10)

where,

|pS |2 + |qS |2 = |pL|2 + |qL|2 = 1.

Now, if one assumes that the total system under con-
siderations is CPT–invariant,

[Θ, H ] = 0, (11)

where Θ is an antiunitary operator:

Θ
def
= CPT , (12)

and C is the charge conjugation operator, P is space in-
version, and the antiunitary operator T represents the
time reversal operation, one easily finds using explicit
formulae for hLOY

jk [1–7], [10] that in such a case the di-
agonal matrix elements of HLOY must be equal:

hLOY
11 = hLOY

22 . (13)

One of the consequences of property (13) is that in the
CPT invariant systems

pS = pL ≡ p, qS = qL ≡ q,

in (9), (10) and

( q

p

)2

=
hLOY

21

hLOY
12

= const. (14)

Within this approach there is | q
p | 6= 1 in CPT invari-

ant system when CP is violated [10]. This property and
properties (13), (14) are the standard result of the LOY
approach and this is the picture which one meets in the
literature [1–7].

Note that if one describes the properties of neutral
mesons and the time evolution of their state vectors us-
ing the LOY method then, in fact, one assumes that the
selfadjoint Hamiltonians H,H(0) and H(1) acting in H
exist and that the solutions of Schrödinger equation (1)
describe the time evolution of states in H. There is no
LOY method and no LOY approximation without these
Hamiltonians and without the Schrödinger equation.

The aim of this paper is to confront the main pre-
dictions of the LOY theory such as (13), (14), etc.,
with the predictions following from the rigorous treat-
ment of two state quantum mechanical subsystems and
from the properties of the exact effective Hamiltonian
for such subsystems. Sec. II contains the proof of the
Khalfin’s Theorem [11–18]. In Sec. III the properties of
the time evolution governed by a time independent effec-
tive Hamiltonian acting in a two-dimensional subspace
and of the evolution operator for this case are analyzed

and confronted with the conclusions following from the
Khalfin’s Theorem. In Sec. IV the properties of the ex-
act effective Hamiltonian for two-state subsystems and
consequences of the above-mentioned Theorem are dis-
cussed. In Sec. V using a model of neutral kaon com-
plex the results of calculations showing how the Khalfin’s
Theorem “works” are presented graphically. Section VI
contains some final remarks.

II. KHALFIN’S THEOREM

From the general principles of quantum mechanics
it follows that transitions of the system from a state
|ψ1〉 ∈ H at the time t = 0 to the state |ψ2〉 ∈ H
at the time t > 0, |ψ1〉 t→ |ψ2〉, are governed by Eq (1)
with a time independent Hamiltonian and realized by the
transition (evolution) unitary operator U(t) acting in H,
such that

U(t1)U(t2) = U(t1 + t2) = U(t2)U(t1). (15)

From this condition and from the unitarity it follows that

U(0) = I and [U(t)]−1 ≡ [U(t)]+ = U(−t), (16)

where I is the unit operator in H.
The probability to find the system in the state |ψj〉 at

the time t if it were earlier at an instant t = 0 in the ini-
tial state |ψk〉 is determined by the transition amplitude
Ajk(t),

Ajk(t) = 〈ψj |U(t)|ψk〉, (17)

where (j, k = 1, 2). Using (16) and following [14] it can
be easily found that

[A12(−t)]∗ = A21(t). (18)

So, defining the function [14]

f21(t)
def
=

A21(t)

A12(t)
, (19)

and taking into account the general property (18) one
finds that the function f21(t) must satisfy the relation

[f21(−t)]∗ f21(t) = 1. (20)

Note that this last relation as well as property (18) are
valid for any two states |ψ1〉, |ψ2〉 ∈ H.

The Kalfin’s Theorem concerns one of the basic prop-
erties of any two state subsystem and, in fact, it is not
limited to only such subsystems as the neutral meson
complexes. This Theorem states that [11–18],

Khalfin’s Theorem

If

f21(t) = ρ = const. (21)

then there must be

R = |ρ| = 1. (22)
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Indeed, from (20) it follows that if f21(t) = ρ = const
for every t ≥ 0 then [f21(t

′)]∗ = ζ = const for all t′ ≤ 0.
Now, if the functions f21(t) and [f21(t

′)]∗ are continuous
at t = t′ = 0 then there must be

R = |ρ| = |ζ| = 1,

which is the proof of the Khalfin’s Theorem.
The only problem in the above proof, as it was pointed

out in [14], is to find conditions guaranteeing the conti-
nuity of f21(t) at t = 0. There are two possibilities. The
first: vectors |ψ1〉, |ψ2〉 are not orthogonal,

