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We calculate formal time derivatives of the mean values of the standard position, velocity, and
mechanical momentum operators, i.e., the Ehrenfest theorem for a one-dimensional Dirac particle
in the coordinate representation. We show that these derivatives contain boundary terms that essen-
tially depend on the values taken there by characteristic bilinear densities. We do not automatically
take the boundary terms to vanish (as is usually done); nevertheless, we relate the boundary terms
to similar terms that must be zero if one requires the hermiticity of certain specific unbounded
operators. Throughout the article, we thoroughly discuss and illustrate all these aspects, which in-
clude the relations to certain boundary conditions. To clarify, we call our approach formal because
all operations involving operators (for example, some operators products) are performed without
respecting the restrictions imposed by the sets of functions on which the self-adjoint operators can
act. Moreover, the Dirac Hamiltonian that we consider in our calculations contains a potential that
is the time component of a Lorentz two-vector; nevertheless, we also obtain and concisely discuss the
Ehrenfest theorem for a Hamiltonian with the most general Lorentz potential in (141) dimensions.
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I. INTRODUCTION

As is well known, if the time derivatives of the mean
values of the standard position, velocity, and mechanical
momentum operators (i.e., the Ehrenfest theorem), are
determined in a standard way for a three-dimensional
Dirac particle in an external electromagnetic field (i.e.,
E =—-Vp—0A/0(ct) and B = Vx A), in the coordinate
representation, the result is as follows (see, for example,
Refs. [1-4]):

& @) = (b, ()

Lo =2+ 2wy, - 2o,
= s @
oAy =e(B)y + S x Bl ()

Clearly, these derivatives do not exactly satisfy the clas-
sical equations of motion. This is because the velocity
operator in equations (1)-(3) is © = c&, instead of be-
ing, for example, the operator ¢2p/+/c2p* + m2¢t, which
is the classical velocity operator for positive energies.
The standard textbooks demostration of results (1)-(3)
in three dimensions (and therefore in one dimension) in
the Heisenberg picture [4] appears to have no problems.
However, in a formal demonstration of these results in

the coordinate representation under the Schrodinger pic-
ture, one observes the presence of certain boundary terms
that are not necessarily zero [5] (the one-dimensional case
was precisely treated in Ref. [5], but the treatment placed
emphasis on certain aspects that are related to the do-
mains of the operators). Each boundary term can be ob-
tained by evaluating a characteristic bilinear density (or,
as is sometimes called, a “local observable”) at the ends of
the region in which the particle lies and then subtracting
these two results.

In the present article, we carefully examine the usual
formal approach to obtaining the relativistic (or Dirac)
Ehrenfest theorem in one dimension in the coordinate
representation. We call this approach formal because in
our calculations, all operations involving operators (for
example, some operators products) are performed with-
out respecting the (excessively demanding) restrictions
imposed by the involved domains (i. e., the sets of func-
tions on which the self-adjoint operators can act, which
include the boundary conditions). Moreover, we essen-
tially use the concept of the hermiticity of an operator
instead of the self-adjointness, which is known to be more
restrictive. We believe that a formal study of this prob-
lem is valuable and pertinent. Let us also mention that,
as far as we know, no rigorous mathematical derivation
of Ehrenfest’s equations for a one-dimensional Dirac par-
ticle has previously been made. The non-relativistic (or
Schrodinger) Ehrenfest theorem (in one dimension) was
recently treated in Ref. [6] in a similar manner to that
used in the present article.

We begin this section by introducing the operators and
the bilinear densities. The latter are real-valued quanti-
ties that can be properly integrated in the region of in-
terest, and each of these integrals is essentially the mean
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value of some operator or some field quantity (these are
space-time functions, so they may be considered to be
local quantities; however, they are, in fact, dependent
of the quantum state in question, so in this sense, they
may be considered to be non-local quantities). In addi-
tion, each bilinear density is related (in a certain form)
to the hermiticity of a specific unbounded operator. All
these issues are also discussed in this section. In Sec-
tion II, we formally calculate the time derivatives of the
mean values of the operators and introduce other results
that are relevant to our study. A potential that is the
time component of a Lorentz two-vector was exclusively
considered. We do not automatically take the boundary
terms that are presents in these derivatives to vanish (as
is usually done); nevertheless, we connect these boundary
terms to similar (but not necessarily equal) terms that
must be zero if one requires the hermiticity of certain
unbounded operators. We also extensively discuss and il-
lustrate these aspects (which include the relations to cer-
tain boundary conditions) in Section II. The conclusions
are presented in Section III. Finally, in the appendix we
obtain and concisely discuss the Ehrenfest theorem for
a Dirac Hamiltonian with a general Lorentz potential
(i.e., a linear combination of a scalar, a two-vector, and
a pseudoscalar potential).

