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The weakly nonequilibrium low-density gas with a steady heat flow is considered within the
approximation of a linear temperature profile. Simple analytical estimates for pressure, internal
energy, and entropy are obtained. Compressibilities and heat capacities are analyzed. The result for
the entropy is shown to be compatible with the second law of thermodynamics. The approximation
of the displaced linear temperature profile is introduced, which is aimed to take into account the
higher temperature gradients.
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I. INTRODUCTION

Heat-conduction properties of macroscopic systems in
the weakly nonequilibrium states with a heat flow are
well-described by the Fourier law, which expresses a lin-
ear relation between the heat flux through the system
and the temperature gradient. Being one of the corner-
stones of linear irreversible thermodynamics [1, 2], this
law has experimental and phenomenological origin. It is
also applicable to the steady states of heat-conductive
systems.

As to thermodynamic description of these states, at
the present time there is no generally accepted method
of calculation of such quantities as pressure, internal en-
ergy, or entropy even for gases. A closer inspection re-
veals that the general thermodynamic formalism for the
heat-conduction steady states (analogous to the Gibbs
method of characteristic functions, e.g. [3, 4]) does not
exist, and appropriate statistical ensembles and their dis-
tributions are not constructed as well.

A number of approaches have been applied in order
to obtain thermodynamic quantities of the systems in
the heat-conduction steady state. The Boltzmann kinetic
equation [5–7] and the information theory [8–10] for low-
density gases and the Enskog kinetic equation [11–13]
for hard spheres use the weakly nonequilibrium results
for the one-particle distribution function. The nonequi-
librium pressure and entropy corrections calculated are
quadratic in the heat flux variable. Even in the simple
case of the low-density gas, the kinetic-theoretical and
information-theoretical results have been shown [6] to
differ from each other.

Applications of the fluctuation theorem approach give
rather formal results for thermodynamic quantities in
the form of averages over the trajectories in the phase
space [14–19]. To our knowledge, however, those expres-
sions have not been explicitly calculated for any simple
model.

In recent works [20–22] the problem of nonequilibrium
pressure in liquids in the heat-conduction steady states is
considered by the theory of hydrodynamic fluctuations.
The authors calculate the nonequilibrium pressure con-
tribution from long-range correlations originated from
the temperature nonuniformity, which is interpreted as
the nonequilibrium Casimir-like effect.

Formulations of general grounds for the steady state
thermodynamics encountered in the literature can be
considered as the first attempts. In particular, the ex-
tended irreversible thermodynamics [23–28] exploits the
idea of the extension of the local-equilibrium thermody-
namics. Namely, the Gibbs equation (the basic thermo-
dynamic equality) written for the local entropy density as
a function of the local energy density and specific volume
is supplemented by the differential contribution from the
heat flux. The latter is treated as a new thermodynam-
ic degree of freedom. Unfortunately, the connection be-
tween the extended Gibbs equality and the local form of
the first law of thermodynamics has not been established.

An appreciable influence of the concepts and notions
of equilibrium and local-equilibrium thermodynamics is
felt in the phenomenological constructions of the steady
state thermodynamics proposed in Refs. [29,30]. Despite
some methodological progress, it is quite evident that
these ideas need further development and improvement.

Computer simulations can serve as verifying tool for
theoretical models or as the origin of new information
and qualitative objective laws. In [31, 32] simulation da-
ta for the two-dimensional hard disks in heat-conduction
steady states are analyzed from the viewpoint of the
local-equilibrium equation of state and the Fourier law.
Specific scaling relations revealed for the temperature
and density profiles are shown to be applicable even for
strong deviations from equilibrium.

Nevertheless, only theoretical approaches can pro-
vide explicit expressions for the thermodynamic quan-
tities. Specifically, it would be desirable to have at hand
an example of simple description, which could in the
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lowest approximation catch the physics of the heat-
conduction steady state and could give reliable estimates
for the macroscopic characteristics. In Ref. [33] the con-
tinuous media approach is used for the description of
the low-density gas in the weakly nonequilibrium heat-
conduction stationary conditions. The results for the
pressure, internal energy, and entropy are obtained as se-
ries in temperature gradients up to the forth order. We
consider here the particular case when the temperature
profile can be modelled by a linear space dependence.
Such a “minimal” approximation, being in consistence
with the linear Fourier law, results in simple but analyt-
ic estimates for the thermodynamic quantities.

In Sec. II some analysis of the weakly nonequilibrium
heat-conduction steady state is given. Pressure, internal
energy, and entropy as well as compressibilities and heat
capacities are calculated for the linear temperature pro-
file within the assumption of stationarity (Sec. III). The
approximation of the displaced linear profile is formulat-
ed in Sec. IV in order to make use of these results. The
conclusions are given in Sec. V.

