
ЖУРНАЛ ФIЗИЧНИХ ДОСЛIДЖЕНЬ
т. 16, № 1/2 (2012) 1001(4 с.)

JOURNAL OF PHYSICAL STUDIES
v. 16, No. 1/2 (2012) 1001(4 p.)

NEW KINK-LIKE SOLUTIONS FOR NONLINEAR EQUATION DESCRIBING
THE DYNAMICS OF DNA

M. A. Knyazev1, D. M. Knyazev2

1Chair of Technical Physics, Belarussian National Technical University,
Pr. Nezalezhnasti, 65, Minsk 220013, Belarus,

2EPAM-Systems, Academician Kuprevich Street, 1/1, Minsk 220141, Belarus
(Received May 17, 2011)

The nonlinear model of DNA is considered. In this model only the longitudinal and transverse
modes are taken into account but the helical structure and torsional motion are neglected. The new
kink-like solutions for the nonlinear equation of motion which describes the stretch of the hydrogen
bond are constructed by means of the Hirota method.
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I. INTRODUCTION

Deoxyribonucleic acid (DNA) molecule consists of two
long elastic rods with a helical structure. This molecule
is a carrier of information for the life and reproduction
of organisms. Because of this it used to be and continues
to be a very important subject of experimental and the-
oretical studies. The kink and kink-like states are widely
used for the description the nonlinear dynamics of the
DNA molecule. In [1] the steady-state torsional stress
and shape of a rotating rod with a kink was calculated.
The impact of the kinks on the deformation and tor-
sional stress of a twirling elastic rod is demonstrated.
The effects of the genetic sequence on the propagation
of nonlinear excitations in some simple models of DNA
was studied in [2]. The known result that kink propa-
gation requires forces over a certain threshold was con-
firmed. Below the threshold the dependence of the kink
dynamics on the information content of the genetic se-
quences was not observed. A worm-like polymer chain
with reversible kink-like structural defects was consid-
ered in [3]. This model is used for the description of a
generic model for the double-stranded DNA with sharp
bends induced by binding of certain proteins and the ef-
fects of trans-gauche rotations in the backbone of the
single-stranded DNA. It was found that the persistence
length is renormalized due to the presence of the kinks.
In [4] an existence of stable kink (antikink) states in a
model of DNA which account the dissipative effect of
intermolecular vibrational modes was found. An investi-
gation of the probability that a portion of DNA closes
on itself through thermal fluctuations as a function of
the presence of a kink at half DNA length is present-
ed in [5]. A kink and antikink states are used in [6] for
a study of motion of semiflexible biopolymers as DNA
in double-well potentials. It was shown that the activat-
ed dynamics of such polymers is governed by the nucle-
ation of localized kink-like excitations. For the nonlinear
dynamic plane-base rotator model of an inhomogeneous
DNA double helical chain the variations of perturbations

on the formation of kink-antikink states were considered
in [7]. In paper [8] it was shown how the formation of a
single permanent kink changes the DNA force-extension
relation in the finite worm-like chain model of short DNA
molecules attached to beads. In [9] on the base of a com-
bined model which includes two well-known models (the
pendulum model of Englander [10] and the microscopic
model of Peyrard and Bishop [11]) the nonlinear excita-
tions in a DNA molecule were studied as a function of
temperature. It was demonstrated that the kink velocity
depends on temperature. The formation of the kinks in
a cyclized DNA molecule when an anisotropy is taken
into account was considered in [12]. A model for DNA
dynamics by introducing the helical structure through
twist deformation by analogy with the structure of he-
limagnet and cholesteric liquid crystal system was pro-
posed in [13]. In this model the sine-Gordon equation is
used which admits kink-antikink solutions. The helicity
leads to a length scale variation that provides a better
representation of the base pair opening in DNA. The sec-
ond variation of DNA rings is investigated in [14]. On the
base of the Kirchhoff elastic theory a stability analysis
of kinked DNA is realized. Taking into account the an-
harmonic corrections to the anisotropic elastic rod model
for DNA allowed to explain a kink formation at high de-
formation limit [15].

A further study of such nonlinear localized excitations
is of great interest. A construction of new kink- or kink-
like solutions will allow to describe some new peculiari-
ties of the dynamics for DNA molecules and explain the
mechanisms of their behavior.