We have a one-dimensional relativistic Dirac particle
moving in the (finite or infinite) region x € Q = [a, b].
The standard position operator is & = x, the velocity
operator is © = c& (where & is one of the 2 x 2 Dirac
matrices), and p = —ihd/Ox is the momentum operator.
The scalar product of the two-component column vectors
(Dirac wave functions) ¢ = ¥(t,z) = (Y1 (¢, x) ¥ (t, )T
and ¢ = ¢(t,x) = (¢1(t,x) P2(t, x))T (where the symbol
T represents the transpose of a matrix), which belong
to the Hilbert space H = L2(Q2) & L2(Q), is (¥, ¢) =
fQ dz !¢ (the symbol t denotes the adjoint of a matrix).
Let L be a time-independent operator (such as &, ¥ or
). The time derivative of its mean value (L), = (1, L))
in the normalized state ¢» = ¥(t,z) (= ¢ € H) can be
calculated as follows:

d . o - . i

£<L>w = <5.t7L¢> + <‘/”Lat>
- %<ﬁ¢,ﬁ¢> - %w,iﬁw (4)
= & (0, L) — L)) + 5w, 11, L),

where [H, L] = HL—LH, as usual. The state ¢ evolves in
time according to the Dirac equation 9y /0t = —iH /h;
the Hamiltonian operator is

H=cap+mc?B+U(z) = —ihcd%

+mc2B + Ulz), (5)

where (3 is the other 2x 2 Dirac matrix and U (z) = eg(z)
is the potential energy function, or simply the external
potential. In fact, ¢ is a Lorentz vector type potential,
i.e., it is the time component of a Lorentz two-vector.
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The corresponding mean values of the operators
© and p in the complex normalized state ¢ = (¢

(Hi/JHQ = (1,9) = 1) are as follows:

z,
, L

)y = (i, 305) = /Q dz zphy = /Q drzo,  (6)

whree ¢ = o(t,z) = ¥4 is the probability density. The
operator Z is hermitian because it automatically satisfies
the following relation:

where ¢ and ¢ are functions belonging to H. Clear-
ly, we can also write the following relation: (¢, #¢) =
(@, ) = (1, &1) (where the bar represents complex
conjugation); therefore, Im(y), #¢) = 0, i.e., (Z)y € R,
as is expected for a hermitian operator. Note that be-
cause (L), = [,dzyiLy, we can also write <E>w =

JodzTLy = [, dx (T Ly)T. Likewise,

Oy = (,00) = ¢ /Q doplanp = /Q dzj,  (8)

where j = j(t,z) = cy)T & is the probability current den-
sity. The probability density and the probability current
density satisfy the continuity equation dg/dt + 9j/0x =
0. The operator ¢ is a hermitian matrix because & = aT;
therefore, it satisfies the following relation:

where ¥ and ¢ are functions belonging to H. As expected,
we can also write the result (¢, 0¢) = (01, ¢) = (W, V);
therefore Im(vy, 99) = 0, i.e., (0)y € R. Note that a ve-
locity field defined as V' = V(t,x) = j/p has the same
mean value as the operator 0, i.e., (V) = (0)y (this is
so because (V)y = [, dxz V). Similarly,

5y = (. ) — th 0
B =) = [ drol§ e (0)

The operator p satisfies the following relation:

(W, pe) — (P, &) = —ih [vie]|| (11)

where we introduce the notation [f]|Z = f(t,b)— f(t,a),
and ¢ and ¢ are vectors in H. If the boundary conditions
imposed on ¥ and ¢ lead to the cancellation of the term
evaluated at the endpoints of the interval 2, we can write
relation (11) as (¢, pd) = (P, ¢). In this case, p is a her-
mitian operator. If we impose ¥ = ¢ in this last relation
and in Eq. (11), we obtain the following condition:

b b
[WT9]], = [ell, =0. (12)
What is more, (¢, py)) = (P, ) = (¢, p); therefore,
Im<¢7ﬁ¢> = 07 i-e-a <ﬁ>1/) € R
The results that are relevant to the Hamiltonian oper-
ator H are the following. The way this operator acts was
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given in (5), where also 3 = 3T and U(z) € R. The mean
value of H in the state ¢ = ¢(¢,z) € H is the expression

() = (i, H) = ¢ / dotal Oy
2 TA
+mc /del/) ﬁz/J—i—/Qda:Uz/) ) (13)

and it satisfies the following relation:

(b, Ho) — (Hip, 0) = —ihe [plag]|},  (14)

where ¢ and ¢ are vectors in H. If the boundary con-
ditions imposed on 1 and ¢ lead to the cancellation of
the term evaluated at the endpoints of the interval €,
we can write relation (14) as (¢, Hp) = (H1), ¢). In this
case, H is a hermitian operator. If we impose ¥ = ¢ in
this last relation and in Eq. (14), we obtain the following
condition:

[71le =0. (15)

a

T
c[vlay]], =
In addition, (¢, ﬁz/;> = (Iih/), Py = (P, I:h/}>, therefore,
Im(yp, HY) =0, i.e., (H)y € R.
We would also like to introduce the following family of
operators:

hAZC]A_’Aﬁ, (16)

where the four 2x 2 hermitian matrices I'4 (A=1,2,3,4)
are

=1, Iv=a, I3=p3 1I,=iBa. (17)
We know that the following relations must be satisfied:
af + @a =0 and & = 32 = 1. Therefoge, the ma-
trices I'4 have the followmg properties: (i) I'3 = 1; (i)
FBFAFB = —FA for A # B and A, B = 2, 3, 4; therefore,
(#4i) tr(I'4) = 0 (where tr denotes the trace of a matrix);
(iv) they are all linearly independent, and therefore, any
2 X 2 matrix can be expanded in terms of the I'y. In oth-
er Words We can write an arbitrary 2 x 2 matrix, say C
as C' = ZA L Cal4, where Ca= tr(I'4C) /2. Naturally,
the algebra generated by the I'4 is a Clifford algebra. It
is worth noting that if the arbitrary matrix C' is hermi-
tian, then C4 € R (this is because I’y = fj) Let the
following be the four real-valued quantities C4:

