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We study the Hamiltonian in two dimensional system with an interaction supported by a set
of codimension one. The perturbation in our model is given by the appropriated operator. We
derive the formula for the eigenvalues and the corresponding eigenfunctions. Moreover we analyze
the functions counting the number of discrete and embedded points of the spectrum depending on
coupling constants involved in the model. Finally, we study generalized eigenfunctions.
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I. INTRODUCTION

We are interested in quantum systems with a very
short range of interaction which can be modelled by the
so called delta potentials. The old-fashioned problem be-
longing to this line of research is usually called point
interaction and corresponds to the heuristical Hamilto-
nian

—A—ad(z), aeR.

It is well known that the quantum system governed by
this Hamiltonian acting in L?(R) has one eigenvalue

o

€ =——

- (1.1)

provided the interaction is attractive, i.e. « > 0. A lot
of interesting results concerning the delta type potentials
and their applications can be found in the monograph [1]
(see also references therein).

The model we study in this paper addresses a more
general situation. To explain this let us consider an open
set Q@ C R> with the C' boundaries and a set ¥ C ) of
a lower dimension. The Hamiltonian of our system can
be heuristically written

A+ Vi(z-%),

where A is the Laplace operator acting in L?(Q2), V is a
self-adjoint operator in L?(X) and §(- — 3) denotes the
Dirac delta with support on X. Following the terminolo-
gy used in the bibliography we shall call the Hamiltonian
corresponding to the above expression as perturbation of
Schridinger operator by the dynamics of V; see [4]!.
The model considered in this paper belongs to this line
of research. Specifying Q@ = (0,7) xR and £ = {(x,0) €
2,0 < 21 < 7} we consider the formal Hamiltonian

2

d
Hup=—-A+ (ﬁdle - a) iz — %),

aeR, peR, (1.2)

where A stands for the two dimensional Laplacian in
L?(Q) with Dirichlet boundary conditions (D.b.c.) on the
boundaries 092 of 2.

In [4] the authors list some applications of perturba-
tion by dynamics. The problem addresses the two com-
ponent system where V' may play the role of the Hamil-
tonian of a subsystem living on Y. For example, in [4]
there is mentioned an acoustic model where X relates to
a membrane (if it is surface) or string (if it is linear). We
believe that the Hamiltonian considered in this paper can
be applied to this kind of models.

The main results of this paper can be formulated as
follows.

e Construction of the self-adjoint operator corre-
sponding to (1.2) and its resolvent.

e Deriving an explicit formula for the eigenvalues of
H,p and the corresponding eigenfunctions. More-
over the analysis of the functions counting the num-
ber of discrete points of spectrum as well as em-
bedded eigenvalues depending on « and § (Theo-
rem II1.3 and the discussion after it).

e Construction of the generalized eigenvectors.

Let us mention that a particular case of the model in
question was considered in [2]| (for more details see the
discussion after Theorem III.3).

'In fact, in [4] a larger class Hamiltonians is studied; this class can be determined as a perturbation of the self-adjoint operator

by the dynamics of V'
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II. HAMILTONIAN OF THE SYSTEM AND
ITS RESOLVENT

In the following we use the notations introduced in the
previous section. To precise the domain of our Hamilto-
nian it is convenient to use the space W™ (Q) = {f €
L2(Q) : 13, = S o(E s ID*]1?) < 00}, where
D* is a (distributional) derivative of the order of o and
| - || is the norm in L?(Q)2. Since we are interested in
the Hamiltonian with Dirichlet boundary conditions at
dQ it is natural to consider the space W3 (2) being
the closure of C§°(€?) (infinitely differentiable functions
compactly supported in Q) in the norm || f[3,,.

We study the quantum system governed by the Hamil-
tonian which can be symbolically written as (1.2). To
give a meaning of a self-adjoint operator to the formal
expression (1.2) we consider the quadratic form

Easl.6) = [ TU(@)Vola)da (2.1)

4 [ ) - Tso(o)dan

T

o / () Isd(@)dey, D(Eag) = W),

symbol Iy, denotes here the embedding WJ'(Q) —
L?(X) = L? defined by means of the convolution Isy) =
Yxo(-—X).

Relying on the results of [3] one can, standardly, show
that the operator associated with £, is self-adjoint; this
operator gives a mathematical meaning to the formal ex-
pression (2.1) and in the following will be denoted as
Hgp.

