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This paper introduces a dielectrophoretic system for the analysis Clausius–Mossotti factor.
The literature in this domain has shown that the real part contains information calculated by the
crossover frequency. We validated in this study that the imaginary part also contains the information
calculated by the relaxation frequency. Our findings confirm a relationship between relaxation
frequency and crossover frequency, and also the variation of the imaginary part as a function of real
part, being a semicircle, and finally we applied our model of polystyrene in deionised water.
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I. INTRODUCTION

Dielectrophoresis occurs when a polarizable particle is
exposed to an electric field. The electric field causes a
dipole to form within the material. If the field is uni-
form, the forces on the dipole charges are equal and act
in opposite directions, so that the net force is zero. In a
non-uniform field, however, the force on one charge will
be different from the force on the other charge resulting
in a net force on the particle. The force is referred to as
the dielectroforetic force and the phenomena are known
as dielectrophoresis [1]. The magnitude and direction of
the force is related to the dielectric properties of the par-
ticle and the suspending medium. The dielectrophoretic
force is frequency-dependent. The frequency dependance
is given by [2].

The Clausius–Mossotti relation is named after the Ital-
ian physicist Ottaviano-Fabrizio Mossotti, whose 1850
book [3] analyzed the relationship between the dielectric
constants of two different media, and the German physi-
cist Rudolf Clausius, who gave the formula explicitly in
his 1879 book [4] in the background not of dielectric
constants but of indices of refraction [5].

In this paper, in the first section, we briefly present the
theoretical background of The Clausius–Mossotti func-
tion and we establish a link between the real part and
imaginary part. In the second section, we find the re-
lationship between the crossover frequency and the re-
laxation frequency. In the third section, we present an
application example of the polystyrene in deionised wa-
ter.The DEP force is generated through the interaction of
an induced dipole and the non uniform field. The magni-
tude and direction of the force is related to the dielectric
properties of the particle and the suspending medium.

II. THEORY

For a fluid between two electrodes, an alternating
electric field between two electrodes can be applied. The
non-uniform field creates a so-called dielectrophoretic
force (DEP). It is important that the particle is polariz-
able, e.g. that an electric dipole moment is induced by
the field. Modeling a cell as a sphere, the DEP force can
be expressed as [6].

FDEP = 2πε0εma3<[CM(ω)]∇E2
rms

Where εm is the relative permittivity of the surround-
ing medium, the radius of the particle, ∇E2

rms the gradi-
ent of the root-mean-square of the applied electric field
squared. The frequency (ω) dependence of the Clausius–
Mossotti factor, CM(ω) was determined using the com-
plex dielectric permittivity of the medium and particle,
the Clausius–Mossotti factor which is defined in the fol-
lowing equation:

CM(ω) =
ε∗p − ε∗m
ε∗p + 2ε∗m

(1)

Where ε∗m and ε∗p are the complex permittivities of the
medium and the particle with ε∗m = εm − j σm

ω and
ε∗p = εp − j

σp

ω where εm, εp are the permittivities of
the medium and the particle, respectively, σp and σm

are the conductivities of the medium and the particle,
respectively, and ω is the angular frequency. Separating
the real and imaginary parts of the complex Clausius–
Mossotti factor CM(ω) in equation (1), we finally obtain:

<[CM(ω)] =
ω2(εp − εm)(εp + 2εm) + (σp − σm)(σp + 2σm)

ω2(εp + 2εm)2 + (σp + 2σm)2
, (2)
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=[CM(ω)] =
ω(σm − σp)(εp + 2εm) − (εp − εm)(σp + 2σm)

ω2(εp + 2εm)2 + (σp + 2σm)2
. (3)

A. The limiting cases of <CM(ω)

The first limit is considered at low frequencies, giving
the ionic contribution to the permittivity. It is the limit
ω → 0 of expression (2)

<[CM(ω → 0)] =
(σp − σm)
(σp + 2σm)

. (4)

It is easy to verify that this limit can be positive if
σp > σm or negative if σp < σm The second limit is
considered at higher frequencies, giving the ionic con-
tribution to the permittivity. It is the limit ω → ∞ in
expression (2)

<[CM(ω → ∞)] =
(εp − εm)
(εp + 2εm)

. (5)

It is easy to verify that this limit can be negative if
εp > εm or positive where εp < εm.

B. Crossover frequency

One can identify a crossover frequency for which the
Clausius–Mossotti factor, and therefore the strength of
DEP vanishes from a system of positive DEP to negative
or vice versa.

<[CM(ωc)] = 0

From the previous equation the following expression
can be derived:

ωc =

√
(σm − σp)σp + 2σm)
(εp − εm)(εp + 2εm)

. (6)

C. The Imaginary part of the Clausius–Mossotti
factor

The analysis of the imaginary part of the Clausius-
Mossotti factor =[CM(ω)] = CM′′(ω) also includes some
information, it is shown that this function passes by a
maximum corresponding to the relaxation frequency ωR,
therefore, the relaxation frequency was found by deriva-
tion of the imaginary part of the Clausius–Mossotti fac-
tor

d

dω
=[CM(ω)] = 0.

The frequency ωR (corresponding to CM′′ maximum)
gives the most probable relaxation time τR from the con-
dition ωRτR = 1.

