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The quantum mechanical theory of photon-and phonon assisted tunneling of electrons through
the open multilayered nanostructures being the cascades of quantum cascade detector and quantum
cascade laser is developed. The theory of electronic dynamic conductivity and spectral parameters
(resonance energies and widths) of their quasi-stationary states is established within the effective
mass approximation and models of rectangular and triangular potential profiles of resonant tunnel-
ing structure, respectively.

It is shown that an open model of multilayered resonant tunneling structure, comparing with
the closed one, adequately describes the physical processes in cascades and their elements (active
regions, extractors, injectors) and, with respect to the experimental data, gives an opportunity to
calculate and reveal their optimal geometrical design without any fitting parameters.
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I. INTRODUCTION

It is well known that a long time has passed since the
proposed theoretical ideas and principles of the quantum
cascade laser (QCL) [1, 2] and quantum cascade detec-
tor (QCD) [3,4] up untill their practical utilization [5,6]
and [7]. It was caused by the technological difficulties
while producing the equal cascades of quantum wells and
barriers and lack of theory clearly describing the physical
phenomena and processes in the multilayered resonant
tunneling structure (RTS).

After the first successful experimental papers, the in-
terest of researches sharply increased because these nano-
devices had a unique utilization perspectives in science,
industry, medicine, military defense and elsewhere [8,9].
They are functioning in the actual infra red range of elec-
tromagnetic field frequencies and have other unique char-
acteristics, operating at the inter subband transitions.

The first experimental low temperature QCL [10] has
been operated on the injector and QCDs [7, 8] on the
extractor principles. The new technological abilities and
a deeper understanding of physical properties brought
to the successfully functioning of QCL [11,12] and QCD
[13, 14] at high (room) temperatures. The technology of
the production of nano-devices has been rapidly devel-
oping, which fact caused the appearence of injectorless
QCL [15,16] and bi-functional QCL and QCD [17].

The modern QCL and QCD are operating in the whole
infrared range. The results of experimental investiga-
tions of these nano-devices, operating in the middle and
far range, are generalized and analyzed in detail in re-
views [18–20] and the near region is discussed in Ref. [21].

The main elements of QCL or QCD are the cascades
of RTS, where the electromagnetic field is radiated or ab-
sorbed due to the electronic current. The main problem
of the theory of electronic transport through the RTS

is to reveal the physical models and mathematical ap-
proaches which adequately describe physical processes
and give an opportunity to obtain the optimal design
of cascades and elements of nano-devices. Different ap-
proaches are now used in order to calculate the design of
QCL and QCD cascades: the methods of the solution
of quantum mechanical Schrodinger equation [22, 23],
the method of non-equilibrium Green’s functions [24–26],
multivalley Monte-Carlo simulations [27–29], the density
matrix method [30,31] and so on.

The theoretical methods of the calculation of spectral
parameters of RTS, being the elements of nano-devices,
are presented in the book [32] and reviews [33, 34]. The
last achievements of the theory concerning the photon-
assisted transport in multilayered RTS are presented in
reviews [35,36] and original papers [37,38].

II. MAIN PRINCIPLES OF QUANTUM
CASCADE LASER AND QUANTUM CASCADE

DETECTOR OPERATING IN THE MIDDLE
INFRARED RANGE

The majority of theoretical approaches are based, ex-
plicitly or implicitly, on the model of closed RTS with in-
finitely wide outer potential barriers. According to quan-
tum mechanics, in such closed system, without taking in-
to account the dissipative processes, the quasi-particles
are in the stationary states and, thus, their current is ab-
sent. However, the situation is paradoxical — the closed
models of RTS do not explain the absent current, but
the theories developed at their base give an opportuni-
ty to calculate the designs of QCD and QCL cascades
which rather well correlate with experimental data. So,
the problem is to develop an adequate theory which
would simultaneously enable us to predict the optimal
design of the multilayered RTS.
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The typical principles of functioning of the QCL injec-
tor and QCD extractor, used untill now, are presented
in Figs. 1a,b, respectively. The RTS driven by the con-
stant electric field with intensity F (Fig. 1,a), being the
QCL cascade, contains an active region. The electron-
ic current impinges into it getting into the third quasi-
stationary state (QSS) from the injector of the previous
cascade. Due to the quantum transition accompanied by
the radiation of electromagnetic field, the electrons from
the third state get into the second one. From it, within
the radiationless (phonon) mechanism they transit in-
to the ground state of this active region. Further, from
the second and ground states, due to tunneling through
the injector of a cascade, the electrons get into the third
QSS of the next cascade. The conformed operation of all
cascades leads to the QCL functioning.