In fact, Hyp is just the Laplace operator with the ap-
propriate boundary conditions on 3. A straightforward
calculation shows that H,3 = —A and

D(Hag) = {W5*(Q\ 2) N W5 (),
¢($170+) = ¢($1507) = ¢($1’0) )

2

0u0(01,0%) = a0(01,0) = (95 — ) o(en, 0}
1

The absolutely continuous spectrum of H,g is the same
as the spectrum of pure Laplacian in L?(£2) with D.b.c,
ie.

Oac(Hap) = [1,00).

Now our aim is to recover discrete spectrum as well as
embedded eigenvalues of H,3. The total spectrum of
H,p will be, standardly, denoted o(Hag).

Let z € p(Hap) := C\o(H,p) and Ryp(z) stand for the
resolvent of H,g, i.e. Rog(2) = (Hap — 2)~ 1. The poles
of resolvent state eigenvalues of H,g, cf. [3]. Therefore,
our first aim is to derive an explicit form of Rns(2).

) | o glel
Mo is DY = ———— .
re precisely 912109315
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Let us note that the resolvent of —A acting in L?(Q2)
and satisfying D.b.c. on 0f is an integral operator with
the kernel taking the following form

G(z;z,2') = Z Gn(z;2,2)
neN
where z = (21, x2), o' = (2}, z4) and
ei‘rn(z)\:mf:n;\

Gn(z;x,2') = sin nxy sin naf |

i
T Ta(2)
where 7,,(2) = (2 — n?)"/? and Im 7,,(z) > 0. (Of course,
the above kernel depends on the coupling constants «
and 3; without any danger of confusion we omit here the
appropriate indices). Furthermore, let us introduce spe-
cial notations for the embeddings G,, : L() — L2(Q)
acting as G f = [, Gn(z;-, (21,0))f(2})dx] and G, :
L2(Q) — L*(%), G = Is Jo Gn(z: -, 2" )p(a")dx' =
(Jo Gz, X )ih(x')dx") % 6(- — B).

Then the resolvent R,s(z) is again an integral opera-
tor with the kernel

Gapl(z;2,2") = G(z; 2, 2")
+ Z én(Z; z, ) * Fn(zv %y

neN

(2.2)
)7 % Gz, 2),

where T'(z;-,-)~! is an operator acting in L?(X) and is
defined as the inverse of

[, (221, 2)) = Tp(2) sinnzy sinna’,

[a(z) = (a _lﬂnz - ;7’n1(2')> '

Note that T',, is not well defined for o/ = n?3. For this
case we assume that I';;! = 0. Since the above formula
represents the standard Krein like resolvent we omit here
the analysis in detail, cf. [5].

To proceed further let us note that the resolvent
R, 3(z) has the second sheet analytical continuation; pre-
cisely all the components forming (2.2) can be analyti-
cally continued cutting the Riemann plane along the half
line [n?, co0) and taking Im(z) 7, < 0.

ITII. SPECTRAL ANALYSIS OF H,z: DISCRETE
AND EMBEDDED EIGENVALUES,
GENERALIZED EIGENVECTORS

Now we are ready to search for the poles of R,z(z)
which are defined as roots of the equations

I'(z) =0, where n € N. (3.1)

A straightforward calculation shows that for Im 7,,(z) >0
the above equation has a real solution if a > 3n2. Given
n € N such that a > #n? the solution of (3.1) is by

%E%@m:—@%?f+ﬁ. (3.2)
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Remark III.1 Analysis of €,. Note that €, can be con-
sidered as a certain kind of generalization of (1.1). Par-
ticularly, if § = 0, then the eigenvalues are given by

a2
en(a,0) = 7 +n?. (3.3)
The component n? pushing up the eigenvalue w.r.t. (1.1)
is a natural consequence of the fact that our quan-
tum system lives in the strip Q and z; coordinate of
the momentum is quantized. A direct analysis of (2.2)
shows that the Hamiltonian H,g admits decomposition
Hap = @521 Hyp,n and given n the halfline [n?, oo) states
the continuous spectrum of H,g,. Consequently, the
continuous spectrum of H,s is given by [1,c0).

Remark II1.2 Discrete and embedded eigenvalues.
Note that, generally, €, can live in the continuous spec-
trum of H,p3 as well as apart from it. The eigenvalues
belonging to a discrete spectrum are determined by
€, < 1 which is equivalent to

2v/n2 —1+pn*<a,

and, analogously the embedded eigenvalues

2v/n2 —1+pn?®>a> pBn?.