The relaxation frequency given by

ωR =
σp + 2σp

εp + 2εm
. (7)

The relaxation time is directly related to the relaxation
frequency, which we defined as the peak position on the
imaginary part of the complex Clausius–Mossotti factor,
it is given by:

τR =
εp + 2εm

σp + 2σm
. (8)

The analysis of the CM(ω) imaginary part, allows us to
find the crossover frequency as a function of the relax-
ation frequency.

ωc =

√
σm − σp

εp − εm
ωR. (9)

D. Representation of the complex Clausius-Mossotti
factor

From the expression of the real part (2), we obtain:

<[CM(ω)] =
εp + εm

εp + 2εm
− k

1 + (τω)2
, (10)

where

k =
εp + εm

εp + 2εm
− σp + σm

σp + 2σm
.

We posed

CM′[ω] =
εp − εm

εp + 2εm
−<[CM(ω)] =

k

1 + (τω)2
. (11)

One of the commonly used phenomenological models is
the Debye model, which was originally formulated for the
complex dielectric constant [7]:

ε∗ = ε∞ +
ε0 − ε∞
1 + jωτ

, (12)

where ε0 and ε∞ are the low-frequency and the high-
frequency dielectric constants values, respectively, τ is
the central relaxation.

Based on the analogy, it is easy to reformulate Eq. (12)
for the complex Clausius–Mossotti factor:

CM∗ = CM∞ +
CM0 − CM∞

1 + jωτ
(13)

From the expression of the imaginary part (3), we obtain:

CM′′(ω) =
ωτk

1 + (ωτ)2
. (14)
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From equation (11) and equation (12) we obtain:

(CM′′(ω))2 + (CM′(ω))2 − kCM′(ω) = 0 (15)

or

(CM′′(ω))2 +
(

CM′(ω) − 1
k

)2

=
(

1
k

)2

. (16)

This is the equation of a semicircle centered at (k/2, 0)
with the radius k/2 (diameter k). Equation (1) shows
that the expression of the Clausius–Mossotti factor
CM∗(ω) is a complex number. It consists of a real part
CM′(ω) and an imaginary part CM′′(ω). If the real part
CM′(ω) is plotted on the abscissa (X) and the imagi-
nary part (CM′′(ω) on the ordinate axis (Y ) we obtain
a semicircle of centered at (k/2, 0).

III. APPLICATION

The Clausius–Mossotti factor is shown in Figures 1, 2,
and 3 for the parameters of a particle and medium; it is
indicated in Table 1.

Fig. 1. Real part as a function of frequency of the Clau-
sius–Mossotti factor for polystyrene in deionised water.

Fig. 2. Imaginary part as a function of frequency of the
Clausius–Mossotti factor for polystyrene in deionised water.

Fig. 3. Imaginary part as a function of real part shifted, of
Clausius–Mossotti factor for polystyrene in deionised water.

Dielectric
permittivity

Electrical
conductivity

Polystyrene (p) 2.5ε 1E−2

DI water (m) 78ε 1.00E−3

Table 1. Parameters of a particle and medium [8].

The complex Clausius–Mossotti factor (real part CM′

and imaginary part CM′′) spectra of polystyrene in
deionised water, are shown in Figs. 1 and 2. This spec-
tra confirm the real part of Clausius–Mossotti factor,
it can be seen that for frequencies below approximately
1.76 MHz the real part is positive and for the frequen-
cies above that the real part is negative. The frequency
where <[CM(ω)] = 0 is called the cross-over frequency.
At that frequency a dielectrophoretic force does not act
on the particles and the traveling wave dielctrophore-
sis becomes most prominent [9]. The dependence of the
imaginary part as a function of frequency (Fig. 2) shows
that CM is negative throughout the frequency range,
which meant the rotation of dipoles is done in the same
direction as the field [10]. The relaxation frequency of
the system subjected to an electric field, denoted as “Fr”,
is the frequency at which this system changes its rate
regime: for frequencies lower than Fr the particles con-
stituting the material are polarized under the influence of
the impressed current and dissipate the energy received
in the electric form while for higher frequencies, the sig-
nal is too fast and to maintain a state of equilibrium,
the material must dissipate the stored electrical energy
in another form.

Figure 3 shows the evolution of the imaginary part
CM′′ as a function of the real CM′ in the frequency range
1 Hz−107 Hz and at room temperature for polystyrene in
deionised water. The value for the constant (k) is equal
to the intersection of the corresponding semicircle with
the x-axis. The relaxation time can be calculated using
the frequency of maxima (fmax) of the semicircle from
the equation τ × ωR = 1.
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IV. CONCLUSIONS

In this paper, a study was developed, based on the
work of K. Khoshmanesh et al. [8]. We tried to prove
in this study that the imaginary part also contains

some information calculated by the relaxation frequen-
cy. If the Clausius–Mossotti is taken seriously, we should
be able to calculate the relaxation frequency and the
crossover frequency, from the Bode graph or the complex
diagram.
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У статтi використано дiелектрофоретичну систему для аналiзу фактора Клаузiуса–Моссоттi. Лiтера-
турнi джерела в цiй дiлянцi показують, що дiйсна частина мiстить iнформацiю про частоту переходу. Ми
встановили в цьому дослiдженнi, що уявна частина мiстить iнформацiю про частоту релаксацiї. Нашi ре-
зультати пiдтверджують зв’язок мiж частотою релаксацiї та частотою переходу i те, що уявна частина як
функцiя вiд дiйсної частини має вигляд пiвкола. Ми також застосували нашу модель до полiстиролу в
дейонiзованiй водi.
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