In this paper the new one kink-like solutions for the
model of a DNA molecule in which the longitudinal and
transverse modes are taken into account are studied. In
Section II a model of DNA is described and the nonlin-
ear equation of motion is considered. In Section III the
solutions of this equation are constructed by the Hirota
method and the conditions on the parameters of solu-
tions additionally to the conditions on the parameters
of the model are pointed out. In Conclusion some final
remarks are contained.

1001-1



M. A. KNYAZEV, D. M. KNYAZEV

II. MODEL AND EQUATION

Let us consider a continuous model for a DNA
molecule developed in [16] which is based on the lattice
model presented in [11]. We will follow [17] in the descrip-
tion of the model. The two long elastic rods of a DNA
molecule represent two polynucleotide chains. They are
connected by an elastic membrane. This membrane rep-
resents the hydrogen bonds between the pairs of bases
in the chains. As a DNA molecule is supposed to be ho-
mogeneous both rods have the same mass density. The
helical structure of DNA is neglected. The only longitudi-
nal and transverse motions of DNA rods are considered.

The torsion motion is neglected. The model has four de-
grees of freedom: u1 and u2 represent respectively, the
longitudinal displacements of the top and bottom rods
(displacements of the bases from equilibrium positions
along the direction of the phosphodiester bridge between
the two bases of the same rod); ν1 and ν2 represent re-
spectively the transverse displacements of the top and
bottom rods (displacements of the bases from equilibri-
um positions along the direction of the hydrogen bonds).

The Hamiltonian has a form

H = T + V1 + V2, (1)

where the kinetic energy of elastic rods

T =
∫

1
2
ρσ

[(
∂u1

∂t

)2

+
(

∂u2

∂t

)2

+
(

∂ν1

∂t

)2

+
(

∂ν2

∂t

)2
]

dx,

the potential energy of elastic rods

V1 =
∫

1
2
Y σ

[(
∂u1

∂x

)2

+
(

∂u2

∂x

)2
]

dx +
∫

1
2
Fσ

[(
∂ν1

∂x

)2

+
(

∂ν2

∂x

)2
]

dx,

and the potential energy of elastic membrane

V2 =
∫

1
2
µ [∆l (x)]2 dx.

Here ρ, σ Y and F are the mass density, the area of
transverse cross-section, the Young’s modulus and the
tension density of each rod; µ is the rigidity of the elas-
tic membrane; the stretching of the elastic membrane at
x due to longitudinal vibrations

∆l =
√

(h + ν1 − ν2)2 + (u2 − u1)2 − l0,

h is the distance between the two rods, l0 is the height
of the membrane in the equilibrium.

To obtain the equation of motion let us introduce the
new variables: for in-phase motion

u+ =
u1 + u2√

2
and ν+ =

ν1 + ν2√
2

;

for out-phase motion

u− =
u2 − u1√

2
and ν− =

ν2 − ν1√
2

.

Then assume that

|u1 − u2| � h, |ν1 − ν2| � h.

It allows to use the expansion

∆l

l0 + ∆l
= 1− l0

h
+

l0
h2

(ν1 − ν2)−
l0
h3

(ν1 − ν2)
2

+
l0

2h3
(u2 − u1)

2

and drop the higher order terms. The out-of-phase mo-
tion stretches the hydrogen bond. That is why only this
motion will be considered. By introducing the transfor-
mation ν− = au− + b, where a and b are some constants
and putting u− = φ, the equation of motion may be
written in the form

φtt − c2
1φxx = Aφ3 + Bφ2 + Cφ (2)

with

φtt =
∂2φ

∂t2
and φxx =

∂2φ

∂x2
.

Here

c2
1 =

Y

ρ
, A =

(
−2α

h3
+

4a2α

h3

)
, B =

6
√

2aα

h2
,

C =
(
−2α

l0
+

6α

h

)
, α =

µl0
ρσ

.

For b one has b = h√
2
; as regards the parameter a, it is

still arbitrary.
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Eq. (2) has the exact kink-like solution

φ =
−
√

2ah

2a2 − 1

[
1± tanh

(√
2a2µl0

ρσh (2a2 − 1)
ξ

)]
(3)

that may be obtained by using the elliptic equation. Here
ξ =

(
x−

√
2c1t

)
/c1, a2 > 1/2 and plus(minus) corre-

sponds for antikink(kink), respectively. In the next sec-
tion the new solutions of such a type will be obtained by
the Hirota method.