II. WEAKLY NONEQUILIBRIUM
HEAT-CONDUCTION STATE

We consider a system of particles contained in the ves-
sel of the parallelepiped form. One pair of opposite sides
are maintained in contact with thermal baths of different
temperatures T1 and T2. The separation of the baths is
denoted by L and the cross-section area is Ω (Fig. 1). The
invariable conditions ensure the stationarity of the state
with a constant value of the heat flux. In the transverse
directions the system is spatially uniform and isotropic.
For the weakly nonequilibrium case, the values T1 and
T2 differ little from each other:

|T1 − T2| � T1, T2. (1)

L Ω

N

q
X

Y

Z
O

T1 T2

Fig. 1. A system of particles in the weakly nonequilibrium
heat-conduction steady state.

Let us try to deduce any useful thermodynamic infor-
mation about this state for the domian of low density.
That the state deviates weakly from equilibrium induces
the idea that the equilibrium-like relations [3, 4] for the

nonequilibrium pressure P and internal energy E would
be a quite good approximation:

P =
N

V
kBTeff , E =

D

2
NkBTeff , (2)

where D is a dimentionality of space; Teff is an effective
parameter of the approximation by which we interpret
the weakly nonequilibrium pressure and energy in terms
of the equilibrium equations of state.

One has to make a choice for Teff in the situation when
the gas is in contact with two thermal baths with the
temperatures T1 and T2. The simplest variant is to take
Teff as a half-sum 1

2 (T1+T2) owing to the weak nonequili-
brium. This gives the following approximate expressions:

P ≈ N

V
kB

T1 + T2

2
, E ≈ D

2
NkB

T1 + T2

2
. (3)

However, they do not contain any dependence on the
temperature difference T2 − T1. In other words, the two
states A and B with the bath temperatures

T A
1 =T − t, T A

2 =T + t and T B
1 =T − 2t, T B

2 =T + 2t,

where |t| � T , are characterized by the same values
of P and E. The half-sum approximation does not also
take into account the nonuniform thermal expansion phe-
nomenon, which causes at T1 6= T2 that the left and right
halves of the vessel contain substantially different num-
bers of particles. These arguments indicate that equa-
tions (3) are incorrect qualitatively .

We show below that the pressure and internal energy
of the gas in the heat-conduction steady state can be cal-
culated in the particular case, when the spatial change
of the temperature is approximately modelled by a lin-

ear dependence. The corresponding results do not have
the defects mentioned above. This approximation is dis-
cussed in Sec. IV.

III. THERMODYNAMIC QUANTITIES

We choose coordinate axis OZ to be parallel to the
heat flux vector, while its origin is placed on one of the
two thermal-bath plates (Fig. 1). Then, the local tem-
perature dependence on position z reads:

T (z) = T1 +
T21

L
z, (4)

where T21 ≡ T2 − T1 is the temperature difference. Let
us find equations of state for the pressure and internal
energy as well as the entropy expression for the steady
state with the linear profile, Eq. (4).

As before [33, 34], it is assumed that the fact of me-
chanical equilibrium of the gas means that the pressure
takes the same value everywhere in the vessel:

P = const. (5)

For the low-density domain, the ideal-gas equation of
state, e.g. [3, 35], is adopted to be valid locally:

P = n(z) kBT (z), (6)
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where n(z) is the number density, kB is Boltzmann’s con-
stant. This equation relates the spatial dependences n(z)
and T (z).

The following expressions for the local densities of in-
ternal energy ε(z) and entropy s(z) correspond to the
local assumption (6), see e.g. [3, 36]:

ε(z)≡ 1
2D n(z)kBT (z), (7)

s(z)≡kBn(z)
[

− ln n(z) + 1
2D ln T (z) + ξ

(D)
S

]

, (8)

where the constant in s(z) is defined by ξ
(D)
S ≡

D
2 ln(2πkBm/h2) + 1 + 1

2D, m is particle’s mass and h
is Planck’s constant. These expressions are derived from
the equilibrium counterparts, when the equilibrium tem-
perature and number density are substituted by the local
ones [33, 34].

The possibility of introduction of the local quantities
implies that the gas is considered as continuous media.
This is admissible if the characteristic spatial scales are
much larger than the intermolecular distances [36–39]:

L � lfree, Ω � l2free,

where lfree is the mean free path of a particle in the gas.
A total additive quantity A is determined by the inte-

gration of its local density a(z) over the volume Ω × L
of the vessel. In regard of spatial uniformity in the di-
rections transverse with respect to the heat flux, it is
defined as

A ≡ Ω

∫ L

0

dz a(z). (9)

We set Ω = 1 for the one-dimentional case, while for the
D = 2 case Ω is the transverse linear size.

