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The phase shift produced by isospectral potentials has been critically investigated. The isospec-
tral potentials may look quite different in shape from the original potentials although they have
identical spectra. In this work, it is shown that the isospectral potentials produce same phase shift
with the original potentials at a given energy.
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I. INTRODUCTION

During the past thirty years, the ideas of Supersym-
metry for understanding potential problems in Quan-
tum Mechanics have been developed using some ideas
borrowed from Quantum Field theory. Supersymmetric
Quantum Mechanics (SSQM) was introduced by Wit-
ten [1], Coopper and Freedman [2] as a simple model for
testing supersymmetric field theories which were intro-
duced by Gol’fand and Likhtman [3] for a unified descrip-
tion of the fundamental interactions in nature. The study
of SSQM provided an insight into the factorization of the
Hamiltonian and introduction of partner Hamiltonians
having wholly or partially identical energy spectrum. It
also explained analytical solvability of a class of poten-
tials, whose partner potentials have the same shape, thus
introducing the concept of shape invarince.

From a given Hamiltonian (H(1)), a partner Hamilto-
nian (H(2)) is usually obtained by deleting the ground
state of H(1), the rest of the spectrum of H(1) being
identical with that of H(2) [4]. The partner Hamiltonian
H(2) can also be obtained by adding an energy level be-
low the ground state of H(1) or by making the spectrum
of H(2) identical with that of H(1) (isospectral Hamil-
tonians). The principal result is the energy degeneracy,
viz., E(1)

n+1 = E
(2)
n , (n = 0, 1, 2, . . .), where E(i)

n is the en-
ergy of the n-th excited (bound) state of H(i) (i = 1, 2).

Now, if V (2) of the partner Hamiltonian H(2) has the
same functional shape (but with different parameters
a2 and a1) as that of the potential V (1) of the original
Hamiltonian H(1), i.e.

V (2)(r; a1) = V (1)(r; a2) +R(a1),
where a2 = f(a1) (1)

(the remainder R(a1) being independent of r), then the
potential is said to be a ‘shape invariant potential (SIP)’.
Then the entire bound state energy spectrum and corre-
sponding energy eigen functions of H(1) can be obtained
algebraically [4]. It is generally believed that the results
of all observables can be obtained algebraically for SIPs.

The above procedure can also be extended to the scat-
tering (unbound) states. From the asymptotic form of the

scattering wave functions, one can show that the phase
shift δ(1)l (k) of the l-th partial wave in V (1) bears a sim-
ple relation with the phase shift δ(2)l+1(k) of the (l+ 1)-th
partial wave in V (2) [5]

δ
(2)
l+1(k) = δ

(1)
l (k)− tan−1

(γ0

k

)
, (2)

where k is the wave number of the incident wave and
γ0 =

√
2mB0

~2 , B0 being the binding energy of the ground
state in V (1). An exhaustive study [6, 7] has been done
to examine the validity of Eq. (2) for Supersymmetric
partner potentials. It has been established that Eq. (2)
holds for both SIP and non-SIP, which relates the phase
shift produced by the l-th partial wave of V (1)(r), i.e.
by the potential V (1)

eff (r) = V (1)(r) + ~2

2m
l(l+1)

r2 and that
by its SUSY partner V (2)

eff (r). The latter phase shift cor-
responds to the (l + 1)-th partial wave. However, there
is no relation between phase shifts produced by V (1)

eff (r)
and V (2)(r) + ~2

2m
(l+1)(l+2)

r2 , where V (2)(r) is the SUSY
partner of V (1)(r). It would be wrong to take δ

(2)
l+1(k)

to be the phase shift produced by the (l + 1)-th par-
tial wave in V (2)(r). Numerical calculations of the phase
shifts produced by a non-SIP as well as an SIP confirm
this [7]. Since the phase shift relation is true for any pair
of partner potentials, the phase shift relation [Eq. (2)] is
well obeyed by all shape invariant, as well as non-shape
invariant potentials. It is also shown that the phase shifts
of shape invariant potentials can be derived analytically
only if the potential together with the centrifugal repul-
sion corresponding to the orbital angular momentum l is
shape invariant and its partner involves centrifugal repul-
sion corresponding to orbital angular momentum (l+1).
Among the known SIPs related by translation of parame-
ters [4], which have continuum spectra, only the Coulomb
potential satisfies this criterion [6]. Except the Coulomb
potential, no other SIP has the orbital angular momen-
tum l as the shape invariance parameter. Hence, even
though V (1) is shape invariant and both equations (1)
and (2) hold, the phase shift cannot be obtained alge-
braically for these potentials. But the phase shift relation
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is neither verified nor any research on scattering proper-
ties of isospectral potentials has been reported so far. If
two different potentials have completely identical spec-
tra, but differ in their shapes, they are called isospectral
potentials [4]. As the isospectral potentials have identical
eigenvalue, reflection and transmission coefficient, it will
be very much interesting to know the phase shift relation
between them. In this work, the phase shift produced by
isospectral potentials has been examined critically for a
finite square well potential.