Fig. 1. Potential profile of QCL (a) and QCD (b) in closed
(- - -) and open (—–) models.

The multilayered RTS, being the QCD cascade (Fig.
1,b), contains the active region where the electrons ab-
sorbing the electromagnetic field energy transit from
the ground QSS into the second one. Then, tunneling
through the extractor within the so-called “phonon lad-
der” and losing part of energy due to a radiationless cre-
ation of phonons, the electrons relax and get into the
ground QSS of the next cascade.

In this paper, we present the theory of photon- and
phonon-assisted tunneling of electrons through the mul-
tilayered RTS in an open model (with the nano-size out-

er barriers), being the cascades of QCD or QCL. In this
model the electronic states are the quasi-stationary ones
with the finite life times. Thus, the electronic current
is observed. It is clear that the open model of RTS is
more adequate to the real cascades of nano-devices and
the abovementioned paradox is explained. The results of
calculated cascades designs well coincide with the exper-
iment [39,40].

III. MAIN BACKGROUND OF THE THEORY OF
PHOTON-ASSISTED TRANSPORT IN THE

OPEN MODEL OF THE PLANE
MULTILAYERED RTS AND QUANTUM
TRANSITIONS IN THE CLOSED MODEL

The theory of electron quantum transitions in the
closed (c) model or photon assisted electronic transport
through the multilayered RTS in the open (o) model
of QCL cascade (L), (Fig. 1,a) and QCD cascade (D),
(Fig. 1,b) is developed in a similar way for the sake of
compactness. According to the one-dimensional models
of RTS [39,40], the Hamiltonians of the electron are writ-
ten as

H
(c,o)
L,D (z) = −~

2
∂

∂z

1
m(z)

∂

∂z
+ U

(c,o)
L,D (z). (1)

Here, the effective mass of the electron

mz =

 mw, in well

mb, in barrier
(2)

is assumed the same as in the bulk crystals for the wells
(mw) and barriers (mb).

When the RTS is a separate N -well cascade of the laser
type driven by the constant electric field with the inten-
sity F ‖ nz its potential profile U

(c,o)
L (z) has the form

(Fig. 1a)

U
(c,o)
L (z) = U

(c,o)
D (z)−eF{z[θ(z)−θ(z−d)]+dθ(z−d)},

U
(c,o)
D (z) =

 0, in well

U, in barrier
(3)

where U
(c,o)
D (z) are the potential profiles for the detector-

type closed or open model (Fig. 1,b). The height of the
potential barrier (U) is assumed as known and fixed by
the magnitudes of affinities and energy gaps of contact-
ing crystals.

The solutions of stationary Schrodinger equations

H
(c,o)
L,D (z)Ψ(c,o)

L,D (z) = EΨ(c,o)
L,D (z), (4)

depending on the model, are written as
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Ψ(c)
L,D(z) =

2N+1∑
p=1

Ψ(c)
L,D(z)[θ(z − zp−2)− θ(z − zp−1)], z−1 → −∞, z2N →∞, (5)

Ψ(o)
L,D(z,E) =

2(N+1)∑
p=0

Ψ(o)
L,D(p)(z,E)[θ(z − zp−2)− θ(z − zp−1)], z−2 → −∞, z−1 = 0, z2N+1 →∞, (6)

where,

Ψ(c,o)
D(p)(z) = A

(c,o)
D(p)e

iKp(E)z + B
(c,o)
D(p)e

−iKp(E)z, (7)

Kp(E) =

 k = ~−1
√

2mwE, in well

χ = −~−1
√

2mb(E − U), in barrier

Ψ(c,o)

L,(1
0)

(z,E) = A
(c,o)

L,(1
0)

eikz + B
(c,o)