A. Equations of the steady state

a. Pressure and internal energy. The pressure can be
found from the normalization condition

Ω

∫ L

0

dz n(z) = N, (10)

where N is the total number of particles. Inserting here
the expression

n(z) =
PL

kBT21

1

z + T1L/T21
,

derived from Eqs. (5) and (4), we can integrate with the
explicit result

P =
N

ΩL
kB

T2 − T1

ln(T2/T1)
, (11)

which is the baric equation of the weakly nonequilibri-
um steady state. The pressure takes the same value for
different pairs Ω1, L1 and Ω2, L2 with identical volumes
Ω1L1 = Ω2L2.

The energy density does not depend on z, as ε(z) =
1
2DP . As a consequence, Eqs. (9) and (11) result in the
following caloric equation of state:

E =
D

2
NkB

T21

ln T2/1
, (12)

where we denote T2/1 ≡ T2/T1. As for equilibrium, the
total energy does not depend on the volume due to large
separations between particles.

The expressions for P and E are of the inherently ther-
modynamic form, as they contain only global parameters
of the gas: the number of particles, the sizes of the vessel,
and the bath temperatures. Besides that, T1 and T2 ap-
pear on equal rights so that P and E remain unchanged
under the permutation of the indices, 1→

←
2. The princi-

pal value of these approximate results consists, to our
mind, in that P and E are represented as unambiguous
functions rather than in the form of series [33], which
enables one to make immediate estimations.

The equations of steady state obtained are compati-
ble with the equilibrium conterparts. Let the system be
changed over to the equilibrium state by shifting the tem-
perature, say, of the second bath from T2 to T1. The cor-
responding limit of the fraction in Eqs. (11) and (12)
calculated e.g. by de L’Hôpital’s rule reads:

lim
T2→T1

T21

ln(T2/T1)
= lim

T2→T1

1

1/T2
= T1.

This confirms the proper limit behaviours of P and E.

Comparing Eqs. (11) and (12) to the anticipated ones
(2), we can identify the effective temperature:

Teff =
T21

ln T2/1
. (13)

Its expansion near the arithmetic mean Tam ≡ 1
2 (T1+T2)

gives more information. We can find from the relations

T1 = Tam − 1
2T21, T2 = Tam + 1

2T21 (14)

that ln T2/1 = 2 arth δ, where δ ≡ 1
2T21/Tam and the

identity 1
2 ln 1+δ

1−δ = arth δ has been used, see [40]. Sub-
stituting the series

arth δ = δ + 1
3δ3 + 1

5δ5 + 1
7δ7 + . . . , δ2 < 1

and recovering its inverse lead to the expansion:

Teff = T1+T2

2

[

1 − 1
3δ2 − 4

45δ4 − 44
945δ6 − . . .

]

. (15)

That the effective temperature is less than the half-sum
of T1 and T2 is a consequence of the nonuniformity of the
particle density n(z). This series yeilds expansions for P
and E near Tam.
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b. Comparison with the equilibrium state. Let us elu-
cidate to what extent the steady-state pressure differs
from the equilibrium one. Initially, the gas rests in the
vessel Ω×L at the equilibrium temperature Teq under
pressure Peq = (N/ΩL)kBTeq. Next, we switch to the
heat-conduction steady state (Fig. 1) with temperatures
Teq−t and Teq+t, where |t| � T . The pressure difference
can be easily calculated

P (t) − Peq = Peq

[

Teff(t)

Teq
− 1

]

,

with Teff(t) ≡ 2t/ ln ([Teq + t]/[Teq − t]) deduced from
Eq. (13). The behaviour of the reduced pressure
P (δ)/Peq with δ = t/Teq displays decreasing in compar-
ison to the initial value (Fig. 2). The approximation of
the second order in δ according to Eq. (15) yields quite
good estimation even for |δ| ≤ 0.5.
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Fig. 2. Ratio of the weakly nonequilibrium steady-state
pressure to the equilibrium one: Result (11) and the sec-
ond-order approximation followed from Eq. (15). If quanti-
ties 2|t| and Teq differ by one order, then the corresponding
domain of the weak nonequilibrium is − 0.05 ≤ δ ≤ 0.05.

The difference P (t) − Peq for a similar situation when
the initial temperature is Teq = 300K and Peq equals the
atmospheric value is presented in Table 1.

t, K 1 3 5 10 15 20

P (t) − Peq, Pa −0.375 −3.37 −9.38 −37.54 −84.49 −150.28

Table 1. Deviation of the nonequilibrium pressure from
Peq = 101325 Pa for the gas in steady states at various t

and Teq = 300 K.

c. Fluctuation-induced pressure. Works [20–22] con-
sider the problem of nonequilibrium pressure in liquids,
which are maintained in the heat-conduction station-
ary conditions. Using the approach of hydrodynamic
fluctuations those authors calculate the nonequilibrium
fluctuation-induced contribution to the pressure inter-
preted as the nonequilibrium Casimir-like effect. The
scheme of perturbations about the local-equilibrium state

leads to corrections of the second order in fluctuations.
The corrections are found to be space-dependent on the

position along the heat flux and proportional to the tem-
perature gradient squared. They also depend on the ther-
mal bath separation L and are claimed to be inversely
proportional to L for the fixed temperature difference.
The (nonlinear) Burnett coefficient of this proportionali-
ty contains the specific heat capacity and the coefficients
of thermal expansion, thermal conductivity, and shear
viscosity.