= et Tan). (18)

These functions are usually known as bilinear densi-
ties, but they are also called bilinear covariants because
they have definite transformation properties under the
Lorentz transformations (in 1+1 dimensions). Specifi-
cally, C1 = cp (the time component of a Lorentz di-
vector) and Cy = j (the spatial component of a di-
vector); furthermore, Cs = ¢s = ¢T3 (a scalar) and
Cy = cw = eplifénp (a pseudoscalar) [7]. In this ar-
ticle, we do not assign a specific name to the densities
s and w. It is worth noting that the matrix C' can be
written as C' = 2cp). In effect, Ca = tr(I'a2cynpt)/2 =

tr(elyt) = tr( wTI‘Aw) = eyt I'41p. Moreover, the fol-
lowing properties of C can be verified: (i) (C/QCQ)
C/2¢o. (i) (C)2¢0)? = C/2co, and (iii) tr(C/2c0)? = 1.
Hence, C /2co is a density matrix and also a projector;
therefore, it can represent the quantum state of the sys-
tem, as well [8]. It is worth noting that property (i)
implies that (cg)? = (cs)? + 52 + (cw)?, i.e., only three
of the bilinear densities are independent [7].

The results that are relevant to the operators ha =
cﬁAﬁ are the following. We have hy = cp, so the results
that are valid for p are obviously also valid for ﬁl(Eqs.
(11) and (12)). Similarly, the so-called Dirac operator,
hy = cap, also satisfies relations (14) and (15) as does
f“Lg —&—mczﬁ—i—U( ). I
contrast, the operator hs = ¢f3p = —ihc(3d/dx satlsﬁes
the followmg relation:

the Hamiltonian operator (H

~ ~ N b
(W, hso) = (o, @) = —ine[v1Bg] | . (19)

where ¢ and ¢ are vectors in H. If the boundary con-
ditions imposed on ¥ and ¢ lead to the cancellation of
the term evaluated at the endpoints of the interval 2,
we can write relation (19) as (1, ﬁ3¢> = (izgw, ¢). In this
case, hs is a hermitian operator. If we impose Y = ¢ in
this last relation and in Eq. (19), we obtain the following
condition:

[w8e]| = 151 =0, (20)

In addition, (1, hs)) = (hst),v)) = (¢, hatp); therefore,
Im(vp, hyﬁ) =0,i.e <h5>¢ € R. In the same way, the op-

erator hy = czﬁap = —l—hcﬁa 0/0x satisfies the following
relation:

~ N ~ b
(. had) = (hao, @) = —ihe [vhiBag|| . (21)

where ¥ and ¢ are functions in H. Again, if the boundary
conditions imposed on 1 and ¢ lead to the cancellation
of the term evaluated at the endpoints of the interval
Q, we can write relation (21) as (¥, hy¢) = (hatp, ¢). In
this situation, hy4 is a hermitian operator. By imposing
1) = ¢ in this last relation and in Eq. (21), we obtain the
following condition:

[wtiac]|” = [wllt =0 (22)

Additionally, (1), hyt)) = (hath, ¥) = (¥, hytb); therefore,

I (1, hytp) = 0, i.e., (ha)y € R.

II. TIME DERIVATIVES FOR (&), (i), AND (p)

From formula (4) with L = #, we can write:

d

@) (8]} (23)

2o =+ (V. 29) — (H2)y) +
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We now compute the following scalar products:

X t R
<Hw,5£¢>:ihc/ﬂdazm%dw+m02/Qd;vxz/)T51/J+/dexU1/ﬂw,

(Hz)y = —ithdwada%(xw)+mc2/Qdmz/}TBw+/Qdeww.

By integrating by parts the first integral in (ﬁ ¥, 24) and then substracting these two expressions, we obtain

(B, i) — (A)y = +i [weptay] | = +ih[oj]] (24)

(this result can also be obtained by imposing ¢ = 24 in relation (14)). Moreover, the mean value <[H , &)y in Eq.
(23) can be explicitly computed by using (Hz), and calculating (ZH),; in effect,

X . )
([H,2))y = (Hi)y +z‘hc/Qdmwaam

By developing this expression and simplifying, we obtain
the result

([H,])y —z’hc/deMdz/J = —m/dej

— —ih(5)y (25)

where we have also used formula (8). Finally, Eq. (23)
can be written as follows:

d

78y =[]l + D)y (26)