〈ψ1|ψ2〉 6= 0. (23)

and the second one: these vectors are orthogonal

〈ψj |ψk〉 = δjk, (j, k = 1, 2). (24)

Case (23) is simple. One can always write

|ψ2〉 = |ψ2〉|| + |ψ2〉⊥, (25)

where

〈ψ1|ψ2〉|| 6= 0, and 〈ψ1|ψ2〉⊥ = 0, (26)

In such a case from (16), (17) it follows that A21(0) =

||〈ψ2|ψ1〉 = [〈ψ1|ψ2〉||]∗ 6= 0 and thus A12(0) ≡
[A21(0)]∗ 6= 0 which yields

lim
t→0+

f21(t) =
[〈ψ1|ψ2〉||]∗
〈ψ1|ψ2〉||

def
= ρ1, (27)

where |ρ1| = 1, and

lim
t′→0−

[f21(t
′)]∗ ≡ 1

ρ1
. (28)

These last two relations mean that in the considered case
(23) the functions f21(t) t≥0 as well as [f21(t

′)]∗ t′≤0 are
continuous at t = t′ = 0.

Now let us concentrate our attention on case (24). This
situation occurs in the case of the neutral meson com-
plexes but also it can be met in other cases. In general
vectors |ψ1〉, |ψ2〉 need not describe the states of the neu-
tral meson–antimeson pairs.

In the considered case (24), from (16), (17) and (24)
one can see that A21(0) = 0 and A12(0) = 0 which by
(19) means that without some additional conditions the
function f21(t) need not be continuous at t = 0. Taking
into account that quantum theory requires U(t) to have
the form,

U(t) = e−itH, (29)

(using units ~ = 1), where H is the total hermitian
Hamiltonian of the system, (or, in the interaction pic-
ture

UI(t) = T e−i
∫ t

0 HI(τ) dτ , (30)

where T denotes the usual time ordering operator and
HI(τ) is the operator H in the interaction picture), one

can easily verify that to assure the continuity of f21(t)
at t = 0 it suffices that there exist such n ≥ 1 that

〈ψ2|Hk|ψ1〉 = 0, (0 ≤ k < n),

〈ψ2|Hn|ψ1〉 6= 0 and |〈ψ2|Hn|ψ1〉| <∞. (31)

Assuming that this property holds and using the d’Hos-
pital rule one finds that simply

lim
t→0+

f21(t) =
〈ψ2|Hn|ψ1〉
〈ψ1|Hn|ψ2〉

, (32)

which means that f21(t) t≥0 is continuous at t = 0. Simi-
larly, the continuity of [f21(t

′)]∗ t′≤0 at t′ = 0 is assured.
One of the aims of this paper is to consider the conse-

quences of the Khalfin’s Theorem for neutral meson com-
plexes. In the case of neutral mesons ψ1 = K0, B0, D0 . . .
and ψ2 = K0, B0, D0 . . . . Thus in a general case the
subspace of states of neutral mesons, H||, is a two–
dimensional subspace of H spanned by orthogonal vec-
tors |ψ1〉, |ψ2〉. For neutral meson complexes according
to the experimental results the particle–antiparticle tran-
sitions |ψ1〉 
 |ψ2〉 exist, which means that there must
exist n < ∞ such that relation (31) occurs. It is known
form the experiments that the transitions |∆S| = 2 exist,
so in this case n ≤ 2. This means that in fact for the neu-
tral meson complexes, where the transitions |ψ1〉 
 |ψ2〉
take place, only the assumption of unitarity of the ex-
act transition operator U(t) assures the validity of the
Khalfin’s Theorem and no more assumptions (eg. of the
type that the CPT symmetry holds in the total system
under considerations) are required.

The above considerations are completed in Sec. V,
where it is shown in Fig. 1 how the Khalfin’s Theorem
“works” in a given model.