L,(1
0)

e−ikz, z ≤
(

z0

z−1

)

Ψ(c,o)
L,(p)(z,E) = A

(c,o)
L,(p)Ai[ξ(z)] + B

(c,o)
L,(p)Bi[ξ(z)], (p) =

(
1
0

)
, . . . ,

(
2N + 1

2(N + 1)

)
(8)

Ψ(c,o)
L,(S)(z,E) = A

(c,o)
L,(S)e

iKs(E+eFd)z, z ≥
(

z2N+1

z2(N+1)

)
, S =

(
z2N+1

z2(N+1)

)

k = ~−1
√

2mwE, ξ(z) = −
[

2m(z)
(~eF )2

]1/3

(U(z)− E − eFz). (9)

The fitting conditions

Ψ(c,o)
L,D(p)(zp) = Ψ(c,o)

L,D(p+1)(zp)

dΨ
(c,o)
L,D(p)(z)

mp dz

∣∣∣∣
z=zp

=
dΨ

(c,o)
L,D(p+1)(z)

mp+1dz

∣∣∣∣
z=zp

 (10)

and normality ones

∞∫
−∞

Ψ(c)∗
L,D; n(z)Ψ(c)

L,D; n′ (z) dz = δnn′ ,

∞∫
−∞

Ψ(o)∗
L,D (z, k)Ψ(o)

L,D(z, k
′
) dz = δ(k − k

′
) (11)

completely define the electron wave functions in both models (Ψ(c)
L,D; n(z) and Ψ(o)

L,D(z, k)) and the stationary energy
spectrum (En) with oscillator strengths of quantum transitions in the closed one

fnn′ = 2(En − En′ )m~2

∣∣∣∣∣∣
∞∫

−∞

Ψ(c)∗
L,D; n(z)zΨ(c)

L,D; n′ (z)dz

∣∣∣∣∣∣
2

,

(
1
m

=
Pw

mw
+

Pb

mb

)
(12)

where Pw, Pb are the probabilities of electron location in the well (w) and barrier (b), respectively.

The resonance energies (RE) En and resonance widths
(RW) Γn of the electron QSS in the open model can be
defined within three different approaches [41], Fig 2, de-
pending on the convenience of calculations. Using the
known wave functions Ψ(o)

L,D(z,E), one can obtain the
densities of probability distribution functions of electron

location in nanostructure

W
(o)
L,D(E) = d−1

∫ d

0

∣∣∣Ψ(o)
L,D(z,E)

∣∣∣2 dz, (13)

or calculate the densities of input jin(E) and output
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jout(E) currents and, since, the transmitting coefficient

D(E) = jout(E)/jin(E). (14)

The position of the maxima of both these functions in en-
ergy scale define the RE (En) and widths of their peaks
at the half of the height — the RW (Γn) of the QSS.
Using the known wave functions one can also obtain the
S-matrix, which is the function of the complex energy
Ẽ. Its real and imaginary parts define the RE and RW
of n-th QSS, Fig 2c,

En = Re[PolnS(Ẽ)], Γn = Im[PolnS(Ẽ)]. (15)

The basics of the theory of dynamic conductivity in
open RTS [39, 40] are the following. It is assumed that
the interaction between the electron and electromagnetic
field, characterized by the intensity of electric field (Fac)
and frequency of electromagnetic field (ω) in dipole ap-
proximation is described by the Hamiltonian

H(z, t) = −eFac cos(ωt){z[θ(z)− θ(z − d)] + dθ(z − d)}.
(16)

The time and z-coordinate dependent wave function
satisfies the complete Schrodinger equation

i~
∂Ψ(o)

L,D(z, t)
∂t

=
[
H

(o)
L,D(z) +H(z, t)

]
Ψ(o)

L,D(z, t). (17)

In one-mode approximation the solution of this equa-
tion is written as

Ψ(o)
L,D(z, t) = Ψ(o)

L,D(z)eiω0t + Ψ(o)
+1,L,D(z)ei(ω0+ω)t

+ Ψ(o)
−1,L,D(z)e−i(ω0−ω)t. (18)

(ω0 = ~−1E)