The boundary term evaluated at the ends of the in-
terval Q does not vanish just because H and/or ha
are/is hermitian, i.e., in formula (26), condition (15)
(j(t,b) = j(t,a)) is not sufficient to eliminate that
boundary term. From the latter condition, we can write
the formula d(&)y/dt = —(b— a)j(t, a) + (0)y; therefore,
only a boundary condition that leads to the vanishing of
the probability current density at x = a (= at z = b)
gives the equation d(Z)y/dt = (0)y (see Eq. (1)). Let us
specifically consider the Dirac representation, in which
the Dirac matrices are & = &, and B = 6, (where &,
and 6, are two of the Pauli matrices) and the wavefunc-
tion is written as ¢ = ¥(t,z) = (¢(¢, z) x(¢,z))T (where
¢ is the so-called large component of v, and x is the
small component). In this representation, the probability
current density is j = ct6,9 = c(¢x + Xb). For exam-
ple, with the boundary condition ¢(¢,a) = ¢(t,b) = 0,
the operator H is hermitian [9]; therefore, the proba-
bility current density is zero at * = a and x = b,
but the boundary term in Eq. (26) also vanishes at
the ends of Q. However, with the periodic boundary
condition ¥(t,a) = ¥(t,b) (= ¢(t,a) = ¢(t,b) and
x(t,a) = x(t,b)), H is hermitian [9] and, therefore, Eq.
(15) is satisfied, but the boundary term in Eq. (26) is
not zero. It is worth noting that boundary terms aris-
ing from the term (H, L) — (¢, HLv) (see Eq. (4))
usually cancel because the particle lies inside the (open)
interval 2 = (—o0,+00), and the wavefunction and its
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fmc2/§2d9:z1[1TﬂA1/}f/dewaT1/J.

[

successive derivatives tend to zero when x — +o00. Clear-
ly, one cannot automatically assume that these terms are
zero if the interval is, for example, finite. However, the
boundary term in Eq. (26) always vanishes if the fol-
lowing operator, sometimes called the center-of-energy
operator (see Ref. [2], pag. 8), is hermitian:

N T A I , -
N = i(Hx—i—xH) = —ihcé (xax + 2>—|—mc xf+zU(x).

In fact, this operator satisfies the following relation:
- - , b
(¥, Ng) — (N, ¢) = —ihe [zpTag]|, .

By assuming that N is hermitian, the latter boundary
term vanishes, i. e., we find that [z cyfay] |Z = [;IJ]HZ =
0.

It is worth mentioning that the probability density
that corresponds to the energy-eigenstate solutions to
the Dirac equation in one dimension, for a constant
(or uniform) external potential, is different to zero al-
most everywhere [10,11] (in fact, this is not necessar-
ily true at infinite), i.e., the entire eigensolution does
not vanish at a boundary. What is more, the Hamil-
tonian operator with a (bounded-from-below) potential
in a closed interval is not self-adjoint for the Dirichlet
boundary condition [9,12], but it is a hermitian oper-
ator. In any case, there are many boundary conditions
for which the Hamiltonian is self-adjoint and therefore
hermitian. Some examples are (i) ¢(t,a) = ¢(t,b) = 0,
(i) x(t.a) = x(£,b) = 0, (i) 6(t,a) = x(t.b) = 0, (iv)
X(£:a) = 6(t,b) = 0, and (v) (t.a) = (t,b) (Ret. [9]
contains more examples of self-adjoint boundary condi-
tions).

Returning to Eq. (23), it is clear that by developing
(and simplifying) that result, we can write

d

Sl = 5 (Y, 50) =+ (, 2 H).

Now, as we know that <1/),§:]EI¢) = (iz/;,ﬁzb) (from Eq.
(7) with ¢ = H 1), we can write the following result:
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d i oA R A Sa—
a<1‘>w = ﬁ<H¢,M/)> - ﬁ<H1/J,I1/J>
_ —%Im(ﬁ’l[),fh@. (27)

Clearly, this (real-valued) expression is equivalent to Eq.
(23). To be precise, formula (26) was also obtained in

Ref. [5], but there the emphasis was on the validity of

|

9y

(H1p, 00)) = ihc? /Q d ——

Eq. (27) each time that & is hermitian.

Similarly, from the formula (4) with L = %, we can
write

D oo =+ ({Hro,00) — (Hi)y) + (8. (28)

We now compute the following scalar products:

i
2 '3 ts
P + me /Qd:m/J ﬂvz/;—}—/gdel/J 0,

(HD)y :—mc/gdw*g—f +mc2/9dxwﬁw+/ﬂdxwm¢.

By integrating by parts the first integral in (]:I ¥, 01p) and then substracting these two expressions, we obtain

(B, 00) — (Ho)y = +ind® [$79]]) = +inc [o]|! (29)

(this result can also be obtained by imposing ¢ = 99 in relation (14)). Additionally, the mean value <[ﬁ , 7))y in Eq.
(28) can be explicitly computed using (H9), and calculating (0 H).,; in effect,

(H,8])y = <ﬁﬁ>w—|—ih02/§2d$¢Tgi)—mCQ/dez/)TﬁBw—/ﬂdei/)T{)w.