III. TIME EVOLUTION IN H‖ GOVERNED BY
A TIME–INDEPENDENT HAMILTONIAN H‖

In this and subsequent Sections we will assume that
the two-dimensional subspace H‖ of H is spanned by or-
thogonal vectors |ψ1〉, |ψ2〉, (24). So let us assume that
the evolution operator U‖(t) acting in this H‖ has the
following form

U‖(t) = e−itH‖ , (33)

and that the operator H‖ is a non-hermitian time-
independent (2 × 2) matrix acting in H‖,

∂hjk

∂t
= 0, (34)

where hjk = 〈ψj |H‖|ψk〉, (j, k = 1, 2). It is obvious that
the operator U‖(t) is the (2 × 2) matrix and

U‖(t1)U‖(t2) = U‖(t2)U‖(t1) = U‖(t1 + t2), (35)

and

U‖(0) = I‖,
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where I‖ is the unit matrix in H‖.
It is easy to verify that the operator U‖(t) is the so-

lution of the Schrödinger-like evolution equation for the
subspace H‖,

i
∂

∂t
U‖(t) |ψ〉‖ = H‖ U‖(t)|ψ〉‖, U‖(0) = I‖, (36)

where |ψ〉‖ ∈ H‖. Note that this last equation is the
equation of the same type as the evolution equation used
within the Lee–Oehme–Yang theory to describe the time
evolution in neutral mesons subspace of states.

Using Pauli matrices σx, σy, σz the matrix H‖ can be
expressed as follows [19, 20]

H‖ = h0 I‖ + ~h · ~σ, (37)

where

~h · ~σ = hx σx + hy σy + hz σz ,

and h0 = 1
2 (h11 + h22), hz = 1

2 (h11 − h22), etc.
Within the use of the relation (37) the operator U‖(t)

given by (33) can be rewritten in the following form

U‖(t) = e−itH‖ ≡ u0(t) I‖ + ~u(t) · ~σ

≡ e−ith0 [I‖ cos (th) − i
~h · ~σ
h

sin (th)], (38)

where

u0(t) =
1

2
(u11(t) + u22(t)),

ujk
def
= 〈ψj |U‖(t)|ψk〉, (j, k = 1, 2), (39)

~u(t) · ~σ = ux(t)σx + uy(t)σy + uz(t)σz ,

h2 = ~h · ~h = h2
x + h2

y + h2
z.

Now taking into account that simply (see (37)),

~h · ~σ ≡ H‖ − h0 I‖, (40)

from (38) one finds

u12(t) = −i e−ith0
h12

h
sin (th), (41)

u21(t) = −i e−ith0
h21

h
sin (th), (42)

u11(t) = e−ith0 [cos (th) − i
hz

h
sin (th)], (43)

u22(t) = e−ith0 [cos (th) + i
hz

h
sin (th)]. (44)

Relations (41) and (42) yield

u21(t)

u12(t)
≡ h21

h12

def
= r = const. (45)

Another useful relation resulting from (43) and (44) is
the following one

u11(t) − u22(t) = − 2i e−ith0
hz

h
sin (th). (46)

So if one has any time-independent effective Hamiltonian
H‖ acting in H‖ and the evolution operator U‖(t) for H‖

has the form U‖(t) = e
−itH‖ then

u11(t) = u22(t) ⇔ h11 = h22. (47)

This property is quite independent of the relations of
type (45).

All the above properties, including (45), (47), are true
for every time-independent effective HamiltonianH|| act-
ing in the two-dimensional subspace H||. In other words,
they hold for the LOY effective Hamiltonian, HLOY, as
well as for every H|| 6= HLOY.

The conclusion following from Khalfin’s Theorem,
(21), (22) and from (45) seems to be important,

Conclusion 1

If |r| 6= 1 and the time-independent effective Hamiltoni-
an H|| is the exact effective Hamiltonian for the subspace
H|| of states of neutral mesons, that is if

ujk(t) ≡ Ajk(t), (48)

where j 6= k, (j, k = 1, 2), r is defined by (45) and ujk(t),
Ajk(t) are given by (39) and (17) respectively, then the
evolution operator U(t) for the total state space H can-
not be a unitary one.

Indeed, experimental results indicate that for the neu-
tral kaon complex |r| 6= 1 (see, e. g. [10]). So, this conclu-
sion holds because from the Khalfin’s Theorem it follows
that if |r| 6= 1 and matrix elements Ajk(t), (j, k = 1, 2)
are the matrix elements of the exact evolution operator
U(t) then there must be |r| 6= const. Thus if the relation
(48) is the true relation then there is only one possibili-
ty: The Khalfin’s Theorem is not applicable in this case.
From the proof of this Theorem given in the previous
Section and analysis of the case of neutral mesons per-
formed there it follows that this Theorem holds if the
evolution operator U(t) for the total state space H of
the system containing two state subsystem under con-
sideration is a unitary operator. For the neutral mesons
subsystem Khalfin’s Theorem need not hold only if the
total evolution operator U(t) is not a unitary operator.