Here, the function Ψ(o)
L,D(z) is known from (6). The func-

tion Ψ(o)
±1,L,D(z) is analytically exactly obtained from the

system of two non-homogeneous equations

[H(o)
L,D(z)− ~(ω0 ± ω)]Ψ±1,L,D(z, t) =

− eFac{z[θ(z)− θ(z − d)] + dθ(z − d)}. (19)

Finally, the wave functions Ψ(o)
L,D(z, t) and Fourier-images

of densities of electronic currents through the RTS are
obtained as

jL,D(E ± Ω, z)=
ie~n0

2m(z)

[
Ψ±1,L,D(E, z)

∂

∂z
Ψ∗±1,L,D(E, z)

−Ψ∗±1,L,D(E, z)
∂

∂z
Ψ±1,L,D(E, z)

]
, (Ω = ~ω) (20)

here n0 is the concentration of uncoupling electrons.
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Fig. 2. Functions W (E) (a), D(E) (b) and S-matrix as function of eE and position of its first pole in the complex plane of
energy (c).
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The calculation of energetic balance between the input
and output electronic currents fixes the dynamic conduc-
tivity in quasi-classic approximation

σL,D = σ+
L,D + σ−L,D (21)

where its partial terms

σ±L,D = ±Ω(2edF 2
ac)

−1

(
jL,D

[
E + Ω,

(
d

0

)]
− jL,D

[
E − Ω,

(
d

0

)])
, (22)

describe the input (σ+
L,D) and output (σ−L,D) currents

through the RTS, respectively.

IV. CALCULATION AND ANALYSIS OF THE
DESIGN OF THREE-BARRIER RTS AS AN

ACTIVE REGION OF THE CASCADES OF QCD
AND QCL IN CLOSED AND OPEN MODELS

The theory developed in the previous Section for the
two models of multilayered RTS gives an opportunity to
calculate the design of QCD and QCL cascades and re-
veals the optimal configurations of their active regions,
which provide the functioning of these nano-devices at
the needed frequencies of the electromagnetic field.

We calculated the design of QCD and QCL cascades
for the RTS with the same compositions and number of
layers. For the sake of comparison with the experimental

data we studied the RTS composed of In0.53Ga0.47As-
wells and In0.52Al0.48As-barriers. They were realized as
the cascades of these nano-devices in the papers [42,
43]. The computer calculations were performed using
the physical parameters mw = 0.045m0, mb = 0.086m0,
U = 516 meV, n0 D = 4 · 1017cm−3, n0 L = 2 · 1017cm−3,
F = 68kV/cm. The sizes of the cascades elements (active
region, extractor, injector) and that of extractor wells
and barriers were taken the same as in the cited papers
because they are easily and rather exactly calculated in
the simple model of “uncoupling wells”, in order to cre-
ate the system of energy levels producing the “phonon
ladder” in the QCD cascade.

As an example, we studied the multilayered RTS
(Fig. 1,b), as a separate cascade of QCD.The configura-
tion of RTS, being the active region, is varying due to the
different location of the inner barrier between the outer
ones, that means the varying size of the input well (b1)
at such fixed widths of both wells of active region which
correspond to the experiment [42]. In Fig. 3 the energy
spectrum and oscillator strengths f1n in the model of
closed cascade, resonance energies En with logarithms of
life times ln τn (τn = ~Γ−1 in units τ0 = 1ps) of electrons
in both operating QSS and logarithms of conductivities
lnσ12, lnσ±12, lnσ13 (in the units σ0=1S/cm) in a model
of open cascade are presented as functions of the width
of the input well (b1) in a three-barrier active region at
fixed geometrical parameters of other cascade elements.
It is clear that the dependences of electron spectrum En

on b1 in closed and open models are the same with the
exactness not less than 0.1 percent.
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Fig. 3. Energies En, Een (a), oscillator strengths f12, f13 (b) in closed model; resonance energies En, Een (a), logarithms of
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Fig. 3,a proves that RE En (bold curves) of operat-
ing states in which the electron is mainly located in the
active region, non-monotonously depend on b1 display-
ing the anti-crossing effect which is typical for the RTS.
The RE Een (thin curves) of QSS in which the electron
with bigger probability is in a cascade extractor almost
do not depend on the design of active region and are
determined only by geometrical parameters of the ex-
tractor. The distances between Een and Ee(n−1) in the
experimental QCD are of the order of optical phonon en-
ergy Ωph =32–34 meV. Hence, the electrons relaxing at
the phonon subsystem perform a radiationless quantum
transition from the |2〉 operating QSS into |1〉 QSS of the
next QCD cascade.