By developing this expression and simplifying, we obtain the following result:

(1,30) = me? [ dowl(Bolp =2me [ dowtfow = @, (30)

where we have also made use of the relation 93+ 36 = 0.
The acceleration operator, a = 2m02iﬁﬁ/ h, is a hermi-
tian matrix because ¥ = c& and B are hermitian; as a
result, it satisfies the following relation:

(¢, a¢) — (@, ¢) =0, (31)

where 1 and ¢ are functions belonging to H. As expected,
we can also write the result (¢, ay) = (a, ) = (¥, av);
therefore, Im(y, ay)) = 0, i.e., (@), € R. Note that an ac-
celeration field defined as A = A(t,z) = 2mc3w/ho has
the same mean value as the operator @, i.e., (A)y = (G)y
(this is so because (A)y = [, dz Ap). Finally, Eq. (28)

can be written as follows:

Lty =~ (o]l + (). (32)

Returning to results (28) and (29), we can simply write

D 5)y = Lol + LA 8],

where the commutator can be written as [H, 9] = Hd +
vH — 20H. By substituting the Hamiltonian operator

[

(Eq.(5)) into this commutator, developing this quantity
and simplifying, we obtain the following result: [H, 0] =
2¢%p + 2U (x) © — 20H. Therefore,

([H, 0]}y = 2¢*(D)y +2{UB)y — 2(0H) . (33)
Consequently, result (32) can also be written as

b 2ic? . 2, 2, -
ol|, + T(PM + g(U”M - E(vHW.
(34)
Once again, the boundary term in (32) and/or (34) does
not necessarily vanish because condition (15) is satisfied

G = =2

(or because H and/or hy are/is hermitian). An exam-
ple of this situation is provided by the boundary condi-
tion ¢(t,a) = ¢(t,b) = 0. Certainly, with this boundary
condition, H is hermitian [9], but the boundary term
in (32) and/or (34) is not necessarily zero. However,
for the periodic boundary condition, ¢(t,a) = ¢(t,b)
and x(t,a) = x(t,b), the boundary term in (32) and/or
(34) does vanish. Therefore, only a boundary condition
that leads to the same value of the probability density
(o = Y'Y = ¢¢ + ¥x) at both ends of the interval Q
(i.e., o(t,a) = o(t,b)) yields the equation d(0),/dt =

1003-5
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(a)y = 2i((P)y + (UD)y — (0H)y)/h. Note the agree-
ment of these results with those given in Eq. (2). To be
precise, in Eq. (2), 3 is the spin operator in units of h/2
for the Dirac particle in three dimensions; nevertheless,
for a Dirac particle in one dimension, there is no orbital
angular momentum and therefore no need for an intrin-
sic angular momentum. Let us also add that boundary
conditions for which the momentum operator is a her-
mitian operator always lead to the cancellation of the
boundary term in (32) and/or (34) (see the discussion
that precedes Eq. (12)).

Returning to Eq. (28), it is clear that by developing

Now, as we know that (v, 0H1) = (0, Hy) (from Eq.
(9) with ¢ = H1)), we can write the following result:

d

2 A
Al — - Im(f1, 00).

(35)
Clearly, this expression is always equivalent to Eq. (28)
[5].
By the same token, from formula (4) with L =p, we
can write

<Hw,vw> <I€rw7@¢> =

d

. iofa o i,
(and simplifying) that result, we can write %@W 5 ((H%pt@ - <Hp)¢) + ﬁ<[H,p]>¢. (36)
d
dt< D)y <H'l/}a o) — *W, UH?/’) We now compute the following scalar products:
. T
(Hv, pnp) :h%/ dx %da—d} — ihmc? /dmﬁﬂa—w — h/ dx UwTaw
Q Jxr Oz
- AN W . 1/1
— _p2 Ta— [ 22 ) — T T2
(HP)wy hc/ﬂd:m/} Qo <0x> ihme? /d:m/)ﬂ /d Uz/;
By integrating by parts the first integral in (ﬁ ¥, p1) and then substracting these two expressions, we obtain
i ~ KN 2 —‘. ~ aw b . T A A b
(Hy, pip) — (Hp)y = +h7c |9 ao || = +ih [Wieapy]|,
. b
— —in [—szHw +me?s + Ug] (37)

(this result can also be obtained by imposing ¢ = pi in relation (14)). Similarly, the mean value <[ﬁ , D)y in Eq.
(36) can be explicitly computed using <ﬁ P)y and calculating (ﬁf[ Yo; in effect,

ox

(.3l)0 = s + 1P [ douta x(”)mmc [ asuts3

—H’h/ dmpT (U’(/J)

By developing this expression and simplifying, we ob-
tain the following result:

du
i)y =5 [doet o =T @)
where f = f(z) = —dU/dx is the external classical force
operator. Finally, Eq. (36) can be written as follows:
d . SR 2
2P =~ [Wleap]|, + (f)v (39)

b
+ [me?s + Ug] {Z +(f)y,

a

. Taﬂ
- m{w ot

1003-6

(

where we have used the formula H = ihd/dLt.
Returning to Eq. (36), it is clear that this formula can
also be written as follows:

d

pralot <w,ﬁlfw>-

<Hw7p¢>

Now, by using Eq. (11) with ¢ = He = ihd)/dt, we can
write the following result:

bt} = (oo o)+ 12 (0152 (ao)

a
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and by substituting for (1, ﬁfl 1) in the previous relation,
the following formula is obtained:

d b

St = —2tm(dro ) - in [0 5]

ot

Indeed, formulas (39) and (41) are equivalent. Note that
if the boundary conditions imposed on 1 lead to the can-
cellation of the boundary term in the latter equation (and
in Eq. (40)), the operator p will be hermitian, i.e., Eq.
(12) is satisfied (the spatial part of the boundary term
in Eq. (40) is not affected by the presence of the time
derivative). For instance, the operator p (in an interval)
is self-adjoint (and therefore hermitian) when (t,b) =
Mw(t, a) (where the matrix M is unitary). Then, we al-
so have v (t,b) = M1(t,a) (where the dot represents a
time derivative), and therefore the boundary term in Eq.
(40) vanishes. Note that as an immediate consequence of