III. KINK-LIKE SOLUTIONS

To solve Eq. (2) let us introduce a new dependent vari-
able by the Cole-Hopf transformation

φ = σ
Fx

F
, (4)

where σ is a parameter to be determined and F = F (x, t)
is a new unknown function. Substituting Eq. (4) into
Eq. (2) results in the following nonlinear partial differ-
ential equation

FxttF
2 − 2FxtFtF − FxFttF + 2FxF 2

t − c2
1FxxxF 2

− 3c2
1FxFxxF − CFxF 2 − σBF 2

xF = 0. (5)

This equation is obtained under the condition

2c2
1 + Aσ2 = 0

which may be fulfilled for a2 < 1/2. From this condition
a the value of σ is determined.

Now we represent the function F as a formal series

F = 1 + εf1 + ε2f2 + . . . , (6)

where fi(x, t), i = 1, 2, . . . are the new unknown functions
and ε is not, generally speaking, a small constant. By
substituting Eq. (6) into Eq. (5) and equating to the zero
coefficients for each degree of ε, one obtains the infinite
system of linear partial differential equations for func-
tions fi. The two first equations of this system should be
used. They have the form

f1,xtt − c2
1f1,xxx − Cf1,x = 0, (7)

f2,xtt − c2
1f2,xxx − Cf2,x = 2f1,xtf1,t + f1,xf1,tt

− 3c2
1f1,xf1,xx + σBf2

1,x. (8)

To construct one-kink solution one needs the function
f1 only. Let us represent the functionf1 in the form

f1(x, t) = exp(kx− ωt + η0), (9)

where k, ω and η0 are some parameters. The parameter
η0 corresponds to the initial phase and may be putting
to zero. To determine the parameters k and ω two equa-
tions are needed. By substituting Eq. (9) into Eq. (7) one
obtains the first relation between k and ω

ω2 = c2
1k

2 + C. (10)

The second linearly independent equation to determine
k and ω is obtained from the requirement of breaking the
series (6) in the case of one-kink solution. It means that
the right-hand side of Eq. (8) should be equal to zero.
This leads to the equation

3ω2 − 3c2
1k

2 + σBk = 0. (11)

By solving Eqs.(10) and (11) one obtains

k = − 3C

σB
and ω2 =

9C2c2
1 + σ2B2C

σ2B2
. (12)

Finally, new one-kink solutions take the form

φ = σ
f1,x

f1
=

σk

2

[
1 + tanh

(
kx− ωt

2

)]
. (13)

The only parameter a is arbitrary. All the other parame-
ters in Eq. (13) are determined. Depending on their signs
this equation gives both kink-like and antikink-like solu-
tions. The condition ω2 > 0 results in the next relation
between the parameters

3α
(
2a2 − 1

)
(3l0 − h) >

√
2l0ha

For the case a2 < 1/2 this equation leads to the con-
dition h > 3l0. This is in agreement with the physical
conditions on the parameters of the model.

IV. CONCLUSION

The nonlinear model for DNA is studied. The DNA
molecule is considered as consisting of two long elastic
rods which are connected by the elastic membrane. In
this model the longitudinal and transverse modes are
taken into account only. The helical structure and tor-
sional motion are neglected. The equation of motion is
considered for the so-called out-of-phase motion which
stretches the hydrogen bond. The new one kink-like and
antikink-like solutions for this equation are constructed
by means of the Hirota method. One can conclude that
each of the obtained solutions is stable because its veloc-
ity is a constant. One can note that for these solutions
the Riccati generalization suggested in [17] is possible.
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НОВI ПЕТЛЕПОДIБНI РОЗВ’ЯЗКИ НЕЛIНIЙНОГО РIВНЯННЯ,
ЩО ОПИСУЄ ДИНАМIКУ ДНК

М. А. Князєв1, Д. М. Князєв2

1 Кафедра технiчної фiзики, Бiлоруський нацiональний технiчний унiверситет,
Мiнськ, 220013, Бiлорусь,

2 EPAM-Systems, Мiнськ, 220141, Бiлорусь

Розглянуто нелiнiйну модель ДНК. У нiй враховують лише поздовжнi та поперечнi моди, а спiральною
структурою й обертовими рухами нехтують. За допомогою методу Гiроти сконструйовано новi петлеподiбнi
розв’язки нелiнiйного рiвняння руху, яке описує розтягування водневого зв’язку.
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