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The problem of space weather prediction using guaranteed approach and solar wind parameters is
considered. The original approach for space weather prediction based on a discrete dynamic model,
evolutionary algorithm and a guaranteed interval estimation method is proposed. The problem of
discrete model identification is formulated as a nonlinear programming problem with constraints.
A new algorithm of Dst-index prediction using guaranteed interval estimation method is described.
The model for the prediction of geomagnetic storms was constructed and the interaction between the
solar wind parameters and the magnetosphere was discussed. The dependence between prediction
accuracy and the forecasting horizon is analyzed.
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I. INTRODUCTION

The solar energy that reaches the magnetosphere and
the ionosphere makes a great impact on the technolog-
ical and biological processes in the space and on the
ground [1–8]. Such influence has been studied within the
problem of space weather. The influence of sun on near
earth space is usually characterized by geomagnetic in-
dices (Kp-index, Ap-index, Dst-index and other) [5–8].
These indices describe a part of complex condition of the
Solar–Earth relationships. The selection of the most rel-
evant index for characterizing physical processes in the
near-Earth space is not a trivial problem and it requires
serious preliminary research [1,2,7,8]. The space weath-
er investigations can be divided into two directions. The
first aspect is practical and it is affected by the pre-
diction and reduction of space weather effects [7]. This
task should be accomplished by launching a vast num-
ber of spacecraft. But, nowadays resources are insuffi-
cient to produce and maintain such a large space fleet as
well as to process all the data delivered by these space-
crafts. So, another aspect is the development of forecast-
ing techniques by reconstructing mathematical models
using solar wind and magnetospheric parameters mea-
sured by ACE, WIND, SOHO, STEREO, CLUSTER
and THEMIS spacecrafts, and ground-based stations ob-
servations (Intermagnet, MAGDAS, etc.). Therefore, the
prediction of geomagnetic indices is an important part
of space weather investigation. As was shown in [1, 2],
the Dst-index corresponds to geomagnetic storms. So,
for its prediction it is necessary to solve the problem of
model structure and parameters identification. There are

many different models including a neural network, a lin-
ear regression model, and others [4,7,9–13] for Dst-index
prediction. The most accurate and reliable is a nonlinear
discrete dynamic model that describes a relation between
spacecraft observation data and ground measurements
from magnetic observatories [14]. Such a class of models
was chosen in this investigation.

In the paper, according to [2, 15–20], the polynomi-
al model for predicting Dst-index has been used. It is
known that Burton (BMR) linear equation [21] describes
Dst-index dynamics

dDst∗

dt
= E(t) −

Dst∗

τ
, (1)

where τ is Dst-index decay time constant, E(t) is the
ring current energy injection,

Dst∗(t) = Dst(t) − (b ·
√

P (t) + a),

P is the solar wind pressure, a and b are constants. Ob-
viously, using equation (1) it is possible to predict Dst-
index on the time interval ∆t

Dst∗(t+ ∆t) = Dst∗(t) +

[

E(t) −
Dst∗(t)

τ

]

∆t. (2)

Let us assumed the presence of nonlinear relation be-
tween model input and output. It is supposed that the
input signal of the model can be characterized by the
product of the south magnetic field component Bz and
the solar wind speed ν [2]. This permits to describe the
behaviour of Dst-index using (2) as

Dst(t+ ∆t) = F
[

Dst(t), Dst(t− ∆t), . . . , Dst(t− n∆t), ν(t) ·Bz(t),

ν(t− ∆t) · Bz(t− ∆t), . . . , ν(t− n∆t) ·Bz(t− n∆t)
]

, (3)
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where F is a polynomial function; n∆t is an associated maximal lag, t is time [2]. Now, expressing t = k and n∆t as
ny, nu, nξ, equation (3) can be represented as

y(k + 1) = F l
[

y(k), y(k − 1), . . . , y(k − ny), u(k), u(k − 1), . . . , u(k − nu),

ξ(k), ξ(k − 1), . . . , ξ(k − nξ)
]