IV. SYMMETRIES CP, CPT AND THE EXACT
EFFECTIVE HAMILTONIAN FOR THE

NEUTRAL MESONS SUBSYSTEM

The exact transition (evolution) operator for the sub-
space H‖ can be found using the projection operator, P ,
defining this subspace, H‖ = PH. Projector P can be
constructed by means of orthonormal vectors |ψ1〉, |ψ2〉,

P = |ψ1〉〈ψ1| + |ψ2〉〈ψ2|. (49)

The exact transition operator for H‖ is given by the
nonzero (2×2) submatrix, A(t), of the operator PU(t)P ,
where U(t) is the exact transition operator (29) for the
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total state space H of the system containing the neutral
mesons subsystem. So,

A(t) =

(

A11(t) A12(t)
A21(t) A22(t)

)

, (50)

where Ajk(t) = 〈ψj |U(t)|ψk〉, (j, k = 1, 2), and A(0) =
I‖. Note that the matrix A(t) is not unitary. Within the
use of this exact transition operator for the subspace H‖

the exact effective Hamiltonian H‖ governing the time
evolution in H‖ can be expressed as follows [21–26]

H‖ = H||(t) ≡ i
∂A(t)

∂t
[A(t)]−1. (51)

Thus the exact evolution equation for the subspace
H‖ has the Schrödinger-like form (36), (7) with time-
dependent effective Hamiltonian (51),

i
∂

∂t
|ψ, t〉‖ = H‖(t) |ψ, t〉‖, (52)

where, |ψ, t〉‖ = a1(t) |ψ1〉 + a2(t) |ψ2〉 = A(t) |ψ〉‖ ∈
H‖ and |ψ〉‖ = a1|ψ1 + a2|ψ2〉 ∈ H‖ is the initial state of
the system, ‖ |ψ〉|| ‖ = 1.

It is easy to find from (51) the general formulae for
the diagonal matrix elements, hjj , as well as for the off–
diagonal matrix elements, hjk of the exact H||(t). We
have [25]

h11(t) =
i

detA(t)

(∂A11(t)

∂t
A22(t) −

∂A12(t)

∂t
A21(t)

)

, (53)

h22(t) =
i

detA(t)

(

− ∂A21(t)

∂t
A12(t) +

∂A22(t)

∂t
A11(t)

)

, (54)

and so on. Using (53), (54) the difference (h11 − h22) = 2hz playing an important role in relations (46), (47), can be
expressed as follows [25]

h11(t) − h22(t) = i
1

detA(t)

{

A11(t)A22(t)
∂

∂t
ln

(A11(t)

A22(t)

)

+ A12(t)A21(t)
∂

∂t
ln

(A21(t)

A12(t)

)}

. (55)

Now let us pass to the neutral mesons case,
|ψ1〉 ≡ |1〉, |ψ2〉 ≡ |2〉 and let us analyze some con-
sequences of the conservation or violation of CP–,
CPT–symmetries in the total system under consider-
ations. If we assume that the system is CPT invari-
ant, that is that (11) holds, then one easily finds that
[11–13,16, 25, 27]

A11(t) = A22(t). (56)

Assumption (11) gives no relations between A12(t) and
A21(t).

If the system under considerations is assumed to be
CP invariant,

[CP , H ] = 0, (57)

then using the following, most general, phase convention

CP|1〉 = e−iα|2〉, CP|2〉 = e+iα|1〉, (58)

one easily finds that for the diagonal matrix elements of
the matrix A(t) relation (56) holds in this case also, and
that there is,

A12(t) = e2iαA21(t), (59)

for the off–diagonal matrix elements.
This means that if the CP symmetry is conserved in

the system containing the subsystem of neutral mesons,
then for every t > 0 there must be

∣

∣

∣

∣

A21(t)

A12(t)

∣

∣

∣

∣

= 1 ≡ const. (60)

On the other hand, when CP symmetry is violated,

[CP, H ] 6= 0, (61)

then one can prove that in such a system the modulus of

the ratio A21(t)
A12(t) must be different from 1 for every t > 0 ,

[CP, H ] 6= 0 ⇒
∣

∣

∣

∣

A21(t)

A12(t)

∣

∣

∣

∣

6= 1, (∀t > 0). (62)

The proof of this property is rigorous (see [26]).