The paper is organised as follows. In Sec. II, a theo-
retical framework for obtaining the isospectral potential
along with phase shift is presented. In Sec. III, the re-
sults of the calculation are shown and discussed. Finally
in Sec. IV, the conclusion is drawn.

II. ISOSPECTRAL POTENTIAL AND
CALCULATION OF PHASE SHIFT

A. Isospectral potential

Using the idea of SSQM one can construct a partner
potential for any given potential, so that the spectrum of
the partner potential is identical to the original, except
that the ground state of the original is missing in the
spectrum of the partner potential. Using this procedure
one can construct a family of strictly isospectral poten-
tials V̂ (r, λ), depending on a parameter λ so that the
potential has eigenvalue, reflection and transmission co-
efficient identical to those for the original potential V (r).
The potentials V (r) and V̂ (r, λ) may look quite different
but are strictly isospectral. In the following, it will be dis-
cussed briefly regarding the construction of an isospectral
potential [4] from any given potential Veff(r), which has
a normalized ground state ψ0(r) with energy E0. The
potential Veff(r) may contain the centrifugal repulsion
term corresponding to the orbital angular momentum l,
which is assumed to be a good quantum number. Then
ψ0(r) is the ground state of the subset of states with the
orbital angular momentum l. The Schrödinger equation
satisfied by ψ0(r) is[

− ~2

2m
d2

dr2
+ Veff(r)

]
ψ0(r) = E0ψ0(r). (3)

A superpotential W (r) for this subset of states is defined
as

W (r) = − ~√
2m

ψ′0(r)
ψ0(r)

. (4)

Then Veff(r) can be expressed by

Veff(r)− E0 = W 2(r)− ~√
2m

W ′(r), (5)

and one can define a supersymmetric partner potential
V

(2)
eff (r) through

V
(2)
eff (r)− E0 = W 2(r) +

~√
2m

W ′(r), (6)

such that Veff(r) and its partner V (2)
eff (r) have identical

energy spectra, except that the ground state of Veff(r)
is missing in the spectrum of its partner [4]. Note that
Eq. (6) may be considered as a non-linear differential
equation forW (r) for a given V (2)

eff (r). Now, Eq. (6) being
non-linear, its solution is not unique. The most general
super potential Ŵ can be obtained [4, 8], such that

V
(2)
eff (r)− E0 = Ŵ 2(r) +

~√
2m

Ŵ ′(r). (7)

Now, for the given partner potential V (2)
eff (r), Eq. (7)

(called Riccati equation) can be considered as a non-
linear differential equation for the function Ŵ (r). One
can reconstruct Veff(r) with this solution, using Eq. (5).
But solution of the non-linear Eq. (7) is not unique, its
most general solution being [4] (for simplicity in a theo-
retical calculation, we choose the units in the way that

~√
2m

= 1. Then the factor ~√
2m

in Eqs. (3)–(7) is replaced
by 1)

Ŵ (r;λ) = W (r) +
d

dr
ln |I0(r) + λ|, (8)

where λ is an integration constant and the function
Ŵ (r;λ) depends parametrically on λ; I0(r) is given by

I0(r) =
∫ r

0

[ψ0(r′)]
2
dr′. (9)

Then the family of potentials

V̂eff(r;λ) = Ŵ 2(r;λ)− Ŵ ′(r;λ) + E0

= Veff(r)− 2 d2

dr2 ln |I0(r) + λ|
(10)

(with permissible values of λ), has the same partner
V

(2)
eff (r). Therefore, the potentials V̂eff(r;λ) given by

Eq. (10) with any permissible values of λ, have the spec-
trum identical to that of Veff(r). Since ψ0(r) is normal-
ized, 0 ≤ I0(r) ≤ 1. Hence from Eq. (8), one notices that
the interval −1 ≤ λ ≤ 0 will lead to divergences and
hence not allowed. For all other values of λ, V̂eff(r;λ) is
strictly isospectral with Veff(r).