Eq. (12) (provided that U|" = 0), Eq. (39) takes the

form d(p)y/dt = mc? [SHZ +(f)y, i.e., we could have a
nonzero boundary term. However, some boundary con-
ditions that satisfy Eq. (12) could also satisfy [SHZ =0
(Eqg. (20)). In fact, the latter condition is satisfied if, in
addition, we have 3 = M~13M. Lastly, it is worthwhile
to note that the boundary term [s]|Z can be written as
the mean value of the following force field (or boundary
quantum force): F = F(t,z) = mc*p~19s/0x (this is
so because (F), = [, dx Fp). Hence, we can write the

following nice expression: d(p)y/dt = (F)y + (f)w-

As a final illustration of formula (39), let us consider
the problem of a Dirac particle in a finite step poten-
tial: U(z) = VpO(z) (z € Q = (a,b) = (—00,+x)),
where ©(x) is the Heaviside step function. We consider
a normalizable wavefunction ¢ = ¥(t,x), i.e., ¥(t,x —
+00) = 0. We can then conclude (from Eq. (39)) that

S =M, (42)

where the external classical force operator is f =
—dU/dx = =Vpdé(x), and §(z) = dO(z)/dx is the Dirac
delta function. Clearly, the mean value of f in the state
1 can be immediately obtained as follows:

. R +oo
(o= {0 o) = Vo [ dos(a)o!a)iit,)

—00

= —Voo(t,0). (43)

This result can alternatively be obtained as follows: (a)
multiply (properly) the (time-dependent) Dirac equation
for ¢ by 0¢'/0x and the equation for ¢ by 9¢/dx, and
then sum the two resulting equations; (b) integrate each
term of the result obtained in (a) around =z = 0. We
finally obtain

B / 7 D i e )

dx
+oo T
- [ dx dz; Vot (b, )t ) (44)
= (fyo = —mc[s]]y" — [Uelly",

where we use the notation 0+ = lim (0 % ¢). In this prob-

e—0
lem, because we have s(t,0+) = s(¢t,0—) = s(¢,0) and
o(t,04) = o(t,0—) = o(¢,0) as well as U(0+) = V; and
U(0—) = 0, we obtain result (43), as expected.

Let us suppose that the particle with positive energy
is approaching the potential step such that £ — V < 0,
or more specifically, E — Vi < —mc? (= Vy > E +mc?),
and momentum %k > 0 (this interesting energy range
is associated with the so-called Klein energy zone). The
physical eigensolutions of the (time-independent) Dirac
equation H 1 = Ev in the Dirac representation (see the
Hamiltonian operator in Eq. (5)) must be written as fol-
lows:

Y(x) = O(—) [Yi(z) + ¥u()] + O(2)e(x),  (45)

where the incoming and reflected solutions are given by

w0 = () ) e,

Yr(z <0) = (Ztg) < —la > ek,

respectively, whereas the transmitted solution is given by

2a 1 —1iKT

(in addition, these solutions satisfy the boundary condi-
tion 1;(0) 4+ ¢, (0) = ¢4(0)). The (real-valued) quantities
a and b are given below:

(46)

(x> 0) =

chk chr
= b= ———— <0 48
@ E+mcz> ’ E—Vo—l—mc2<’ (48)
where
chk =+/E? — (mc?)?2 > 0,
chk =+/(E —Vp)? — (me2)2 > 0. (49)

It is noteworthy that both E—Vy+mc? and E —Vy —mc?
are negative. Likewise, the reflection and transmission
coefficients are

Ca@)] fa+b\? )]
=@l = (a—b) e T

where the incident (ji(x)), reflected (j,(z)) and transmit-
ted (jy(z)) probability current densities are calculated for
the solutions 9;(x), ¥ (z) and ¥ (x), respectively (in the
Dirac representation, i.e., j; = cwj&wz/)i, etc). It can be
easily shown that R+ T = 1 (in fact, we have R < 1,
and particularly R — 1 when Vy — E + mc?, because
b — —0), and there is no paradox. Notice that we have
only used solutions of the single-particle Dirac equation.
In this regard, our results are mathematically similar to
those reported, for example, in Ref. [13].

4a |b|
(a—1b)*’
5
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The momentum values associated with the transmit-
ted wave are the eigenvalues of p = —ihd/Jz that cor-
respond to ¥ (x); therefore (from Eq. (47)), these values
satisfy —hix < 0. However, the transmitted velocity field
(constant) is given by

Je(x) —2cb —c?hk
V = = =
N s R
me® \?
= 1-— 1
c (E — Vb) >0, (51)

i.e., it is positive, as expected. Likewise, the mean value
of f in the eigenstate 1 given by Eq. (45) can be obtained
from the following formula (see Eq. (43)):

a?(1+b?)