, (4)

where F l[•] is a polynomial function of the order l with
variables y(k), u(k) and ξ(k); u(k) = −(ν(k) · Bz(k)) ·
10−3; y(k) is Dst-index values at time k; ξ(k) is a quanti-
ty that accounts a possible noise and uncertainties at the
time k [22, 23], ny, nu, nξ are their associated maximal
lags. As a result the problem ofDst-index prediction, can
be reduced to the model (4) identification. In previous
studies [19, 20, 24] an original algorithm of model struc-
ture and parameters identification has been developed.
It is based on the selection of the most significant linear
and nonlinear terms for the most accurate prediction of
Dst-index. The model is presented as “input-output” sys-
tem [9, 22]. Its reconstruction is stopped when the mod-
el error meets the requirements and model complexity
reachs the minimum value on the training data set.

The time series that characterize the solar wind con-
sists of multidimensional components. These components
increase the dimensionality of the model input; as a re-
sult the complexity of the identification problem signif-
icantly increases. It would be shown that the identifi-
cation problem can be reduced to the solution of the
corresponding mathematical programming problem with
constraints. Such an approach substantially differs from

the widely used statistical methods [10, 11, 25, 26] where
the great number of input variables is exploited. This
paper focuses on a novel approach to reconstruction of
the guaranteed prediction interval, the so called “predic-
tion tube”. Also, the problem of Dst-index model iden-
tification with an evolutionary algorithm application is
discussed in details.

II. A GUARANTEED PREDICTION INTERVAL
ESTIMATION

According to [24], made in this chapter are some im-
provements in solving the problem of guaranteed interval
estimation of ỹ(k + q) of the y(k + q) and polynomial
model identification. It can be seen that it is more con-
venient to predict not a consequence y(k + q), but the
subjects, i.e. u(k), u(k−1), . . . , u(k−nu), . . . , y(k), y(k−
1), . . . , y(k − ny).

Let us now estimate the interval ỹ(k + q) of y(k + q)
when q = 1 with mathematical model (4). It is necessary
to obtain ũ(k + 1) of u(k + 1). Let us have the change
rate of u(k) as

−δ ≤ ∆u(k) ≤ δ, (5)

δ = max (|u(k − 1) − u(k)|, |u(k − 2) − u(k − 1)|, . . . , |u(k −Nδ) − u(k −Nδ − 1)|),

where Nδ is the lag of time interval in δ is calculated. From (5) it is estimated u(k + 1)

u(k) − δ ≤ u(k + 1) ≤ u(k) + δ. (6)

Rewriting (4) in view (5), so that

y(k + 1) = F l
[

y(k), y(k − 1), . . . , y(k − ny), . . . , u(k) + ∆u(k),

u(k), u(k − 1), . . . , u(k − nu)
]

. (7)

From (7) the interval ỹ(k + 1) can be found as

y(k + 1) ≤ ỹ(k + 1) ≤ y(k + 1), (8)

where

y(k + 1) = min F l
[

y(k), y(k − 1), . . . , y(k − ny),

u(k) + ∆u(k), u(k), u(k − 1), . . . , u(k − nu)
]

, (9)

y(k + 1) = max F l
[

y(k), y(k − 1), . . . , y(k − ny),

u(k) + ∆u(k), u(k), u(k − 1), . . . , u(k − nu)
]

. (10)
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If F l(u(k) + ∆u(k)) is a multi-extreme function, the
interval {−δ; δ} can be presented by a discrete data set
∆uj(k)

∆uj(k) =

((

2 δ

J

)

· (j − 1) − δ

)

, (11)

j = 1; J + 1, J is integer constant,

then the problems (9) and (10) can be reduced to stan-
dard combinatorial problems, which can be solved using
the brute force direct search. All the above related to
(9) and (10) and according to [24] can be established for
predicting in q steps, q ≥ 2.