B. Numerical calculation of the phase shift

For the potential V (r) [with V∞ (limr→∞V (r) = V∞)
subtracted, so that V (r) vanishes asymptotically] the ra-
dial Schrödinger equation for the l-th partial wave takes
the form[

− ~2

2m
d2

dr2
+ Veff(r)− E

]
ψ

(1)
E (r) = 0, (11)

Where Veff(r) = V (r) + ~2

2m
l(l+1)

r2 . The asymptotic solu-
tion of Eq. (11) can be expressed as ψ(1)

E (r) ∝ sin[kr −
lπ
2 + δ

(1)
l (k)], where k =

√
2mE

~2 . Eq. (11) can be solved
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numerically using the Runga-Kutta algorithm from r →
0 (subject to ψ(1)

E (0) = 0) to two large values of r (say
R1 and R2) to obtain φ1 = ψ

(1)
E (R1) and φ2 = ψ

(1)
E (R2).

Then

δ
(1)
l (k) = tan−1

[
φ2sin(kR1 − lπ

2 )− φ1sin(kR2 − lπ
2 )

φ1cos(kR2 − lπ
2 )− φ2cos(kR1 − lπ

2 )

]
.

(12)
For calculation of the phase shift for the isospectral po-
tential, the above procedure can be followed, replacing
Veff(r) by V̂eff(r, λ) in Eq. (11).

C. Application for finite square well potential

The above-mentioned procedure can be applied for a
three dimensional finite square well potential as a simple
demonstrative application. The square well potential has
a depth V0 and range R:

V (r) = −V0, r ≤ R (13)
= 0, r > R.

The finite square well potential is not an SIP, although it
is solvable semi-analytically. The ground and other state

wave functions in this well can be expressed in terms
of standard mathematical functions. Writing the bound
state wave functions as

Ψnlm(r) = Rnl(r)Ylm(θ, φ), (14)

for potential (13):

Rnl(r) = Nnljl(Kr), r ≤ R (15)

= Nnl
jl(KR)
kl(kR)

kl(kr), r > R,

where jl(x) is the spherical Bessel function and kl(x) is
the modified spherical Bessel function that is regular in
the asymptotic region [9]. k and K are given by

k =

√
−2mEnl

~2
K =

√
2m
~2

(V0 + Enl), (16)

with Enl < 0.

The normalization constant is given by

Nnl =
[ ∫ R

0

[jl(Kr)]2r2dr +
(
jl(KR)
kl(kR)

)2 ∫ ∞

R

[kl(kr)]2r2dr
]− 1

2

. (17)

The quantity I0(r) in Eq. (9) can be calculated as

I0(r) = (Nnl)2
∫ r

0

[jl(Kr′)]2r′2dr′, (for r ≤ R), (18)

= (Nnl)2
[ ∫ R

0

[jl(Kr′)]2r′2dr′ +
(
jl(KR)
kl(kR)

)2 ∫ r

R

[kl(kr′)]2r′2dr′
]

(for r > R).

Substituting Eq. (18) into Eq. (10), the one parameter family of isospectral potentials can be obtained as

V̂eff(r;λ) =
~2

2m

[
− V0 +

l(l + 1)
r2

− 4
[I(r) + λ]

(Nnl)2rjl(Kr)[jl(Kr) +Krj′l(Kr)] (19)

+
2

[I(r) + λ]2
r4(Nnl)4(jl(Kr))4

]
, (for r ≤ R),

V̂eff(r;λ) =
~2

2m

[
l(l + 1)
r2

− 4
[I(r) + λ]

(
Nnl

jl(KR)
kl(kR)

)2

rkl(kr)[kl(kr) + krk′l(kr)]

+
2

[I(r) + λ]2
r4(Nnl)4(kl(kr))4

(
jl(KR)
kl(kR)

)4]
(for r > R).

The normalization constant Nnl is given by Eq. (17). For a chosen value of l, Enl corresponds to the ground state
energy (n = 1) and k and K are given by Eq. (16) with this energy.
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III. RESULTS AND DISCUSSION

For numerical calculation, V0 is chosen to be 200
MeV, a = 2.0 fm, ~2

2m = 20.735 MeV fm2 and l = 1.
With these parameters, there is only one bound state
(ground state). The energy equation (continuity of the

log-derivative of the wave function) is solved numerically
to obtain the ground state energy as E11 = −123.803870
MeV. Next I0(r) is calculated using Eq. (18) and hence
V̂eff(r;λ) is evaluated from Eq. (19). V̂eff(r;λ) against
r is plotted in Fig. 1 for various values of λ, viz.,
λ = 0.1, 0.01, 0.001, 0.0001.