The authors report that the fluctuation-induced pres-
sure contribution averaged along the heat flux is equal
to +10 Pa for liquid water when the temperature differ-
ence is of 25K and the bath separation equals to 10−7 m.
Other thermo-physical quantities are taken for the “av-
erage” temperature of 298 K (and most likely for the at-
mospheric pressure value). The fluctuation effect is to be
distinguished from the regular local-equilibrium pressure
for which no relation is supplied in the cited works. The
problem lies in that it is not clear exactly from which
value one has to measure the fluctuation-induced contri-
bution.

Though our results refer to the gas phase, but they
explicitly show that independently of the intensity of
fluctuations the very nonequilibrium stationary condi-

tions cause the decrease of the pressure value with re-
spect to which one has to measure the nonequilibrium
fluctuation-induced contribution. Our result does not de-
pend on the bath separation and for the same values of
the “average” temperuture of 298 K (which is accepted
here as the arithmetic mean), the temperature difference
of 25K, and the atmospheric pressure value of the gas we
find −59.5 Pa. The order of magnitude turns out to be
the same as that predicted by the fluctuation approach
for liquids. So, to our mind, at first it is necessary to
determine exactly the pressure drop in liquids caused
by the nonequilibrium stationary conditions (which does
not depend on fluctuations) and afterwards the subtle
fluctuation effect mentioned in [20–22] can be registered.

B. Derivative thermodynamic quantities

a. Isothermal compressibilities. In view of the direc-
tion related to the heat flux, it is appropriate to distin-
guish between the compressibility along the heat flux,

χ
‖
T1,T2

, and the compressibility in transverse directions,

χ⊥
T1,T2

. The corresponding definitions can be derived

from the conventional one [3, 4, 35] generalized to

χT1,T2
≡ − 1

V

(

∂V

∂P

)

T1,T2

.

The desirable expressions read:

χ
‖
T1,T2

≡ − 1

L

(

∂L

∂P

)

T1,T2,Ω

, χ⊥
T1,T2

≡ − 1

Ω

(

∂Ω

∂P

)

T1,T2,L

.

(16)
The inverse derivatives can be easily calculated from
Eq. (11) as

(

∂P

∂L

)

T1,T2,Ω

= −P

L
,

(

∂P

∂Ω

)

T1,T2,L

= −P

Ω
,
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yielding:

χ
‖
T1,T2

=
1

P
, χ⊥

T1,T2
=

1

P
. (17)

So, the compressibilities along and across the flux are
found to be equal to each other and related to the non-
equilibrium pressure in the same way as in equilibrium.

b. Heat capacities. The equilibrium heat capacity is
known [3, 4] to depend on the conditions of heat ex-
change: Ccond ≡ (δQ/dTeq)cond, where δQ is the heat
transfered to or from the system and dTeq is the related
small change in the equilibrium temperature. It is natu-
rally for the heat-conduction steady state to define two
heat capacities with respect to each thermal bath:

C
(1)
cond;T2

≡
(

δQ

dT1

)

cond,T2

, C
(2)
cond;T1

≡
(

δQ

dT2

)

cond,T1

,

(18)
where the upper indices in the brackets indicate which
bath temperature changes. Similarly to the equilibrium
case, the transfered heat δQ is coupled to the internal
energy change dE and the work δA done by the system
by the first law of thermodynamics [3, 4]:

δQ = dE + δA, (19)

which expresses the total energy balance for the ther-
modynamic transitions between two close steady states.
Next, we consider physically interesting regimes of con-
stant volume1 V = const and pressure P = const.

b.1. Isochoric heat capacities. In the case of con-
stant volume, the work is not done and according to the
first law (19) the capacities can be introduced through
the internal energy:

C
(1)
V,T2

=

(

∂E

∂T1

)

V,T2

, C
(2)
V,T1

=

(

∂E

∂T2

)

V,T1

.

(20)

For example, C
(1)
V,T2

describes the internal energy change
due to a small isochoric change in the temperature of the
first thermal bath when the temperature of the second
one is unchanged.

For the low-density gas E = D
2 NkBTeff(T1, T2), which

yields

C
(1)
V,T2

=
D

2
NkB

(

∂Teff

∂T1

)

T2

. (21)

Differentiating expression (13) results in

C
(1)
V,T2

=
D

2
NkB

[

− 1

ln T2/1
+

T21

T1(ln T2/1)2

]

. (22)

The interchange of the indices gives the second capacity:

C
(2)
V,T1

=
D

2
NkB

[

1

ln T2/1
− T21

T2(ln T2/1)2

]

. (23)

b.2. Isobaric heat capacities. At constant pres-
sure, the heat transfered to the gas is spent partially on
the work. It follows from Eq. (19) that

C
(1)
P,T2

≡
(

δQ

dT1

)

P,T2

=

(

dE

dT1

)

P,T2

+

(

δA

dT1

)

P,T2

. (24)

The differetial of E as a function of T1, T2 and V equals:

dE =

(

∂E

∂T1

)

V,T2

dT1+

(

∂E

∂T2

)

V,T1

dT2+

(

∂E

∂V

)

T1,T2

dV.