III. A NONLINEAR MODEL IDENTIFICATION
ALGORITHM

Now, let us discuss the problem of model identifica-
tion for the geomagnetic index y(k) approximation. Let
us represent the model (4) as

y(k) =
M
∑

m=1

cmFm(Ψ(k)), (12)

where Ψ(k) is a vector which is formed on the basis of ob-
servation data by combining of “input-output” variables

Ψ(k)=(u(k − 1), . . . , u(k − nu), y(k − 1), . . . , y(k − ny)),

where F1(ψ1(k)), . . . , FM (ψM (k)) are regressors; m =
1;M , M ∈ Rn is the number of regressors;Rn is the inte-
ger set; c1, . . . , cM are model parameters. The identifica-
tion problem consists in the model search with the mini-
mum number of the regressors M , which yields the most
accurate calculation of y(k) to the observations ŷ(k). For
providing maximal fitting of the model result to the real
data the statistical parameter χ2 was used

minχ2 =
1

N

N
∑

k=1

(y(k) − ŷ(k))2, (13)

where N is the size of the training data set. Also, the
next constraints were taken into account: the constraints
on the model parameters c= {c1, . . . , cM}, cm ∈ Rd, Rd

is the constraint set of real numbers, the constraints on
polynomial function complexity l ≤ l∗, where l∗ is the
maximal value of the polynomial function order, and the
constraints on the number of the regressors M ≤ M ∗,
where M∗ is the maximal number of the regressors.

For the nonlinear model structure selection the Ge-
netic Programming (GP) method [27–30] was used. The
model identification involves some procedures similar to
biological processes in nature [30]. First of all, two da-
ta sets are chosen from the measurements: the training
and the testing once. Also, the lags are introduced for
finding the proper set of the regressors to the time k.
The set of individuals (regressors) is randomly selected
in the algorithm. These individuals form the first gen-
erated population [27, 28, 30]. The process of regressors

selection according to evolution principal is similar to
the biological process of organisms survival [30]. In the
same way as in nature, genetic algorithms carried out
the search of the most perfect individuals without us-
ing of information about them. Every individual has a
fitness value that expresses efficiency of the solution for
solving the problem. Better solutions are assigned higher
values of fitness than worse solutions. The fitness func-
tion also determines how successful the individual will
be at propagating its genes to subsequent generations
in the next population. It permits to select the most
adapted individuals according to the evolution survival
principal [30]. After that the fitness functions values are
calculated; the most enduring individuals are chosen to
generate the new population. The individuals in genetic
algorithm are randomly initialized by genetic operators:
mutation, recombination and crossover. In our algorithm
the genetic procedure based on roulette wheel selection
method and elitism principle [30] has been used. The
modeling of the evolution process is applied in a numer-
ical algorithm (Fig. 1). In the end of the algorithm the
most significant regressors are chosen.

Fitness function

estimation

Next population

generation and fitness

function estimation

Roulette wheel

First generation

population

Iterations counter

Constraints setup

Test

Constraints reduction

Reproduction Crossover Mutation

Iterations penalty criteria

test
StopYes

No

Yes

No

Fig. 1. Block diagram of numerical algorithm for regressors
selection.

The evolutional algorithm has some advantages in
comparison to other optimization techniques. Let us
present the result of model identification in the analytical
form. The selection of the optimal model (12) is provided
by solving a mix optimization problem

minχ2 =
1

N

N
∑

k=1

(

ŷ(k) −

(

M
∑

m=1

cmF
l
m(Ψ(k))

))2

, (14)

where N = N∗

a + N∗

b + N∗

c . The training data set con-
sists of N∗

a data set for model reconstruction; N∗

a +N∗

b
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data set for model parameters estimation, and N da-
ta set for the accuracy test [20]. The binary trees are
used to represent the results of identification and this
representation consists of the most significant M regres-
sors {ψ1(k), . . . , ψM (k)}. The system expression can be
generated through the trees preorder traversal based on
the above-mentioned rules and putting some intuitive as-

sumptions. Let i be the number of iterations (in each
circle it is equal to the number of the most significant
regressors i = 1,M), and i = 1 correspond to the traver-

sal result F l1
1

, and continue traversal i→ i+ 1. Suppose

that the traversal result is F l1
1
, F l2

2
, . . . , F lM

M , so the cor-
responding model for y(k) is

y(k) = c1F
l1
1
ψ1(k) + c2F

l2
2
ψ2(k) + c3F

l3
3
ψ3(k) + . . .+ cMF lM

M ψM (k).