Let us note that for n = 1 the latter inequality leads to
a contradiction, this means that the eigenvalue labelled
by n = 1 belongs to the discrete spectrum.

For the latter purpose we introduce the following no-
tations

Ny=t#{neN:2yn2—-1+pn<al. (3.4)

and

N.=#{neN:2y/n2—-1+08n*>a >pn’}. (3.5)

In view of the previous discussion, Ng, N, count the num-
ber of discrete spectrum points and embedded eigenval-
ues, respectively.

Finally, note that the function

fo(z) =€V n?—enlz2| gin pp, = e~ (a=Bnle:l/2 gy nry,
(3.6)
where x = (z1,x2), states the eigenvector correspond-
ing to €,. Indeed, a standard calculation shows that
—Af, = e, fn and, moreover, f, satisfies boundary con-
ditions on ¥ defined in D(H,g).
The following theorem completes the above state-
ments.

Theorem II1.3 Given oo € R and § € R operator Hyp

has #{n € N : a > n?83} eigenvalues of the following
form
_ 3,2)2
€n = _% + n2 .

The number of discrete spectrum points and embedded
eigenvalues are given by Ny and N, respectively. More-
over, fn defined by (3.6) states the eigenfunction corre-
sponding to €.

In particular, the above theorem implies

1.If «a € Rand 8 < 0 then Ny = oo and N, € N
provided there exists n € N : o < 2v/n2 — 1+ 3n?
otherwise N, = 0.

2. If « > 0 and 8 > 0 then Ng € N provided a > 3
otherwise Ny =0 and N, € NU {0}

3. Ifa<0and 8 >0 then Ngq =N, =0.
4. If « > 0 and =0 then Nq € N and N, = oc.

Note that for & = 0 and 8 < 0 formulae (3.2) and (3.6)
were obtained in [2] 3. Partially, result 1. was stated in [2]
as well (namely, if « = 0 and 8 < 0, then Ng = oo; the
embedded eigenvalue problem was not discussed in [2]).

As the final step we derive generalized eigenfunctions
of H,g. Mind that the generalized eigenfuctions are dis-
tributions (not belonging to D(H,g)) corresponding to
“continuum eigenfuctions”. Again straightforward calcu-
lations show that

Un(p; 0, x) = VP T2 gin gy

1 .
- T, (p?)te'V P2=n2l22] gin nay

2i4/p? — n?
where p? € [n?, 00), satisfy

— Ay, (p; 0, 2) = P*n(p; 0, 2)

and fulfill the boundary conditions described in the def-
inition of D(H,g). This means that the v, (p; o, x) state
the generalized eigenfunctions of Hyg; ¢ (p; +1, x) corre-
spond to the incidence from the bottom and analogously
¥, (p; —1, ) corresponds to the incidence from the top.

A. Final remarks and open problems

As was shown in the previous section the Hamilto-
nian of our system admits embedded eigenvalues under
certain conditions. If we introduce an additional ‘small’
perturbation to this system, then we can expect that the
embedded eigenvalues are recovered from the continuous
spectrum and move to the second sheet continuation of
the resolvent stating resonances. We postpone a detailed
analysis of resonances to a forthcoming paper.

3To be fully specific we have to say that the constant 8 in our paper corresponds to —a in [2]; see formula (89) of [2]
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TAMIJIBTOHIAH I3 JEJIBTA-IIOAIBHOIO BBAEMOAIEKO: IMHAMIYHI 3BYPEHHA

Cunbeis Konpeit
Incmumym Pisuru, Ynisepcumem 3eavonoi Typu, 3eavona Typa, Horvuia

Y craTTi mpoanasizoBaHO raMiIbTOHIAH JIBOBHMIPHOI CHCTEMH 3i B3a€MOJII€I0 HA MHOXKWHI KOBUMIPDHOCTI OJIMH.
30ypenHs B 11iit Mol 3a/ia€ Bigmosiuuit oneparop. Y poboTi BuBeseHO POPMYILy /IS BJIACHUX 3HAYEHD 1 BiIIO-
BimHUX BiracHux QyHKIH. Takoxk mpoanaizoBaHo (pyHKII, SIKi JAIOTh 3MOTY MiIPaxyBaTH KUIBKICTh JUCKPETHUX
i BKJIIOYEHNX TOYOK CIIEKTPA 3aJI€KHO Bifl KOHCTAHT 3B’S3KYy B Mojesi. BuBueHo 3HaiizieHi ysaraiabHeni Biachi
byHKIIT.
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