Derivative of the energy in Eq. (24) for P = const can
be written as

(

dE

dT1

)

P,T2

=

(

∂E

∂T1

)

V,T2

+

(

∂E

∂V

)

T1,T2

(

∂V

∂T1

)

P,T2

.

The work term can be identified from δA = PdV in the
form:

(

δA

dT1

)

P,T2

= P

(

∂V

∂T1

)

P,T2

.

These expressions substituted into Eq. (24) result in the
generalization of the relation between the isobaric and
isochoric heat capacities for the heat-conduction steady-
state case:

C
(1)
P,T2

= C
(1)
V,T2

+

[

(

∂E

∂V

)

T1,T2

+ P

]

(

∂V

∂T1

)

P,T2

. (25)

For low densities, the first term in the square brackets
vanishes. Using equation V = (N/P )kBTeff , see Eq. (11),
we obtain:

C
(1)
P,T2

=
(

D
2 + 1

)

NkB

(

∂Teff

∂T1

)

T2

. (26)

It follows from Eqs. (21) and (26) that for low densities

the ratio γ ≡ C
(1)
P,T2

/C
(1)
V,T2

is the same as in equilibri-

um: γ = 1 + 2/D. In regard to this numerical factor, we
consider further only the isochoric heat capacities.

1The variables Ω and L are not analyzed apart from each other as the baric equation of state, Eq. (11), includes only their
product V ≡ ΩL.
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b.3. Symmetric and antisymmetric heat capac-

ities. Another possibility exists to thransfer heat to or
from the system at constant volume (or pressure) when
one of the two following quantities — the half-sum of the
bath temperatures Tam ≡ 1

2 (T1 +T2) and their difference
T21 — changes and the other is fixed. In the first case we
change the bath temperatures by the same value, while
in the second case one bath temperature is increased and
the other is decreased by the same value. These changes
are described by another pair of heat capacities:

C
(am)
V,T21

≡
(

∂E

∂Tam

)

V,T21

, C
(21)
V,Tam

≡
(

∂E

∂T21

)

V,Tam

. (27)

The final expressions for these can be deduced direct-
ly from Eq. (12) written in terms of Tam and T21 and
using differetiations. However, the pairs {T1, T2} and
{Tam, T21} are interrelated linearly by Eqs. (14), and
as a consequence the following relations hold: ∂

∂Tam

=
∂

∂T1
+ ∂

∂T2
and ∂

∂T21
= − 1

2
∂

∂T1
+ 1

2
∂

∂T2
. These equalities

show that the pairs of capacities (20) and (27) are ex-
pressed by each other:

C
(am)
V,T21

= C
(1)
V,T2

+C
(2)
V,T1

, C
(21)
V,Tam

= − 1
2C

(1)
V,T2

+ 1
2C

(2)
V,T1

.

(28)
Calculations yield:

C
(am)
V,T21

=
D

2
NkB

1

T1T2

(

T21

ln T2/1

)2

(29)

and

C
(21)
V,Tam

=
D

2
NkB

[

1

ln T2/1
− 1

2

1

T1T2

T 2
2 − T 2

1

ln2 T2/1

]

. (30)

C
(am)
V,T21

is symmetric and C
(21)
V,Tam

is antisymmetric in the
bath indices because they describe symmetric and anti-
symmetric changes of external conditions.

Heat capacities (22), (23) and (29), (30) can be ex-
panded into series [41] in the small reduced temperature
difference δ at the point Tam. Their exact dependences

on δ are given in Fig. 3. That of the two capacities C
(1)
V,T2

and C
(2)
V,T1

is larger which corresponds to the tempera-
ture change of the colder bath. This is the consequence
of the thermal expansion phenomenon in a nonuniform-
ly heated stationary gas. The number of particles in the
colder half of the vessel is larger than that in the hot-
ter half, and the first one needs more heat when the gas
is switched to a close steady state by raising the lower
temperature by 1 K, rather than the higher bath tem-
perature is raised by 1 K with the smaller number of
particles in the hotter half on the vessel.
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Fig. 3. Heat capacities as functions of the reduced temper-
ature difference δ. The corresponding weak nonequilibirum
domain is −0.05 ≤ δ ≤ 0.05.