The penalty term of the fitness function for regressor
selection was suggested

0.25 < φm < 0.99, φm =
|rm|

1 + exp (β (lm − lmax))
, (15)

where rm is the correlation coefficient between regressor
m and observed output ŷ, which is calculated as

rm =

∑N

k=1
(ŷ(k) − ȳ) ·

(

ψm(k) − ψ̄
)

√

(

∑N

k=1
(ŷ(k) − ȳ)

)2

·
(

∑N

k=1

(

ψm(k) − ψ̄
)

)2

,

ȳ =
1

N

N
∑

k=1

ŷ(k), ψ̄ =
1

N

N
∑

k=1

ψ(k),

lm is the order of the regressor with index m, lmax is the
maximal possible order of the regressors, β is control pa-
rameter for regressor complexity optimization (Fig. 2).
As seen on Fig. 2, parameter β, 0 ≤ β ≤ 1 can give pref-
erence to some class of the regressors complexity. For
β = 1 the preference will be given to the selection of lin-
ear regressors, and for β = 0 the selection will be made
without notification. In the first population the fitness
function (15) is calculated for all regressors and then the
most significant are selected for generating new popula-
tion of individuals (regressors). It is made by using the
inequality

ΦM ≥ Φ∗, ΦM =

∑M

m=1
φm

∑M̃
m̃=1

φm̃

, (16)

M

M̃
≤ α, (17)

where Φ∗ is a constant which characterizes the integer
significance of the selected regressors to the sum of all re-
constructed regressors with fitness function (Φ∗ ≥ 0.8),

M̃ is the total number of reconstructed regressors, M is

the number of selected regressors, α is a constant value
for constraint of the selected regressors number accord-
ing to (16), 0 < α � 1. The process of regressors selec-
tion lasts until conditions (16) and (17) are met or the
maximal number of iterations (10000) is reached. If the
condition (16) is not satisfied, it is possible to weaken the
constraint (17). After the most significant regressors are
selected the model parameters c on the data set N ∗

a +N∗

b

are estimated using the global search genetic algorithm.
Then the model accuracy is tested on the data set N . If
the result is unsatisfactory for us the identification pro-
cess is repeated with training data set redistributing and
weakens constraints.

1 2 3 4

0.4

0.5

0.6

0.7

0.8

 l
m

 φ
m

 

 β=1
β=0.8
β=0.6
β=0.4
β=0.2
β=0

Fig. 2. The dependence of the fitness function penalty term
φm from the complexity control parameter β (rm = 0.75).

IV. RESULTS

Two models, linear and nonlinear, were reconstructed
with the constraints on lags nu = 25, ny = 24, for Dst-
index guaranteed prediction. The first model was identi-
fied only from most significant linear regressors β = 1

y(k) = 1.25y(k − 1) − 0.35y(k − 2) + 2.5u(k) + 0.15y(k − 3) + 0.01y(k − 6)

−2.74u(k− 1) + 0.95u(k− 2) − 0.2u(k − 4) + 0.14u(k − 8), (18)

and the second one was identified using linear and nonlinear nodes β = 0
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y(k) = 2.5u(k)− 3.13u(k − 1) + 0.65u(k − 2) − 0.13u(k − 4) + 0.19u(k − 8)

+0.11u(k− 12) − 0.03u(k − 14) + 0.07u(k− 25) + 1.17y(k − 1)

−0.41y(k− 2) + 0.12y(k − 3) + 0.04y(k − 6) + 0.02y(k − 12)

