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We study the Hamiltonian in two dimensional system with an interaction supported by a set
of codimension one. The perturbation in our model is given by the appropriated operator. We
derive the formula for the eigenvalues and the corresponding eigenfunctions. Moreover we analyze
the functions counting the number of discrete and embedded points of the spectrum depending on
coupling constants involved in the model. Finally, we study generalized eigenfunctions.
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I. INTRODUCTION

We are interested in quantum systems with a very
short range of interaction which can be modelled by the
so called delta potentials. The old-fashioned problem be-
longing to this line of research is usually called point
interaction and corresponds to the heuristical Hamilto-
nian

−∆− αδ(x) , α ∈ R.

It is well known that the quantum system governed by
this Hamiltonian acting in L2(R) has one eigenvalue

ε0 = −α
2

4
(1.1)

provided the interaction is attractive, i. e. α > 0. A lot
of interesting results concerning the delta type potentials
and their applications can be found in the monograph [1]
(see also references therein).

The model we study in this paper addresses a more
general situation. To explain this let us consider an open
set Ω ⊆ Rm with the C1 boundaries and a set Σ ⊂ Ω of
a lower dimension. The Hamiltonian of our system can
be heuristically written

−∆ + V δ(x− Σ) ,

where ∆ is the Laplace operator acting in L2(Ω), V is a
self-adjoint operator in L2(Σ) and δ(· − Σ) denotes the
Dirac delta with support on Σ. Following the terminolo-
gy used in the bibliography we shall call the Hamiltonian
corresponding to the above expression as perturbation of
Schrödinger operator by the dynamics of V ; see [4]1.

The model considered in this paper belongs to this line
of research. Specifying Ω = (0, π)×R and Σ = {(x1, 0) ∈
Ω , 0 < x1 < π} we consider the formal Hamiltonian

Hαβ = −∆ +
(
β
d2

d2x1
− α

)
δ(x− Σ),

α ∈ R, β ∈ R, (1.2)

where ∆ stands for the two dimensional Laplacian in
L2(Ω) with Dirichlet boundary conditions (D.b.c.) on the
boundaries ∂Ω of Ω.

In [4] the authors list some applications of perturba-
tion by dynamics. The problem addresses the two com-
ponent system where V may play the role of the Hamil-
tonian of a subsystem living on Σ. For example, in [4]
there is mentioned an acoustic model where Σ relates to
a membrane (if it is surface) or string (if it is linear). We
believe that the Hamiltonian considered in this paper can
be applied to this kind of models.

The main results of this paper can be formulated as
follows.

• Construction of the self-adjoint operator corre-
sponding to (1.2) and its resolvent.

• Deriving an explicit formula for the eigenvalues of
Hαβ and the corresponding eigenfunctions. More-
over the analysis of the functions counting the num-
ber of discrete points of spectrum as well as em-
bedded eigenvalues depending on α and β (Theo-
rem III.3 and the discussion after it).

• Construction of the generalized eigenvectors.

Let us mention that a particular case of the model in
question was considered in [2] (for more details see the
discussion after Theorem III.3).

1In fact, in [4] a larger class Hamiltonians is studied; this class can be determined as a perturbation of the self-adjoint operator
by the dynamics of V
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II. HAMILTONIAN OF THE SYSTEM AND
ITS RESOLVENT

In the following we use the notations introduced in the
previous section. To precise the domain of our Hamilto-
nian it is convenient to use the space W 2,m(Ω) = {f ∈
L2(Ω) : ‖f‖22,m =

∑m
k=0(

∑
|α|=k ‖Dαf‖2) < ∞}, where

Dα is a (distributional) derivative of the order of α and
‖ · ‖ is the norm in L2(Ω) 2. Since we are interested in
the Hamiltonian with Dirichlet boundary conditions at
∂Ω it is natural to consider the space W 2,m

0 (Ω) being
the closure of C∞0 (Ω) (infinitely differentiable functions
compactly supported in Ω) in the norm ‖f‖22,m.

We study the quantum system governed by the Hamil-
tonian which can be symbolically written as (1.2). To
give a meaning of a self-adjoint operator to the formal
expression (1.2) we consider the quadratic form

Eαβ(ψ, φ) =
∫

R2
∇ψ(x)∇φ(x)dx (2.1)

+β

∫
R

d

dx1
IΣψ(x1)

d

dx1
IΣφ(x1)dx1

−α
∫

R
IΣψ(x1)IΣφ(x1)dx1 , D(Eαβ) = W 2,1

0 (Ω),

symbol IΣ denotes here the embedding W 2,1
0 (Ω) 7→

L2(Σ) ≡ L2 defined by means of the convolution IΣψ =
ψ ∗ δ(· − Σ).