Now let us assume that the CPT symmetry is the ex-
act symmetry of the system under considerations, that
is that condition (11) holds. In such a case the relation
(56) holds. The consequence of this is that expression
(55) becomes simpler and it is easy to prove that the
following property must hold [25]

h11(t) − h22(t) = 0 ⇔ A21(t)

A12(t)
= const, (t > 0). (63)

Taking into account Khalfin’s Theorem, (22), and re-
lations (56), (62) one finds that the following property
must hold in the case of the exact effective Hamiltonian
for the neutral mesons subsystem:
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Conclusion 2

If [Θ, H ] = 0 and [CP, H ] 6= 0, that is if A11(t) = A22(t)

and A21(t)
A12(t) 6= 1 for t > 0, then there must be

(h11(t) − h22(t)) 6= 0 for t > 0.

So within the exact theory one can say that for real
systems, the property (47) cannot occur if CPT symme-
try holds and CP is violated. This means that relation
(47) can only be considered as an approximation. The
question is if such an approximation is sufficiently accu-
rate in order to reflect real properties of neutral meson
complexes. One potential solution to this problem is sug-
gested in the next Section, where model calculations are
discussed.

V. MODEL CALCULATIONS

In this Section we will discuss some results of numer-
ical calculations performed within the use of the Math-

ematica program for the model considered by Khalfin
in [11, 12], and by Nowakowski in [16] and then used
in [28, 29]. This model is formulated using the spectral
language for the description of KS,KL and K0, K 0, by
introducing a hermitian Hamiltonian, H , with a contin-
uous spectrum of decay products labeled by α, β, etc.,

H |φα(m)〉 = m |φα(m)〉,
〈φβ(m′)|φα(m)〉 = δαβ δ(m

′ −m). (64)

Here H is the total Hamiltonian for the system men-
tioned in Sections 1, 2 and 4. H includes all interactions
and has an absolutely continuous spectrum. We have

|KS〉 =

∫

Spec (H)

dm
∑

α

cS,α(m)|φα(m)〉, (65)

|KL〉 =

∫

Spec (H)

dm
∑

β

cS,α(m)|φβ(m)〉, (66)

and

|j〉 =

∫

Spec (H)

dm
∑

α

cj,α(m)|φα(m)〉, (67)

where j = 1, 2. Thus, the exact Ajk(t) can be written as
the Fourier transform of the density ωjk(m), (j, k = 1, 2),

Ajk(t) =

∫ +∞

−∞

dm e−imtωjk(m), (68)

where

ωjk(m) =
∑

α

c∗j,α(m) ck,α(m). (69)

The minimal mathematical requirement for ωjk(m) is the

following:
∫ +∞

−∞ dm |ωjk(m)| < ∞. Other requirements

for ωjk(m) are determined by basic physical properties
of the system. The main property is that the energy

(i.e. the spectrum of H) should be bounded from below,
Spec(H) = [mg , ∞) and mg > −∞.

Starting from the densities ωjk(m) one can calculate
Ajk(t). In order to find these densities from relation (69)
one should know the expansion coefficients cj,α(m). Us-
ing physical states |KS〉, |KL〉 and relations (9), (10) they
can be expressed in terms of the expansion coefficients
cS,α(m), cS,α(m). Thus, assuming the form of coefficients
cS,α(m), cS,α(m) defining physical states of neutral kaons
one can compute all Ajk(t), (j, k = 1, 2).

The model considered in [12,16,28,29] is based on the
assumption that

cS,β(m) = Θ(m − mg)

√

γS

2π

aS ,β(KS → β)

m − mS + i γS

2

, (70)

cL,β(m) = Θ(m − mg)

√

γL

2π

aL,β(KL → β)

m − mL + i γL

2

, (71)

where aS,β and aL,β are the decay (transition) ampli-
tudes and

Θ(m − mg) =

{

1 if m ≥ mg

0 if m < mg
.