−0.004y(k− 17) − 0.03u(k− 3)y(k − 9) + 0.01u(k− 7)y(k − 12)

+0.01y(k− 15)u(k − 1) + 0.03u(k − 15)u(k − 6)

−0.003y(k− 13)y(k − 17) + 0.03y(k − 20)u(k − 4)

−0.05y(k− 21)u(k − 4) − 0.35u(k − 1)u(k − 1)

+0.03u(k− 16)y(k − 2) − 0.022y(k− 12)u(k − 2)

+0.002y(k− 15)y(k − 12)− 0.2u(k − 1)u(k − 13). (19)

20 21 22 23 24 25
−50

−40

−30

−20

−10

0

10

20

Days (January, 2006) 

D
st

−i
nd

ex
, n

T

 

 

Observation data
Linear model 

a)

20 21 22 23 24 25
−50

−40

−30

−20

−10

0

10

20

Days (January, 2006) 

D
st

−i
nd

ex
, n

T

 

 

Observation data

Nonlinear model

b)

Fig. 3. Illustration of Dst-index modelling: a) — linear
model (18); b) — nonlinear model (19).

The structure and parameters of models (18) and
(19) were numerically determined using the identifica-
tion algorithm and training data set of measurements
for N = 2000 hours. The statistical characteristics of
these models are the linear correlation coefficient (LC)
and the residual mean square (RMS): model (18) LC =
0.96, RMS = 3.36; model (19) LC = 0.97, RMS = 3.19.
Parameter (13) was used for testing models accuracy. On
Fig. 3 the results of Dst-index behaviour modeling using

models (18) and (19) are shown together with observa-
tions. The time scaled window of 150 hours was chosen
for the analysis of u(k) behaviour and determination of
maximal changes of the u(k) and δ calculation. On Fig. 4
the results of Dst-index prediction interval estimation
with models (18) and (19) are shown.
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Fig. 4. Dst-index observation data and results of guaran-
teed prediction for one and two hours: a) — linear model (18);
b) — nonlinear model (19).

Let us analyze the interval dq when q = 1 for the sim-
plest case, on the example of the linear model (18). Let
us substitute (18) in (9) and (10)
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y(k + 1) = min
[

1.255y(k)− 0.355y(k− 1) + 0.153y(k− 2) + 0.013y(k − 5)

+2.5(u(k) − ∆u(k)) − 2.74u(k) + 0.95u(k− 1) − 0.2u(k − 3)

+0.14u(k − 7)
]

, (20)

y(k + 1) = max
[

1.255y(k)− 0.355y(k − 1) + 0.153y(k− 2) + 0.013y(k − 5)

+2.5(u(k) + ∆u(k)) − 2.74u(k) + 0.95u(k − 1) − 0.2u(k − 3)

+0.14u(k − 7)
]

, (21)

and then conduct the numerical modeling of the
{

y(k + 1); y(k + 1)
}

values subject to ∆uj(k). The value y(k + 1)
reaches its maximum at ∆uj(k) = δ, and y(k + 1) its the minimum at ∆uj(k) = −δ. Then

y(k + 1) = f(y, u) − 2.5δ,

y(k + 1) = f(y, u) + 2.5δ,

where

f(y, u) = 1.255y(k)− 0.355y(k − 1) + 0.153y(k− 2) + 0.013y(k − 5)

−0.24u(k) + 0.95u(k − 1) − 0.2u(k − 3) + 0.14u(k− 7).

Let us represent the change of the interval d1 as

d1 = |y(k + 1) − y(k + 1)| ≤ 5δ + 2ε,

where ε is the model error.
Now let us consider the dependence of dq from δ during the estimation of ỹ(k + q), q = 2. For this purpose let us

rewrite (20) and (21) for k + 2

y(k + 2) = f ′(y, u) − 5.3975δ,

y(k + 2) = f ′(y, u) + 5.3975δ,

where

f ′(y, u) = 1.22y(k)− 0.29y(k − 1) + 0.19y(k − 2) + 0.01y(k− 4) + 0.02y(k− 5)

+0.89u(k) + 1.19u(k− 1) − 0.2u(k − 2) − 0.25u(k − 3)

+0.14u(k− 6) + 0.18u(k− 7).