An interesting behaviour is demonstrated by the an-

tisymmetric heat capacity C
(21)
V,Tam

. When the tempera-
ture difference increases at fixed Tam in the domain of
its negative values (T21 < 0, δ < 0), the internal ener-

gy increases so that C
(21)
V,Tam

> 0, while in the domain

of positive values (T21 > 0, δ > 0) the internal energy

decreases and C
(21)
V,Tam

< 0. This is also the consequence

of the nonuniform thermal expansion. Series (15) con-

firms such a behaviour of C
(21)
V,Tam

: when the |δ| decreases
at fixed Tam, the internal energy increases and in the
equilibrium (δ = 0) the energy takes a maximal value.

C. Entropy

In order to find the entropy of the gas, we represent
its density (8) in the form

s(z) = kBn(z)
[

d1 ln T (z)− ln (P/kB) + ξ
(D)
S

]

, (31)

where d1 ≡ 1
2D + 1 and the local equation of state (6)

has been used. Integration of this expression according
to Eq. (9) produces three contributions

S = ST + SP + Sξ,

which correspond to the terms in the square brackets of
Eq. (31).

The first one reads:

ST ≡ Ω kBd1

L
∫

0

dzn(z) lnT (z) = Ω d1P

L
∫

0

dz
ln T (z)

T (z)
, (32)

where Eq. (6) has been substituted, while T (z) is given
by the linear dependence, Eq. (4). Integrating with re-
spect to the new variable T ≡ T1 + T21z/L, we obtain
the following result:

ST = Ω d1P
L

T21
× 1

2

[

(ln T2)
2 − (ln T1)

2
]

. (33)
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SP and Sξ are easily calculated by the aid of the normal-
ization condition, Eq. (10). The total entropy reads:

S = NkB

[

ln
ΩL

N
+ 1

2 ( 1
2D+1) ln (T1T2)−ln

T21

ln T2/1
+ξ

(D)
S

]

.

(34)
Like pressure (11) and internal energy (12), it is sym-
metric in the temperature variables T1 and T2. The ex-
pansion near Tam in the reduced temperature difference
δ ≡ 1

2T21/Tam can be deduced [41] from this formula.

Let us show that expression (34) is consistent with the
second law of thermodynamics. If we remove the baths
and isolate the system, it will relax to an equilibrium
state. The internal energy keeps constant during relax-
ation: E = const. The well-known equality holds for the
equilibrium, E = D

2 NkBTfin, where Tfin is the temper-
ature ascribed to the final state. Inserting it into the
equilibrium entropy formula for the low-density gas [36]
yields:

Sfin = NkB

[

ln(ΩL/N) + D
2 ln Tfin + ξ

(D)
S

]

, (35)

with Tfin = Teff , Eq. (13). The result for the difference
∆S ≡ S − Sfin is reduced to

∆S = NkB

(

D
2 + 1

)

ln

√
T1T2 ln T2/T1

T21
. (36)

The fraction in the logarithm can be expressed as
σ(φ) ≡ √

φ ln φ/[φ− 1], where φ ≡ T2/T1 > 0. This frac-
tion remains the same under the interchange φ → 1/φ.
Its behaviour shows (Fig. 4) that σ(φ) ≤ 1, while an
equality is attained at φ = 1, that is when T1 = T2. The
same can be concluded from the expansion of σ(φ) for
the values of φ = 1 + x close to 1:

σ(1 + x) = 1 − 1
24x2 + 1

24x3 − 71
3·5·27 x4 + . . .

It follows from Eq. (36) that ∆S ≤ 0, which indicates
that entropy (34) satisfies the second law of thermody-
namics for nonequilibrium processes [3, 4].
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Fig. 4. Dependence of function σ(φ) ≡ √
φ lnφ/[φ − 1] on

the temperature ratio φ ≡ T2/T1.

We have introduced above the effective temperature
(13) related to the baric and caloric equations of the
steady state. It is easy to note that the nonequilibrium
entropy (34) can be written in the equilibrium-like form
similar to Eq. (35). Comparison of Eqs. (34) and (35)
shows that the entropic effective temperature

T S
eff ≡

[

(T1T2)
1

4
(D+2) ln T2/1

T21

]2/D

differs essentially from Teff , defined above. The differ-
ence means that the very conception of the effective
temperature for the heat-conduction steady state is not
self-consistent even for the weakly nonequilibtium case
and cannot describe all its peculiarities. Maybe, this is
the reason why various attempts of defining the effective
temperature in nonequilibrium conditions [42] cannot be
reconciled with each other. Most likely, they are dictat-
ed to a greater extent by immediate circumstances of the
investigated processes and systems in specific nonequili-
brium conditions [42], rather than by the ability of the
concept of the effective temperature to describe a non-
equilibrium state in a proper way.