Within this assumption one obtains, for example, that

ASS(t)
def
= 〈KS |e−itH |KS〉 =

+∞
∫

−∞

dm ωSS(m) e−itm,

(72)
where

ωSS(m) = Θ(m − mg)
γS

(m − mS )2 +
γ2
S

4

S

2π
, (73)

S =
∑

α

|aS,α(KS → α)|2, (74)

and so on.
For simplicity, it is assumed in [16] that mg = 0. So

all integrals of the type (72) and (68) are taken between
the limits m = 0 and m = +∞. In [16] all these assump-
tions made it possible to find analytically amplitudes of
type Ajk(t) and to express them in terms of the known
special functions such as integral exponential functions
and the related ones. The same assumptions were used
in [28] and will be used in this paper. Note that replacing
Θ(m − mg) by 1 in (73) leads to a strictly exponential
form of amplitudes of the type ASS(t) as the functions
of time t. On the other hand, keeping Θ(m−mg) results
in the presence of additional nonoscillatory terms in am-
plitudes of the type ASS(t),ALL(t) etc. and thus in the
amplitudes Ajk(t) as well (see [16, 28, 29]).

The results obtained within this model and present-
ed below are obtained assuming that the CPT symme-
try holds (i. e. that relations (56) are valid in the mod-
el considered) but CP symmetry is violated and by in-
serting into (71)–(73) and related formulae the follow-
ing values of the parameters characterizing the neutral
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kaon complex: mS ' mL ' maverage = 497.648 MeV,
∆m = mL −mS = 3.489 × 10−12 MeV, τS = 0.8935 ×
10−10s, τL = 5.17 × 10−8s, γL = 1.3 × 10−14 MeV,
γS = 7.4 × 10−12 MeV (see [10]). This model together
with the above data makes it possible to examine nu-
merically the Khalfin’s Theorem as well as other rela-
tions and conclusions obtained using this Theorem (for
details see [16, 28, 29]).

The results of numerical calculations of the modulus
of the ratio A12(t)

A21(t) for some time interval are presented

below in Fig. 1.

Fig. 1. Numerical examination of Khalfin’s Theorem.

Here y(x) = |r(t)| ≡ | A21(t)
A12(t)

|, x = γL

~
· t, a x ∈ (0.01, 10)

and x, y axis are not crossing at the point (0, 0).

Analyzing the results of the calculations presented
graphically in Fig. 1 one can find using Mathematica that
for x ∈ (0.01, 10),

ymax(x) − ymin(x) ' 3.3× 10−16, (75)

where

ymax(x) = |r(t)|max,

ymin(x) = |r(t)|min. (76)

So from Fig. 1 and (76) the conclusion follows that if

one is able to measure the modulus of the ratio A12(t)
A21(t)

only up to the accuracy 10−15 then one sees this quanti-
ty as a constant function of time. The variations in time

of | A12(t)
A21(t)

| can be detectable for the experimenter only if

the accuracy of his measurements is of the order of 10−16

or better.
Similarly, using Mathematica and starting from the

amplitudes Ajk(t) and using relation (55) and condition
(56) one can compute the difference (h11(t) − h22(t) for
the model considered. The results of such calculations for
some time interval are presented below in Fig. 2, 3. An
expansion of scale in Fig. 2 shows that continuous fast
fluctuations, similar to those in Figs. 1 and 3, appear.

There is y(x) = < (h11(t) − h22(t) and y(x) =
= (h11(t) − h22(t) in Figs 2, 3 respectively. In these Fig-
ures x = γL

~
· t, x ∈ (0.01, 5.0) and < (z) and = (z) denote

the real and imaginary parts of z, respectively. The units
on the y-axis are in [MeV].

1 2 3 4 5
x

-1.5·10
-16

-1·10
-16

-5·10
-17

y

Fig. 2. The real part of (h11(t) − h22(t))

1 2 3 4 5
x

1.95·10
-13

1.96·10
-13

1.97·10
-13

1.98·10
-13

1.99·10
-13

2.01·10
-13

y

Fig. 3. The imaginary part of (h11(t) − h22(t))

One can compare the results presented in Figs. 2, 3
with the result obtained analytically. Within the model
considered the analytical formulae for the matrix ele-
ments hjk(t), (j, k = 1, 2), were obtained in [28]. Insert-
ing the experimental values of τL, µL, µS , etc., mentioned
above it is found in [28] for t = τL that

< (h11(t ∼ τL) − h22(t ∼ τL)) ' −4.771× 10−18MeV,
(77)

= (h11(t ∼ τL)−h22(t ∼ τL)) ' 7.283×10−16MeV (78)

and

|< (h11(t ∼ τL) − h22(t ∼ τL))|
maverage

≡ mK0 −mK̄0

maverage
∼ 10−21,

(79)

There is a visible difference between the results pre-
sented in Figs. 2, 3 and in (77)–(79). It may be attribut-
ed to finite accuracy of numerical calculations performed
by Mathematica. No approximations have been used in
the analytical calculations.