In the closed model, the QCD which detects the elec-
tromagnetic field with the energy E21 = E2 − E1 as a
result of a quantum transition |1〉 → |2〉 optimally op-
erates when the oscillator strength f12 is maximal at
f12 > f1(n>3). Fig. 3a,b prove that this condition ful-
fills for the four different geometrical configurations of
the active region, none of which has definite advantages
over the other.

For the coordinated operation of all QCD cascades
in the model of open RTS it is necessary that conduc-
tivity (σ12) in quantum transition accompanied by the
absorption of energy E21 would be maximal, much big-
ger than the conductivities (σ1(n>3)) produced by other
transitions. Besides, its partial term (σ+

12) in the forward
current through the RTS into the next cascade would
be much bigger than that (σ−12) of the backward cur-
rent, namely σ+

12 � σ−12. Fig. 3c,d show that not all ge-

ometrical configurations of the active region, which pro-
duce energy E21, are optimal for the QCD operation. So
in the first (I) configuration the conditions σ12 > σ13,
σ+

12 > σ−12 are fulfilled but the life time of the electron in
the ground QSS is essential (τ1 > 10 ps), which leads to
the accumulation of harmful dynamic charge in the sys-
tem. In the second (II) configuration, the conductivity
produced by the quantum transition |1〉 → |3〉 prevails,
since, σ13 > σ12. The fourth (IV) configuration is also not
effective for the QCD operation because here σ−12 � σ+

12.

Thus, there is only one third (III) configuration with
the narrow region (5.6 nm≤ b1 ≤6.2 nm) where to place
the inner barrier between the outer ones in an active re-
gion, herein QCD would operate in the optimal regime
because σ+

12 � σ−12; τ1, τ2 < 3ps. We should note that
in the experimentally realized design of the QCD ac-
tive region, the inner barrier is placed just in this region
bexp
1 = 5.9 nm. The calculation proves that the theoret-

ically obtained energies of the detected field E21 = 230
meV differ from the experimental one Eexp

21 = 232.2 meV
less than by 1 percent and the difference of energies of
electron states localized in the extractor is close to the
energy of optical phonons.

In the same way as for the above-described detector,
we calculated the physical parameters (En, Ein, fnn′ ,
lnτn, lnσnn′ ) in both models for the QCL cascade, real-
ized in paper [43], driven by the constant electric field,
Fig. 1,a. In laser quantum transitions from upper into
the lower QSS, the negative dynamic conductivity ap-
pears as it must be.
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Fig. 4. Energies En , Ein (a), oscillator strengths f12 , f13 (b) in closed model; resonance energies En , Ein (a), logarithms
of life times τn (c), logarithms of conductivities σ32, σ31 and partial terms σ±32 in open model (d) as functions of the input well
width b1.
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The results of the calculated dependences of the ener-
gies (En, Ein), oscillator strength (fnn′ ), life time (lnτn)
and dynamic conductivity (lnσnn′ ) on the configuration
of three-barrier RTS, determined by the width of the in-
put well (b1) are shown in fig. 4. It proves that all three
energies of operating levels (E1, E2, E3) are equal in both
models and essentially depend on b1 while injector ener-
gy levels (Ein) almost do not depend on it. It is clear
that both models contain two configurations (I, II), the
quantum transitions in which (|3〉 → |2〉 and |3〉 → |1〉)
can provide radiation of the electromagnetic field with
the wanted energy ∼246 meV (Fig. 4a).