(e = —Voml0) = W (@)

As is well known, when V5 — oo (a very strong field),
the finite step potential becomes an infinite step poten-
tial. However, the latter potential is not an impenetra-
ble barrAier, unlike in the non-relativistic case. Let us ex-

pand (f), into a series that involves positive powers of
e=mc*/(Vo — E):

(fro=-Vo

(a+/E2) 19

8a?
~ e Y

8a> (a—1) ; 2
@ P ‘VOO@(;)

Clearly, in the limit of Vj — oo, we obtain the following
result:

,8a%(a—1)

(a+ 1) +0=—o0. (54)

<f>¢ = —00 —mec

That is to say, only the second term in the expansion giv-
en in Eq. (53) is a finite constant and independent of V;
when Vj — oo; this is the same as in the non-relativistic
case for solutions of the Schrédinger equation [14]. Natu-
rally, in the non-relativistic case for V5 > E, no solution
as that given in Eq. (45) is obtained.

IIT. CONCLUSIONS

In summary, we have calculated in detail formal time
derivatives of (&), (0) and (p) for a one-dimensional
Dirac particle. As we have seen, these quantities con-
tain boundary terms that will not necessarily be simul-
taneously equal to zero, and these boundary terms can
be (essentially) obtained by simply evaluating a bilinear
density at both ends of the interval and then subtract-
ing the two results. Similar (but not necessarily equal)
terms to these must be zero if one claims the hermiticity
of certain specific unbounded operators. For example, it
is not sufficient that H be a hermitian operator to sat-
isfy the relation d(&),/dt = (0),. This is because the
relation []]|Z = 0 does not imply that [:ZJ]”Z =0 (see
Egs. (15) and (26)). On the other hand, if p is a hermi-
tian operator (= [Q“Z = 0), then d(0)y/dt = (a)y, but
d(p)y/dt = mc? [SHZ + (f)y, provided that U|" = 0.

Likewise, the condition [j ”Z = 0 is clearly not a suffi-
cient condition to ensure that the boundary terms in the
latter two time derivatives are zero (see Egs. (12), (32)
and (39)). Moreover, (0), is the same as (V),, where
V = j/o is the velocity field; also, (G)y is equal to (A)y,
where A = 2mc3w/hp is the acceleration field. In ad-
dition, we can write the expression mc? [S”Z = (F)y,
where F' = mc?9~10s/0z is a type of force field.

As we have seen, a relationship generally exists be-
tween an unbounded hermitian operator and a bilinear
density (via a vanishing boundary term). For example, in
addition to the relation between H (and hy = c@p) and
[jHZ = 0 as well as that between p (and hy = ¢p) and
[QHZ = 0, the hermiticity of hs = ¢f3p is also connected
to [s] \Z = 0, and in like manner, hy = ci3ap is related to
[w] \Z = 0. Furthermore, there exists a relation that con-
nects the bilinear densities of interest (j, o, s and w). We
have recently studied more of these matters, as well as
certain connections among self-adjoint general boundary
conditions for each of the four operators hy = c¢l's p [15].
We believe that various aspects of our study may be at-
tractive to all who are interested in the fundamentals of
quantum mechanics.

IV. APPENDIX

The free Dirac equation in covariant form is

(thy*d, — me)y = 0. (A1)
Here, 4#, with u = 0, 1., are the Dirac gamma matrices (remember that we are in (141) dimensions). Specifically,
we have 4 = 8, 4! = a4, and therefore (4°)? = —(3')? = 1; and also (")t = 4°4#4°. The standard minimal
substitution, 9, — 9, + %A, where A" = (¢, A), can be introduced into Eq. (A1), but we could also introduce into
Eq. (A1) a covariant potential of the form @scqgps = %S 1+ %W&5, where S is a scalar potential, W is a pseudoscalar

1003-8



OPERATORS AND BILINEAR DENSITIES IN THE DIRAC FORMAL 1D EHRENFEST THEOREM

potential (under the Lorentz transformation), and 4° = i4°4! = ia& = —(5°)'. By making these substitutions, the
Dirac equation (Al) takes the form
[ihA* (D, + ;%Au) — Psemps — me| Y = (ih4"0), — Ucoy — me)p = 0, (A2)
where
Ucov = £A,4" + @scops = ¢S1+ £A4" + W5 (A3)

is a general covariant potential (in fact, this is the most general Lorentz potential in (1+1) dimensions).
The latter equation can be easily rewritten as follows (by multiplying (A2) from the left with ¢f3):

ihoph = Hi, (A4)
where the Hamiltonian operator is
H=ca(p— ¢A) +mc*B+ U+ SB + Wifa. (A5)

This operator is hermitian because the potentials, ¢ = U/e (the time component of the two-vector A*), A (the
spatial component of A*), S, and W, are real-valued functions. Moreover, i3¢& is a hermitian matrix because & and
0 are also hermitian; thus, these matrices verify the following relations:

(¥, iBag) — (iBay, ) =0, (A6)
W’ d¢> - <@w’ ¢> = O, (A7)
(¥, Bo) — (B, ¢) = 0, (A8)

where ¥ and ¢ are functions belonging to H.