Relying on the results of [3] one can, standardly, show
that the operator associated with Eαβ is self-adjoint; this
operator gives a mathematical meaning to the formal ex-
pression (2.1) and in the following will be denoted as
Hαβ .

In fact, Hαβ is just the Laplace operator with the ap-
propriate boundary conditions on Σ. A straightforward
calculation shows that Hαβ = −∆ and

D(Hαβ) = {W 2,2
0 (Ω \ Σ) ∩W 2,1

0 (Ω),
φ(x1, 0+) = φ(x1, 0−) = φ(x1, 0) ,

∂2φ(x1, 0+)− ∂2φ(x1, 0−) =
(
β
d2

dx2
1

− α

)
φ(x1, 0)}.

The absolutely continuous spectrum of Hαβ is the same
as the spectrum of pure Laplacian in L2(Ω) with D.b.c,
i.e.

σac(Hαβ) = [1,∞) .

Now our aim is to recover discrete spectrum as well as
embedded eigenvalues of Hαβ . The total spectrum of
Hαβ will be, standardly, denoted σ(Hαβ).

Let z ∈ ρ(Hαβ) := C\σ(Hαβ) andRαβ(z) stand for the
resolvent of Hαβ , i.e. Rαβ(z) = (Hαβ − z)−1. The poles
of resolvent state eigenvalues of Hαβ , cf. [3]. Therefore,
our first aim is to derive an explicit form of Rαβ(z).

Let us note that the resolvent of −∆ acting in L2(Ω)
and satisfying D.b.c. on ∂Ω is an integral operator with
the kernel taking the following form

G(z;x, x′) =
∑
n∈N

Gn(z;x, x′)

where x = (x1, x2) , x′ = (x′1, x
′
2) and

Gn(z;x, x′) =
i

π

eiτn(z)|x2−x′
2|

τn(z)
sinnx1 sinnx′1 ,

where τn(z) = (z − n2)1/2 and Im τn(z) > 0. (Of course,
the above kernel depends on the coupling constants α
and β; without any danger of confusion we omit here the
appropriate indices). Furthermore, let us introduce spe-
cial notations for the embeddings Ĝn : L2(Σ) 7→ L2(Ω)
acting as Ĝnf =

∫
Ω
Gn(z; ·, (x′1, 0))f(x′1)dx′1 and Ǧn :

L2(Ω) 7→ L2(Σ), Ǧnψ = IΣ
∫
Ω
Gn(z; ·, x′)ψ(x′)dx′ =

(
∫
Ω

G(z; ·, x′)ψ(x′)dx′) ∗ δ(· − Σ).
Then the resolvent Rαβ(z) is again an integral opera-

tor with the kernel

Gαβ(z;x, x′) = G(z;x, x′) (2.2)

+
∑
n∈N

Ĝn(z;x, ·) ∗ Γn(z; ·, ·)−1 ∗ Ǧn(z; ·, x′) ,

where Γ(z; ·, ·)−1 is an operator acting in L2(Σ) and is
defined as the inverse of

Γn(z;x1, x
′
1) = Γn(z) sinnx1 sinnx′1,

Γn(z) =
(

1
α− βn2

− i

2
1

τn(z)

)
.

Note that Γn is not well defined for α/ = n2β. For this
case we assume that Γ−1

n = 0. Since the above formula
represents the standard Krein like resolvent we omit here
the analysis in detail, cf. [5].

To proceed further let us note that the resolvent
Rαβ(z) has the second sheet analytical continuation; pre-
cisely all the components forming (2.2) can be analyti-
cally continued cutting the Riemann plane along the half
line [n2,∞) and taking Im(z) τn ≤ 0.

III. SPECTRAL ANALYSIS OF Hαβ: DISCRETE
AND EMBEDDED EIGENVALUES,
GENERALIZED EIGENVECTORS

Now we are ready to search for the poles of Rαβ(z)
which are defined as roots of the equations

Γn(z) = 0 , where n ∈ N . (3.1)

A straightforward calculation shows that for Im τn(z)>0
the above equation has a real solution if α > βn2. Given
n ∈ N such that α > βn2 the solution of (3.1) is by

εn ≡ εn(α, β) = − (α− βn2)2

4
+ n2 . (3.2)

2More precisely Dα =
∂|α|

∂α1x1∂α2x2
.
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Remark III.1 Analysis of εn. Note that εn can be con-
sidered as a certain kind of generalization of (1.1). Par-
ticularly, if β = 0, then the eigenvalues are given by

εn(α, 0) = −α
2

4
+ n2 . (3.3)

The component n2 pushing up the eigenvalue w.r.t. (1.1)
is a natural consequence of the fact that our quan-
tum system lives in the strip Ω and x1 coordinate of
the momentum is quantized. A direct analysis of (2.2)
shows that the Hamiltonian Hαβ admits decomposition
Hαβ = ⊕∞n=1Hαβ,n and given n the halfline [n2,∞) states
the continuous spectrum of Hαβ,n. Consequently, the
continuous spectrum of Hαβ is given by [1,∞).