Herein, the analysis of the oscillator strengths in the
closed model (Fig. 4b) does not answer the question:
why at the comparable f

(I)
32 ≈ 0.83 and f

(II)
31 ≈ 0.52,

the QCL cannot operate in II-configuration while in the
I-one, as experiment [43] proves, it operates successful-
ly. On the contrary, the open model clearly answers this
question. Indeed, from Figs. 4,c,d it is clear that in II-
configuration the life times in |3〉 and |1〉 QSS are very
big and, that the main ???, σ31 ∼ σ−31 as far as σ−31 � σ+

13.
Thus, the dynamic conductivity is formed by the back-
ward current of electrons over the cascade, consequently,
the electrons from the |1〉 and |2〉 QSS of the previous
cascade do not get into the |3〉 QSS of the next one,
since the laser does not operate. The I-configuration cor-
responds to the experimental design of cascade [43] with
the three-level scheme of QCL. The same figure proves
that the life times in |3〉 and |2〉 operating QSS are com-
parable and rather small, which causes their rapid release
of electrons (the radiationless transition |2〉 → |1〉 accom-
panied by the creation o af phonon also contributes to
this). It is very important that in this configuration con-
ductivity σ32 has the maximum but it is much bigger
than σ31 (σ32 � σ31) and σ+

32 � σ−32. Hence, it is clear
that conductivity σ32 is produced by the forward main
electronic current from |2〉 and |1〉 QSS of the previous
cascade at |3〉 QSS of the next one. At these conditions
the operation of laser cascades is well coordinated and
QCL functions successfully. We should also note that
in the I-configuration the theoretical radiation energy
E32 =246.2 meV to within 3% coincides with the experi-
ment [43] and the difference of energies E2−E1 ≈34 meV
correlates well with the energy of polarization phonon of
crystals which form a quantum well.

V. ELECTRON-PHONON INTERACTION
IN RTS

As was mentioned above, phonons play an important
role for the functioning of QCD and QCL. On the one
hand, it is a destructive sub-system the interaction with
which, for example, destroys the coherence of electron
quasi-stationary states in different cascades of QCL. On
the other hand, their positive feature is that this inter-
action creates the mechanism of radiationless transmis-
sion of electronic energy from the excited into ground
QSSs for the effective operation of QCL and QCD. The
purpose of the theory of electron-phonon interaction in

plane semiconductor nano-heterostructures is to obtain
the energy spectra and potentials of polarization fields
in order to study different problems, for example, the
renormalized electron spectrum and radiationless quan-
tum transitions between electron QSSs.

Let us observe the plane nano-heterostructure consist-
ing of N semiconductor layers embedded into the outer
medium. Each of them is characterized by a dielectric
constant which is given by the Lidden–Sacks–Teller ex-
pression for a binary composition and for a ternary one
[44]:

εj(Ω) = ε∞j

Ω2 − Ω2
Lj

Ω2 − Ω2
Tj

,

εj(Ω) = ε∞j

(Ω2 − Ω2
Lj1)(Ω

2 − Ω2
Lj2)

(Ω2 − Ω2
Tj1)(Ω2 − Ω2

Tj2)
. (23)

The high frequency dielectric constant ε∞ and energies
(or frequencies) of longitudinal (L) or transversal (T)
phonons are known from the experiments for the respec-
tive bulk crystals.

Combining the system of Maxwell equations for the
potential of polarization field of RTS in the dielectric con-
tinuum model, the equation ε(ω)∆Φ(r) = 0, ω = Ω/~ is
obtained [45, 46]. Due to invariantness in the plane xoy,
Φ(r) =

∑
q

Φ(z)exp(iqρ), it is transformed to the equa-

tion

ε(ω)
(

∂2

∂z2
− q2

)
Φ(z) = 0. (24)

At the conditions

εj(ω) = 0, ∆Φ(j)
L (r) 6= 0, Φ(j)

L (zj) = 0 (25)

we obtain the spectrum and potential of polarization field
of confined (L) phonons, while at

ε(ω) 6= 0, ∆ΦI(r) = 0 (26)

— that of interface (I) phonons.
From formulas (23), (25) one can see that the spec-

trum of confined phonons contain the same dispersion-
less longitudinal phonons as the respective bulk binary
(ΩLj = ~ωLj) or ternary (ΩLjl = ~ωLjl, l = 1, 2) crys-
tals. The potential of their polarization field is defined
by the formula

Φ(j)
L =

∑
q

[Ajq sin(qz) + Bjq cos(qz)], (27)

where the unknown coefficients are obtained from fitting
conditions.