As a result the interval d2 of the value ỹ(k + 2) can be represented as

d2 = |y(k + 2) − y(k + 2)| ≤ 10.795δ+ 4.51ε.

Obviously, when q increases, then dq value will also in-
crease. Also it can be seen that the use of nonlinear model
in the case q > 2 leads to a quicker increase of dq value.
However, by using the optimization methods it is possi-
ble to conduct the adaptive calculation of value δ when
interval dq is minimal. In further research, there would be
examined the problem of prediction interval estimation
solving the min-max mathematical programming prob-
lem.

Our predictions where also compared with results of
other authors, [10, 11, 25, 31], and [26]. Our method pro-
vides a much more precise guaranteed forecast than most
empirical and typical neural network models. It is hard
to calculate the statistical characteristics of the models
accuracy as in our method the bounds of the interval are
predicted. Earlier models for Dst-index prediction suf-
fered from time shifting. Our nonlinear model is almost
free from this effect, because the minimal value of the in-
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terval will be always lower than the original value (LC =
0.86 and RMS = 10.75). So, that is why the guaranteed
prediction method is more accurate for strong storms
prediction, which are of greater interest. The huge advan-
tages of the guaranteed prediction method are: firstly, it
gives the opportunity to predict the interval “tube” of the
possible geomagnetic index values; at secondly, the iden-
tification of the mode structure and parameters should
be performed only once. The prediction itself takes about
10 seconds on an average PC, which allows creating ful-
ly automated operational online space weather forecast
services.

V. CONCLUSION

A new guaranteed approach to geomagnetic activi-
ty prediction using satellite observations of solar wind
parameters has been proposed. It is based on maximal
and minimal index values forming “interval tube” and
on a nonlinear discrete “input–output” dynamical sys-
tem. The model structure and parameters are chosen by
solving a nonlinear mathematical programming problem
with constraints. The advantages of this approach are as
follows: 1) automatic selection of regressors for nonlinear
models; 2) solution of the mathematical programming
problem by genetic algorithm for selecting the optimal

model structure and unknown parameters. The nonlinear
dependence between input model parameters and predic-
tion interval has been discovered. It was shown that the
prediction error of Dst-index is nonlinearly rising with
the increase of the prediction time. The numerical calcu-
lation shown that time horizon forDst-index forecast can
be increased by using an optimization approach. A new
model for the prediction of Dst-index on the basis of the
solar wind has been proposed. A prospective real time
dynamical prediction of Dst-index has been discussed
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КОМБIНОВАНИЙ ПIДХIД ПРОГНОЗУВАННЯ КОСМIЧНОЇ ПОГОДИ
НА ОСНОВI МЕТОДУ ҐАРАНТОВАНОГО ОЦIНЮВАННЯ

ТА ЕВОЛЮЦIЙНОГО АЛГОРИТМУ

О. В. Семенiв
Iнститут космiчних дослiджень НАНУ та ДКАУ

просп. Глушкова, 40, корп. 4/1, Київ, 03680, Україна

Розглянуто проблему прогнозування космiчної погоди з використанням методу ґарантованого оцiню-

вання та параметрiв сонячного вiтру. Запропоновано ориґiнальний алґоритм прогнозування геомагнiтного

Dst-iндексу на основi дискретних динамiчних моделей, еволюцiйного алґоритму та ґарантованого iнтер-

вального оцiнювання. Представлено проблему iдентифiкацiї дискретної моделi у виглядi розв’язання задачi

нелiнiйного програмування з обмеженнями. Дослiджено залежнiсть точностi прогнозування вiд горизонту

прогнозування та побудовано модель прогнозування геомагнiтних буревiїв.
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