IV. APPROXIMATION OF THE DISPLACED
LINEAR PROFILE

a. Interpretations of the Fourier law. For the weak-
ly nonequilibrium heat-conduction state, the Fourier law
for the heat flux is recognized to be well-established [1–3]:

q = −λ∇T, (37)

where λ is the linear thermal conductivity. Though the
origin of the law is experimental and phenomenological,
it was confirmed by kinetic theory [37, 38, 43] and non-
equilibrium statistical mechanics [36, 39]. The law is an
approximation for it neglects the contributions to q from
higher gradients (∂iT/∂ri)

∣

∣

i≥2
and their products.

There are two different interpretations. In the contin-
uous media approach [1, 2] any state of the system is
described locally by hydrodynamic fields. For this case,
the thermal conductivity coefficient in Eq. (37) depends
on space positions through the temperature and particle
density fields:

q(r) = −λ (T (r), n(r)) ∇T (r).

Such local nature of the Fourier law is more close to the
ideas of linear irreversible thermodynamics [1,2], kinetic
theory [37,38,43], and nonequilibrium statistical mechan-
ics [36, 39].

Another interpretation assumes that if a small temper-
ature difference exists between positions A and B sep-
arated by distance L, then the gradient in Eq. (37) is
meant as a quantity

∇TBA =
TB − TA

L
k,

where k is the unit vector directed from point A to point
B. In regard of weak deviation from equilibrium, usually
it is not payed much attention to the spatial dependence
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of the temperature field between A and B, while the co-
efficient λ is taken to be constant and depends on some
“average” temperature and particle density. ∇TBA is con-
sidered as some averaged temperature gradient.

Sometimes the heat-conduction steady state is thought
as a state with the temperature gradient being uni-
form along the heat flux, e.g. [36], which differs from
reality. Nevertheless, the approximation of the first gra-
dient (and consequently, of a linear space dependence
of the temperature) is used in description of the heat-
conduction steady state, e.g., concerning the influence of
thermal nonequilibrium on light scattering [44–49].

b. Approximation. Numerical simulations [31, 32, 50,
51] show the concavity of the temperature profile in the
heat-conduction steady state. The linear profile assump-
tion made in Sec. III for the calculations of thermody-
namic quantities means that we have substituted the gas
with the true profile by the one with the linear pro-
file. The latter was treated as if the gas were stationary.
Now it is necessary to relate the temperature parameters
of the linear profile with the real bath temperatures T1

and T2.

O z

T(z)

L

2T

1T

T (z)θ

1θ

2θ

T

T

θ

Fig. 5. True temperature profile T (z) and its linear ap-
proximation Tθ(z).

The approximation proposed here consists in placing
the linear profile as though it crosses the true profile in
two points (Fig. 5), while its slope corresponds to the
“averaged” gradient (T2 − T1)/L. This choice is in con-
sistence with the “averaged” Fourier law. The value of
displacement θ of the approximate linear profile about
the line traversing points (0; T1) and (L; T2) is a free pa-
rameter. It depends on both T1 and T2 and probably on
L. The temperatures of the “displaced” thermal baths are
denoted by

T1θ ≡ T1 − θ, T2θ ≡ T2 − θ. (38)

Then, the displaced temperature profile is given by:

Tθ(z) ≡ T1θ −
T21

L
z.

The displacement introduced is an attempt to compen-
sate the nonlinearity of the true profile being neglected,
that is, higher temperature gradients. Thermodynamic
quantities will experience distortions from this approxi-
mation.

c. Estimation for θ. In order to establish the simplest
estimation for θ, let us find restrictions for the value tak-
en by the true profile in the middle-point T0 ≡ T ( 1

2L).
Due to the concavity, T0 has the lower bound which is
equal to the colder bath temperature T1 (for the case
T21 > 0) and the upper bound being equal to the arith-
metic mean Tam ≡ 1

2 (T1 + T2): that is T1 < T0 < Tam.

Thus, it follows strictly that θ < 1
2 |T21|.

Now, we make an assumption concerning T (z) that
the value of T0 is not less than the arithmetic mean of
T1 and Tam. In other words, the temperature increase for
the interval (0 ; 1

2L) is larger than or equal to 1
4T21, while

for the interval ( 1
2L; L) it is not larger than 3

4T21. This

strengthens the estimation to θ ≤ 1
4 |T21|. Choosing the

position of the displaced profile Tθ(z) in the middle of
T0 and Tam, we obtain [41]:

θ ≈ 1
8 |T21|.

We can accept from this primitive estimation that the
displacement θ is nearly one order less than the bath
temperature difference |T21|.

d. Application of the approximation. Let us use the
approximation of the displaced temperature profile in the
expressions for the pressure, Eq. (11), and the internal
energy, Eq. (12), by substituting Eqs. (38) for T1θ and
T2θ instead of T1 and T2. The pressure Pθ in this approx-
imation reads:

Pθ = nkB
T21

ln(T2 − θ) − ln(T1 − θ)
. (39)

where n ≡ N/(ΩL). Expanding the fraction into a series
in small values θ

Ti

, we obtain the first two corrections as
follows:

Pθ = nkBTeff

[

1 − T21

ln T2/1

θ

T1T2

−
(

1

2

T 2
2 − T 2

1

ln T2/1
− T 2

21

ln2 T2/1

)

θ2

T 2
1 T 2

2

+ . . .
]

. (40)

Analogous formula holds for the internal energy:

Eθ = 1
2DNkBTeff

[

1 − Teff
θ

T1T2

− Teff(Tam − Teff)
θ2

T 2
1 T 2

2

+ . . .
]

, (41)

where the coefficients at θ and θ2 have been expressed
through Tam and Teff , Eq. (13).