The potential of polarization field of I-phonons is
found from equations (26). Their solutions are fixed by
the formulas

ΦI =
N+1∑
j=0

Φ(j)
I (q, z)[θ(z − zj)− θ(z − zj−1)],

Φ(j)
I (q, z) = αje

−qz + βje
qz (28)
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with fitting conditions

Φ(j)
I (q, zj) = Φ(j+1)

I (q, zj);

ε(j)(Ω)
∂Φ(j)

I (q, z)
∂z

∣∣∣∣∣
z=zj

= ε(j+1)(Ω)
∂Φ(j+1)

I (q, z)
∂z

∣∣∣∣∣
z=zj

(29)

The latter are solved using the transfer-matrix method
[44], since the energy spectrum of I-phonons is given by
the equation

det[T (Ω, q)− I] = 0, (30)

where I, T are the identity and transfer matrices, respec-
tively.

For the investigation of electron spectrum renor-
malized due to the interaction with phonons using
the method of Green’s functions, the Hamiltonian of
electron-phonon system is written in the representation
of the second quantization over all variables [45,46]

H = He + HL + HI + He−L + He−I , (31)

where

He =
∑
nk

Enka+
nkank (32)

is the electron Hamiltonian,

HL =
∑

j

2∑
l

∑
λq

Ωjl(b+
jlλqbjlλq + 1/2),

HI =
∑
s,q

Ωsq(b+
sqbsq + 1/2) (33)

is the Hamiltonians of L- and I-phonons,

He−L =
∑

n1njk

∑
lλq

F jl
n1n(λ, q)a+

n1k+qank(bjlλq+ b+
jlλ,−q), (34)

He−I =
∑
n1nk

∑
sq

Fn1nk(s, q)a+
n1k+qank(bs,q + b+

s,−q),

(35)
is the Hamiltonians of e–L- and e–I interaction.
F jl

n′n
(λ, q), Fn1nk(s, q) are the e–L- and e–I binding func-

tions.
The Hamiltonian of ann electron-phonon system in

RTS (31) is definitely obtained from the first principles
without any fitting parameters. At small concentrations
of electrons and their weak binding with phonons, the
Fourier-image of electron Green’s function is found from
Dyson equation [47]:

Gn(k, ~ω) = [~ω − Enk −Mn(~ω,k)]−1 (36)

with the mass operator Mn(~ω,k) calculated in one-
phonon approximation

Mn(~ω,k) =
∑
n1pq

F ∗nn1
(p, q)Fn1n(p, q)

[
1 + νpq

~ω − En1(k− q)− Ωpq + iη
+

νpq

~ω − En1(k + q) + Ωpq + iη

]
(37)
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Fig. 5. Spectrum of confined L- and I-phonons in RTS, being the active region of QCD in binary- (a) and ternary compound
(b) models.
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The first term of mass operator describes the processes
of electron-phonon interaction accompanied by the cre-
ation of phonons with an average occupation number
νpq =

(
eΩpq/kBT − 1

)−1
and the second one by annihi-

lation. Here the generalized index for the phonon modes
(p) a numerates all L-phonons modes at p = j, λ and all
I-phonon modes at p = s.

Considering that the electrons move perpendicularly
to the planes of RTS, with the energy close to the ener-
gy of the bottom of respective electronic band, we put
k = 0 in (37) and neglect the frequency dependence of
mass operator in the vicinity of electron energies En tak-
ing into account a weak electron-phonon binding. Now,
the real and imaginary parts of mass operator deter-
mine the shift (∆n = ReMn(~ω = En)) and decay rate
(Γn = −ImMn(~ω = En)) of the n-th electronic state.

The developed theory is used for the calculation
of phonon spectra and parameters of renormalized
electron spectrum for the closed three barrier RTS
(GaAs/Al0.34Ga0.66As), being the active region of QCD
studied in paper [7]. The spectra of L- and I-phonons
in binary and ternary compound models are presented
in figure 5. It is seen that in the binary model there
are two energies of confined L-phonons and two groups
containing 8 modes of I-phonons each, with weak dis-
persion (3–4 meV). In the ternary model there are four
energies of confined L-phonons and sixteen groups con-
taining 8 modes of I-phonons each, also with weak dis-
persion. Herein, two lower groups of energies are almost
dispersionless and upper two have the same dispersion as
their analogues in the binary model. In each group of I-
phonons the number of modes is equal to twice the num-
ber of interfaces in RTS. This obstacle can be very im-
portant to the effective operation of the QCD extractor
“smoothing” the experimental deviations in the phonon
ladder of electron QSSs.