Energy (E) Phase shift for Phase shift for V̂eff(r;λ)
(in MeV) Veff(r) λ = 0.1 λ = 0.01 λ = 0.001 λ = 0.0001
0.10 −1.510250 −1.509612 −1.509535 −1.509511 −1.509511
0.20 −1.508256 −1.506125 −1.505866 −1.505786 −1.505786
0.30 −1.493313 −1.488633 −1.488055 −1.487876 −1.487876
0.40 −1.466938 −1.458182 −1.457091 −1.456751 −1.456751
0.50 −1.426455 −1.411337 −1.409428 −1.408830 −1.408830
0.60 −1.371780 −1.346808 −1.343611 −1.342602 −1.342602
0.70 −1.298654 −1.258510 −1.253290 −1.251635 −1.251635
0.80 −1.201339 −1.138187 −1.129850 −1.127194 −1.127194
0.90 −1.072862 −0.976392 −0.963550 −0.959442 −0.959442
1.00 −0.906852 −0.767294 −0.748860 −0.742956 −0.742956

Table 1. Phase shift produced by the original and isospectral potential at different energies for different values of λ.

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

V̂eff(r, λ)

r

Veff(r)
λ = 0.1
λ = 0.01
λ = 0.001
λ = 0.0001

Fig. 1: Plot of V̂eff(r;λ) (in MeV) versus r (in fm) for different values of λ along with

original potential Veff(r).
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Fig. 1. Plot of V̂eff(r; λ) (in MeV) versus r (in fm) for different values of λ along with original potential Veff(r).

The original potential Veff(r) is also plotted in the same
figure and it is observed that V̂eff(r;λ) and Veff(r) differ
in their shapes. V̂eff(r;λ) has a very deep and narrow well
near the origin followed by a high intermediate barrier.
As λ decreases towards 0+, the well becomes deeper,
narrower and closer to the origin, but the intermediate
barrier height increases. Eq. (11) is solved numerically by
the Runga-Kutta algorithm subject to ψ(1)

E = 0. Phase
shift is calculated for both the original and isospectral
potential (for different values of λ) using Eq. (12). Cal-
culated phase shifts in the range 0 < E < 1 have been
presented in table 1. From the results, it is clear that the
phase shift produced by the original potential is same as
that produced by the isospectral potential for the same l
value within numerical errors. For smaller λ, the isospec-
tral potential V̂eff(r;λ) has a very sharp well near the

origin and a very high intermediate barrier which causes
a numerical error in evaluating the wave function ψ

(1)
E

by solving Eq. (11). Moreover, as the original potential
and the isospectral potential produce same phase shift
corresponding to a particular energy and l value, the
phase shift relation [Eq. (2)] is not valid for isospectral
potentials whereas it is valid for supersymmetric partner
potentials [6, 7].

IV. CONCLUSIONS

In this work, the relationship between phase shifts pro-
duced by two isospectral potentials has been critically ex-
amined. Although the energy eigenvalues, reflection and
transmission coefficients are same for isospectral poten-
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tials, the phase shift relation between them was not in-
vestigated earlier. In this work, I have tried to find an
answer to this question. From the numerical results, it
has been established that the isospectral potentials pro-
duce same phase shift corresponding to same ′l′ value
at a given energy. The well known phase shift relation
(Eq. (2)), which is valid for all supersymmetric partner
potentials (for both SIP and non-SIP) [6, 7], is not valid

for isospectral potentials. An example is provided here
for a finite square well potential which is non-SIP.
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ФАЗОВИЙ ЗСУВ IЗОСПЕКТРАЛЬНИХ ПОТЕНЦIАЛIВ

Саб’ясачi Магапатра
Коледж катедральної мiсiї iм. Св. Павла, Калькутта, Iндiя

Критично проаналiзовано фазовий зсув, який дають iзоспектральнi потенцiали. Вони можуть значно
вiдрiзнятися формою вiд ориґiнальних потенцiалiв, маючи водночас iдентичнi спектри. У цiй працi показано,
що iзоспектральнi потенцiали за заданої енерґiї дають той самий фазовий зсув, що й ориґiнальнi.
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