The negative signs of the corrections indicate that the
displacement lowers the values of the pressure and inter-
nal energy. The first-order corrections can be approxi-
mated by − 1

2
T1+T2

T1T2
θ. The second-order ones turn out to

be very small and have an upper bound as ∼ 1
48T 4

21, see
Ref. [41].
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Fig. 6. Dependence of reduced pressure (39) on the re-
duced temperature difference δ for variuos values of the linear
profile displacement θ = θ∗|T21|.

Fig. 6 shows the impact of the displacement on pres-
sure. The assumption of proportionality θ ∼ |T21| used
in Eq. (39) breaks analytical properties of the pressure
so that the function Pθ(δ) has a cusp in the equilibrium
point δ = 0. The cusp weakens when the proportional-
ity coefficient θ∗ in the relation θ = θ∗|T21| decreases.
The nonanalyticity indicates on a rather rough nature of
the approximation. This can be easily understood, since
at first we obtained Eq. (11) for the pressure and after-
wards the displacement was artificially inserted to give
Eq. (39).

Considering the entropy, T1θ and T2θ are inserted into
Eq. (34) instead of T1 and T2 with subsequent expanding
of the logarithms in powers of θ up to the second order:

Sθ = NkB

[

ln
ΩL

N
+ 1

2 (D
2 + 1) ln (T1T2) − ln

T21

ln T2/1

+ξ
(D)
S −

(

[D
2 + 1]Tam − Teff

) θ

T1T2
− 1

2

(

[D
2 + 1]

T 2

1
+T 2

2

2

−Teff [2Tam − Teff ]
) θ2

T 2
1 T 2

2

− . . .
]

, (42)

where the corrections from θ take partially into account
the nonlinearity of the true temperature profile.

V. CONCLUSIONS

For the low-density gas in the weakly nonequilibri-
um heat-conduction steady state, one of the simplest
approximations is considered when the local tempera-
ture depends linearly on the space position along the
heat flux. Analytical expressions for the pressure, inter-
nal energy, and entropy as well as for compressibilities
and heat capacities derived in the continuous media ap-
proach describe qualitatively the deviation of the state
from equilibrium. They establish common behaviour of
these quantities and are examples of typical nonequilib-
rium steady-state thermodynamic relations. The results
are expressed in terms of global macroscopic parameters
and do not contain any dissipative characteristics (such
as thermal conductivity, relaxation time, etc.) Another
positive feature is the compatibility of the entropy found
with the second law of thermodynamics for nonequilib-
rium processes.

The pressure is compared to that for liquids obtained
by the approach of hydrodynamic fluctuations. It is sug-
gested that the pressure drop originated from the non-
equilibrium conditions is comparable to the fluctuation-
induced contribution even when the thermal bath sepa-
ration decreases to 10−7 m.

The nonlinearity of the true temperature profile is tak-
en into account by means of displacement of the model
linear profile. This approximation is rather artificial and
has been introduced on qualitative grounds. For this rea-
son, the corresponding results are of estimative nature.
Nevertheless, we expect that they can play the role of
a test instrument for the forthcoming more realistic and
detailed approximations and approaches.
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Phys. Rev. E 89, 022145 (2014).
[22] T. R. Kirkpatrick, J. M. Ortiz de Zárate, J. V. Sengers,
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ТЕРМОДИНАМIЧНI ВЕЛИЧИНИ ГАЗУ НИЗЬКОЇ ГУСТИНИ
У СЛАБОНЕРIВНОВАЖНОМУ ТЕПЛОПРОВIДНОМУ СТАЦIОНАРНОМУ СТАНI

В НАБЛИЖЕННI ЛIНIЙНОГО ХОДУ ТЕМПЕРАТУРИ

Й. А. Гуменюк
Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, Львiв, 79011, Україна

Слабонерiвноважний газ низької густини зi стацiнарним потоком тепла розглянуто в наближеннi лi-
нiйного ходу температури. Виведено простi аналiтичнi оцiнки для тиску, внутрiшньої енерґiї та ентропiї.
Проаналiзовано стисливостi й теплоємностi. Показано, що результат для ентропiї узгоджується з другим
началом термодинамiки. Уведено наближення змiщення лiнiйного ходу температури, покликане врахувати
вищi температурнi ґрадiєнти.
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