The energy shifts (∆T
12 = ∆T

2 − ∆T
1 ) and widening

(ΓT
12 = ΓT

1 + ΓT
2 ) of absorption band of electromagnet-

ic field in the transition of electron from state |1〉 into
state |2〉 due to the electron-phonon interaction in three
barrier RTS depending on its configuration are shown in
figure 6 at T = 300 K. It is seen that the shift of the
band can vary its sign but its magnitude is small (ap-
proximately 1meV). The width of the band is also small
and varies in the range 1–2 meV. In the configuration
of the experimental active region of QCD, the electron-
phonon interaction shifts the absorption band into the
high-energy region at 0.5 meV widening it at 1.5 meV
when the temperature varies from the cryogenic to the
room one. At the same time, due to a smaller height
of RTS potential barriers, the difference between the

energies of operating QSS decreases as compared with
E12 = E2 − E1 at the increasing temperature. It causes
the shift of absorption band into the low-energy region
at the magnitude of 4.2 meV. The additional broadening
of this band happens because the RTS is an open one
due to the broadening of the bands of operating electron
QSSs. As a result, theoretical magnitudes of the shifts
and broadening of the absorption band of electromag-
netic field correlate well with the experimental data.
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T 12
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b1, nm
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12

0.5meV
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2.5

T 12
, m

eV

Fig. 6. Dependence of temperature shift ∆T
12 and broad-

ening ΓT
12 of absorption band of electromagnetic field on ge-

ometrical design of RTS at T = 300 K.

VI. CONCLUSION

The theory of electronic dynamic conductivity and
spectral parameters (resonance energies and widths) of
their quasi-stationary states is established within the ef-
fective mass approximation and models of rectangular
and triangular potential profiles of the resonant tunnel-
ing structure, respectively.

The developed quantum theory of photon- and
phonon-assisted tunneling of electrons through the mul-
tilayered RTS in an open model for the cascades of
QCD and QCL describes the physical processes clear-
ly and more adequately than a closed model. Using it,
the spectral parameters of absorption band (QCD) or
radiation (QCL) of electromagnetic field are satisfactori-
ly defined, with respect to the experimental data taking
into account the dissipative mechanisms of interaction
with phonons. The presented theory can be used to op-
timize the multilayered RTS parameters and to find a
corresponding design of devices.
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ФОТОН- I ФОНОН-СУПРОВIДНИЙ ТРАНСПОРТ ЕЛЕКТРОНIВ
У РЕЗОНАНСНО-ТУНЕЛЬНИХ НАНОСТРУКТУРАХ

М. В. Ткач, Ю. О. Сетi, О. М. Войцехiвська, О. Ю. Питюк
Чернiвецький нацiональний унiверситет iм. Ю. Федьковича,

вул. Коцюбинського, 2, Чернiвцi, 58012, Україна

Розвинено квантовомеханiчну теорiю фотон- i фонон-супровiдного тунелювання електронiв крiзь вiдкри-
тi багатошаровi наноструктури як каскади квантових каскадних лазерiв i квантових каскадних детекторiв. У
моделi вiдомих ефективних мас та прямокутного i трикутного потенцiальних рельєфiв резонансно-тунельної
структури побудовано теорiю електронної динамiчної провiдностi та спектральних параметрiв (резонансних
енерґiї та ширин) квазiстацiонарних станiв.

Показано, що вiдкрита модель багатошарових резонансно-тунельних структур, порiвняно iз закритою,
не лише адекватно описує фiзичнi процеси у каскадах та їх елементах (активних зонах, екстракторах,
iнжекторах), а й вiдповiдно до експерименту дозволяє без пiдгiнних параметрiв однозначно розраховувати
й виявляти їх оптимальний геометричний дизайн.
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