As we know, the formal time derivative of the mean value of an operator depends of the Hamiltonian operator
(see Eq. (4)); thus, we expect to obtain new terms in the Ehrenfest theorem when we use the Hamiltonian (A5).
Although the first Ehrenfest equation, say, does not change,

d, . b L e
28y == [2]la + (O)y, (A9)

i.e., this is just the Eq. (26). Again, because the operator (A5) is hermitian, then [5]|”

o = 0 (see Eq. (15)). However,
the second Ehrenfest equation is

L ihy =~ [0l + () + (as)y + i)y, (A10)

where, as before, @ = 2mc2i30/h is the acceleration operator (see Eq. (32)). Moreover, ag = 25i30/h is an acceleration
operator linked to the scalar potential S, and aw = —QCWB /h is an acceleration operator linked to the pseudoscalar
potential 1. All these operators are hermitian because relations (A6) and (A8) are verified. Incidentally, as (a), =
(A)y, where A = 2mc®w/ho is an acceleration field, we have that (as)y = (As)y and (aw)y = (Aw)y, where
As = 2cwS/ho and Aw = —2csW/ho are acceleration fields associated to S and W, respectively (remember that
w= 1/)Tiﬁd1/} and s = 1/)%1/1). Likewise, the third Ehrenfest equation is

d, .. . b \ .

%@ — LAYy = — [plea(p — €A V]|, + (Fhw + (fs)v + (fw)w, (Al1)
where, as before, f = —U’ is the external classical force operator (see Eq. (39)). Furthermore, fs = —S’3 is a force
operator linked to the scalar potential, and fyv = —W'i3a is a force operator linked to the pseudoscalar potential.

Note that (fs)y = (Fs)y and (fw)y = (Fw)y, where Fs = —s5" /0 and Fyy = —wW’ /g are force fields linked to S
and W, respectively. Incidentally, as far as we know, we have not seen in the literature an analysis similar to the one
presented in this appendix.

The scalar and pseudoscalar potentials in one dimension have been considered in the literature. For example,
a coherent state of the one-dimensional version of the so-called Dirac oscillator can be constructed. In this case
the potential in the Dirac equation is a pseudoscalar potential for which we have that W(x) o z [16]. Thus, the
formal time derivatives of the expectation values of the operators &, ¢ and p are given by Egs. (A9)-(A11) with
A =U =5 =0. On the other hand, one can construct a wave packet for which the Heisenberg uncertainty relation
for z and p is exactly satisfied. This situation can be performed if the potential in the Dirac equation is only a scalar
potential S(z) (or if there is also a vector type potential U(x), where U(x) < S(x)) [17]. In both cases, the writing
of the Ehrenfest theorem is immediate. We hope to extend the results presented in this appendix in a forthcoming

paper.
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OIIEPATOPH I BIJITHIMHI I'YCTUHU ¥V ®OPMAJIbHIN JIPAKIBCHKIN
OJHOBMMIPHIN TEOPEMI EPEH®ECTA

CausibBaTope sie Binuenio
Lenmparvrud ynisepcumem Benecyeau, Kapaxac, Benecyena

Y crarTi po3paxoBano dhopMabHI TOXiAHI 32 YacoM Bif cepe/iHIX 3HAYEHD CTAHIAPTHUX OIEPATOPIB KOOD/IU-
HaTH, MBUJIKOCT]I Ta MeXaHIYHOrO iMIIyIbCy, TOOTO OTpUMaHO TeopeMy Ependecra mist oqHOBUMIPHOL nipakiBchKOl
YaCTUHKY Y KOOpPJMHATHOMY 300paxkeHHi. [lokazaHo, 10 I1i MOXifgHI MICTSITh IPAHUYHI JOMAHKHU, sIKi CYTTEBO 3a-
JIeXKaThb BiJl 3HAYEHD BIIMOBIIHUX XapaKTePUCTUIHUX OlminiftHMX ryctmn. Ha BimMminy Bim 3BHYaiHMX ITiIXO/IiB,
MU TPAHUYHUMHU JOJAHKAMU He HeXTyeMo. BommHodac Mu moOB’s3yeMoO X i3 HMOMIOHMMU MOJAHKAMU, sIKi MYCSTH
JOPiBHIOBATH HYJIEBI 3 YMOBU €pPMITOBOCTI IEBHUX HEOOMEXKEHHMX OIeparTopiB. Y CTATTI MOCIIIOBHO OOrOBOPEHO
1 MPOLTIOCTPOBAHO BCI Il ACHEKTH, siKi BKJIIOYAIOTH 3B’sI30K 13 MEBHUMU TPDAHUYHAME yMOBaMu. BuKopucTanwmit
niaxin HasBaHO GOPMATBHUM, OCKLIBKHU BCl MPOIEyPH 3 BUKOPUCTAHHSAM ONEPATOPIB (HAIPHUKJIAL, JesdKi onepa-
TopHI 700yTKHU) 3pob6JieHO 6e3 ypaxyBaHHs OOMEXKEHb, 10 HAKJIAJAIOTHCS MHOXKHMHOIO (DYHKIIH, Ha sKI MOXKYTb
aisite camoctpsizkeri oneparopu. Okpim Toro, raminbronian ipaka, 1mo ¢irypye B HAIMX po3paxyHKax, MiCTUTH
MOTEHIIIAJI, KU € YACOBOIO KOMIIOHEHTHOIO JIOPEHIIIBCHKOIO 2-BeKTOpa. Mu Tako»K OTPUMYEMO i ITOCIiIOBHO aHaJIi-
3yeMo Teopemy Ependecra s raminbproniana 3 Haitbinabm 3araapanm norenmiagom Jlopenna B (1+ 1)-Bumipaomy
IPOCTOPI.
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