Remark III.2 Discrete and embedded eigenvalues.
Note that, generally, εn can live in the continuous spec-
trum of Hαβ as well as apart from it. The eigenvalues
belonging to a discrete spectrum are determined by
εn < 1 which is equivalent to

2
√
n2 − 1 + βn2 < α ,

and, analogously the embedded eigenvalues

2
√
n2 − 1 + βn2 ≥ α > βn2 .

Let us note that for n = 1 the latter inequality leads to
a contradiction, this means that the eigenvalue labelled
by n = 1 belongs to the discrete spectrum.

For the latter purpose we introduce the following no-
tations

Nd = ]{n ∈ N : 2
√
n2 − 1 + βn2 < α }. (3.4)

and

Ne = ]{n ∈ N : 2
√
n2 − 1 + βn2 ≥ α > βn2} . (3.5)

In view of the previous discussion,Nd,Ne count the num-
ber of discrete spectrum points and embedded eigenval-
ues, respectively.

Finally, note that the function

fn(x) = e−
√

n2−εn|x2| sinnx1 = e−(α−βn2)|x2|/2 sinnx1 ,
(3.6)

where x = (x1, x2), states the eigenvector correspond-
ing to εn. Indeed, a standard calculation shows that
−∆fn = εnfn and, moreover, fn satisfies boundary con-
ditions on Σ defined in D(Hαβ).

The following theorem completes the above state-
ments.

Theorem III.3 Given α ∈ R and β ∈ R operator Hαβ

has ]{n ∈ N : α > n2β} eigenvalues of the following
form

εn = − (α− βn2)2

4
+ n2 .

The number of discrete spectrum points and embedded
eigenvalues are given by Nd and Ne, respectively. More-
over, fn defined by (3.6) states the eigenfunction corre-
sponding to εn.

In particular, the above theorem implies

1. If α ∈ R and β < 0 then Nd = ∞ and Ne ∈ N
provided there exists n ∈ N : α < 2

√
n2 − 1 + βn2

otherwise Ne = 0.

2. If α ≥ 0 and β > 0 then Nd ∈ N provided α > β
otherwise Nd = 0 and Ne ∈ N ∪ {0}

3. If α ≤ 0 and β ≥ 0 then Nd = Ne = 0.

4. If α > 0 and β = 0 then Nd ∈ N and Ne = ∞.

Note that for α = 0 and β < 0 formulae (3.2) and (3.6)
were obtained in [2] 3. Partially, result 1. was stated in [2]
as well (namely, if α = 0 and β < 0, then Nd = ∞; the
embedded eigenvalue problem was not discussed in [2]).

As the final step we derive generalized eigenfunctions
of Hαβ . Mind that the generalized eigenfuctions are dis-
tributions (not belonging to D(Hαβ)) corresponding to
“continuum eigenfuctions”. Again straightforward calcu-
lations show that

ψn(p;σ, x) = eiσ
√

p2−n2x2 sinnx1

− 1

2i
√
p2 − n2

Γn(p2)−1eiσ
√

p2−n2|x2| sinnx1,

where p2 ∈ [n2,∞), satisfy

−∆ψn(p;σ, x) = p2ψn(p;σ, x)

and fulfill the boundary conditions described in the def-
inition of D(Hαβ). This means that the ψn(p;σ, x) state
the generalized eigenfunctions ofHαβ ; ψn(p; +1, x) corre-
spond to the incidence from the bottom and analogously
ψn(p;−1, x) corresponds to the incidence from the top.

A. Final remarks and open problems

As was shown in the previous section the Hamilto-
nian of our system admits embedded eigenvalues under
certain conditions. If we introduce an additional ‘small’
perturbation to this system, then we can expect that the
embedded eigenvalues are recovered from the continuous
spectrum and move to the second sheet continuation of
the resolvent stating resonances. We postpone a detailed
analysis of resonances to a forthcoming paper.

3To be fully specific we have to say that the constant β in our paper corresponds to −α in [2]; see formula (89) of [2]
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У статтi проаналiзовано гамiльтонiан двовимiрної системи зi взаємодiєю на множинi ковимiрностi один.
Збурення в цiй моделi задає вiдповiдний оператор. У роботi виведено формулу для власних значень i вiдпо-
вiдних власних функцiй. Також проаналiзовано функцiї, якi дають змогу пiдрахувати кiлькiсть дискретних
i включених точок спектра залежно вiд констант зв’язку в моделi. Вивчено знайденi узагальненi власнi
функцiї.
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