VI. FINAL REMARKS

Let us analyze the consequences of the results con-
tained in Sec. II–V for the standard picture of CP vi-
olation or possible CPT violation effects in the neutral
meson complex. The attention will be focused on the
neutral kaon complex as the best studied subsystem of
neutral mesons.

Presented in Sec. V are the results of numerical exami-
nation of Khalfin’s Theorem (see Fig. 1). Note that they
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are in perfect agreement with suppositions formulated
in [15] and [26]. One can conclude from these results and
from (75) that for the model analyzed and for the times
t considered,

∣

∣

∣

∣

A21(t)

A12(t)

∣

∣

∣

∣

= R0 + ∆r(t), (80)

where, R0 = const, ∆r(t) varies in time t and |∆r(t)| ≤
3, 3×10−16. These results explain why the consequences
of Khalfin’s Theorem were not yet detected in neutral
meson complexes. Simply, the accuracy of tests with neu-
tral mesons was too low.

The consequence of Khalfin’s Theorem is Conclusion

2. From this conclusion and from the model calculations
performed in Sec. V (see Figs. 2, 3 and results (77)–(79))
one sees that the standard result of the LOY theory, that
is the relation (13), is not valid in real systems. This
means that this relation (i. e. (13)) is an approximation
only.

Another consequence of Khalfin’s Theorem is the fol-
lowing one. Namely note that, as it has been proved
in Sec. III, the use of the time–independent effective
Hamiltonian H‖ to describe time evolution of the neutral
mesons subsystem is inconsistent with the basic assump-
tion of quantum theory that the evolution operator for
the total system containing this neutral meson complex
must be the unitary operator (see Conclusion 1 ). This
observation means that attempts to describe the neutral
meson complexes within the use of any time–independent
effective Hamiltonian H‖ are only approximations. Such
attempts may not be able to explain all plausible tiny ef-
fects which can be detected in the future more accurate
tests with neutral mesons. This also concerns the LOY
effective Hamiltonian HLOY. It means that if there exist
any effects unexplainable within the LOY approach this
need not be signals of “new physics”. One should first try
to explain such possible effects using more accurate and
consistent with the basic assumptions of quantum theory
approaches than the LOY method.

In general the form of parameters usually used to de-
scribe the scale of CP- and CPT-violation effects depends
on the phase used in relations (58) defining the action of
CP operator on the states of neutral K mesons. So, in or-
der to define these parameters it is convenient to choose
a phase convention for this operator. For simplicity the
following phase convention for neutral kaons is common-
ly used

CP|1〉 = (−1)|2〉, CP|2〉 = (−1)|1〉, (81)

instead of the general one (58). Within this phase con-
vention one finds that the vectors

|K1(2)〉 def
=

1√
2
( |1〉 − (+)|2〉), (82)

are normalized, orthogonal

〈Kj |Kk〉 = δjk , (j, k = 1, 2), (83)

eigenvectors of the CP transformation (81),

CP|K1(2)〉 = +(−1)|K1(2)〉, (84)

for the eigenvalues +1 and −1, respectively.

Using these eigenvectors |K1(2)〉 of the CP-
transformation vectors |KL〉 and |KS〉 can be expressed
as follows [3, 19, 30]

|KL(S)〉 ≡
1

√

1 + |εl(s)|2
(

|K2(1)〉 + εl(s)|K1(2)〉
)

. (85)

Within the standard approach the following parameters
are used to describe the scale of CP- and possible CPT-
violation effects [3, 19, 30]:

ε
def
=

1

2
(εs + εl) ≡

h12 − h21

D
, (86)

δ
def
=

1

2
(εs − εl) ≡

h11 − h22

D
≡ 2hz

D
, (87)

where

D
def
= h12 + h21 + ∆µ, (88)

and ∆µ = µS − µL. According to the standard inter-
pretation following from the LOY approximation, ε de-
scribes violations of CP-symmetry and δ is considered as
a CPT-violating parameter [3, 19, 30]. Such an interpre-
tation of these parameters follows from the properties of
LOY theory of time evolution in the subspace of neutral
kaons [2–6,19, 27, 30].

The relations (85), (86), (87) lead to the following for-
mula for the product 〈KS |KL〉,

〈KS|KL〉 ≡ 2N(< ε− i= δ), (89)

whereN = N∗ = [(1+|εs|2)(1+|εl|2)]−1/2. Using this re-
lation and the results obtained in Sec. IV and V it is easy
to find that = δ 6= 0, (see also [31]) in the CPT invariant
system. This means that the right hand-side of relation
(89) is a complex number and therefore in the case of
the conserved CPT- and violated CP-symmetries, in con-
trast to the standard LOY result, 〈KS |KL〉 = |p|2 − |q|2,
there must be 〈KS |KL〉 6= 〈KS|KL〉∗ in the real systems.

Note that the property 〈KS |KL〉 = 〈KS |KL〉∗ plays
an important role when one applies the Bell–Steinberger
unitarity relations [32] for designing or interpreting tests
with neutral mesons. So in the light of the above dis-
cussion the results obtained in such a way should not
be considered as a conclusive evidence, (especially when
subtle effects, such as the possible CPT violations, are
studied).

From Conclusion 2 from Sec. IV and from the results
of the model calculations presented in Sec. V it also fol-
lows that the parameter δ should not be considered as
the parameter measuring the scale of possible CPT viola-
tion effects: In a more accurate approach [33] and in the
exact theory one obtains δ 6= 0 for every system with a
violated CP symmetry and this property occurs quite in-
dependently of whether this system is the CPT invariant
or not. What is more, from Conclusion 2 one finds that if
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CP symmetry is violated and CPT symmetry holds then
there must be εl 6= εs (see (87)) contrary to the standard
predictions of the LOY theory. These conclusions are in
full agreement with the results obtained in [34] within the
quantum field theory analysis of binary systems such as
the neutral meson complexes.

It seems that the results following from Khalfin’s The-
orem and discussed in Sec. III–V have a particular mean-
ing for such attempts to test Quantum Mechanics and
the CPT invariance in the neutral kaon complex as those
described in [35, 36] and recently in [37]. Simply the ex-
pected magnitude of the possible effects analyzed in these
papers is very close to the results presented in Sec. V and
obtained within a more accurate treatment of the neu-
tral kaon subsystem. Another problem with such tests
is connected with the results of Sec. III, strictly speak-

ing with Conclusion 1. All such tests are planned and
interpreted within the theory using a time-independent
effective Hamiltonian governing the time evolution in the
subspace of neutral kaons H‖ [35,36]. From Conclusion 1

one sees that in such a case the evolution operator for the
total state space H ⊃ H‖ cannot be a unitary operator
contrary to fundamental assumptions of quantum theory.
So it appears that a violation of quantum mechanics is
hidden inside the method used to plan and interpret tests
detecting such violations. This observation seems to be
important because possible CPT or quantum mechanics
violation effects are expected to be very tiny. General-
ly, in the light of the results discussed in Sec. II–V, the
interpretation of tests of such tiny effects as a possible
CPT violation and a similar one based on the LOY ap-
proximation should not be considered as conclusive.
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Проаналiзовано доведення теореми Халфiна для нейтрального мезонного комплексу. Показано, що унi-

тарнiсть оператора часової еволюцiї повної системи пiдтверджує теорему Халфiна. Обговорено наслiдки цiєї

теореми для системи нейтральних мезонiв. Зокрема показано, що дiагональнi матричнi елементи точного

ефективного гамiльтонiана нейтрального мезонного комплексу не можуть бути однаковими, якщо викону-

ється CPT-симетрiя i CP-симетрiя є порушеною. Розглянуто властивостi часової еволюцiї, яку визначає

незалежний вiд часу ефективний гамiльтонiан, який дiє в пiдпросторi станiв нейтральних мезонiв. За допо-

могою теореми Халфiна показано, що коли такий гамiльтонiан не залежить вiд часу, то оператор еволюцiї

повної системи, яка мiстить нейтральний мезонний комплекс, не може бути унiтарним. Для заданої моделi

графiчно продемонстровано, як працює теорема Халфiна i показано, як рiзниця мiж згаданими дiагональ-

ними матричними елементами ефективного гамiльтонiана змiнюється з часом.

1004-10


