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A two-particle system is studied in a space with noncommutativity of coordinates and noncom-
mutativity of momenta. We consider the case when different particles feel noncommutativity with
different parameters, which are determined by their masses. We have found exactly the spectrum
of a two-particle system with harmonic oscillator interaction in the noncommutative phase space.
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I. INTRODUCTION

The idea of noncommutativity is quite old. It was
proposed by Heisenberg. The physicist told the idea to
Peierls, who informed Pauli about it. Pauli told the idea
to Oppenheimer. Oppenheimer asked his student Sny-
der to work on the subject [1]. The results of his work
were published in paper [2]. For a long time, the idea
of noncommutativity was not being studied intensive-
ly. In recent years because of the development of the
String Theory and Quantum Gravity (see, for exam-
ple, [3,4]) the interest in the studies of noncommutativity
has risen significantly. Different problems were studied
in the framework of different types of noncommutativi-
ty, among them the harmonic oscillator [5–13], the hy-
drogen atom [10, 14–28], the Landau problem [29–32],
the gravitational quantum well [33,34], classical systems
with various potentials [35–40], many-particle systems
[10,14,42–46], and many others.

In the four-dimensional noncommutative phase space
(2D configurational space and 2D momentum space), the
coordinates and momenta satisfy the following commu-
tation relations

[X1, X2] = i~θ, (1)
[Xi, Pj ] = i~δij , (2)
[P1, P2] = i~η. (3)

Note that in contrast to the ordinary space, in the non-
commutative phase space the coordinates and momenta
do not commute (1), (3). The parameters θ, η are con-
stants and are called the parameters of noncommutativ-
ity, i = (1, 2), j = (1, 2).

In the general case, different particles may feel
noncommutativity with different parameters. Therefore
there is the problem of describing the motion of the
center-of-mass of a system made of N particles in the
noncommutative phase space. This problem was studied
in our previous paper [40]. On the basis of the results
presented in [40] in the present paper we study the par-
ticular case when a composite system consists of two par-

ticles with harmonic oscillator interaction. We examine
the influence of noncommutativity on the energy levels
of the system, which are found exactly.

The article is organized as follows. Section II discuss-
es the problem of describing the two-particle motion in
the four-dimensional noncommutative phase space. In
Section III, we calculate exactly the energy levels of a
two-particle system with harmonic oscillator interaction.
Conclusions are presented in Section IV.

II. REDUCTION OF THE TWO-PARTICLE
PROBLEM TO A ONE-PARTICLE PROBLEM IN

THE NONCOMMUTATIVE PHASE SPACE

Let us consider a two-particle system which consists of
particles having masses m1 and m2 in a four-dimensional
noncommutative phase space and study the following
Hamiltonian

H =
(P(1))2

2m1
+

(P(2))2

2m2
+ U(|X(1) −X(2)|), (4)

with U(|X(1)−X(2)|) being the interaction potential en-
ergy. The coordinates X

(a)
i and the momenta P

(a)
i of a

particle satisfy the following relations

[X(a)
1 , X

(b)
2 ] = i~δabθa, (5)

[X(a)
i , P

(b)
j ] = i~δabδij , (6)

[P (a)
1 , P

(b)
2 ] = i~δabηa, (7)

here θa, ηa are the parameters of noncommutativity
which correspond to a particle of mass ma, i = (1, 2),
j = (1, 2).

Hamiltonian (4) can be represented in the following
form

H =
(P̃)2

2M
+

(∆P)2

2µ
+ U(|∆X|), (8)
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where we use the following notations for the momenta
and coordinates of the center-of-mass, the momenta and
coordinates of the relative motion,

P̃ = P(1) + P(2), (9)

X̃ =
m1X(1) + m2X(2)

m1 + m2
, (10)

∆P = µ1P(2) − µ2P(1), (11)

∆X = X(2) −X(1), (12)

where M = m1 + m2 is the total mass and µ =
m1m2/(m1 + m2) is the reduced mass, µa = ma/M .
Note that the coordinates X

(a)
i and the momenta P

(a)
i

in (9)–(12) satisfy (5)–(7).
It is important to stress that because of noncommu-

tativity, the motion of the center-of-mass and the rela-
tive motion are not independent in the noncommutative
phase space [40]. Taking into account (5)–(7), (9)–(12),
one can obtain the following commutation relations for
the coordinates and momenta of the center-of-mass and
the coordinates and momenta of the relative motion

[X̃1, X̃2] = i~θ̃, (13)
[P̃1, P̃2] = i~η̃, (14)
[X̃i, P̃j ] = [∆Xi,∆Pj ] = i~δij , (15)
[∆X1,∆X2] = i~∆θ, (16)
[∆P1,∆P2] = i~∆η, (17)
[P̃1,∆P2] = −[P̃2,∆P1] = i~(µ1η2 − µ2η1), (18)
[X̃1,∆X2] = i~(µ2θ2 − µ1θ1); (19)

here

θ̃ = µ2
1θ1 + µ2

2θ2, (20)
η̃ = η1 + η2, (21)
∆θ = θ1 + θ2, (22)
∆η = µ2

2η1 + µ2
1η2 (23)

are the effective parameters of noncommutativity. Note
that because of noncommutativity (18), (19) the two-
particle problem can not be reduced to a one-particle
problem in noncommutative phase space.

In our papers [40, 41], we proposed conditions on the
parameters of noncommutativity

ηa

ma
= α = const, (24)

θama = γ = const, (25)

with α, γ being constants which are the same for parti-
cles with different masses, θa, ηa are the parameters of
noncommutativity which correspond to a particle with
mass ma. Note that in (24), (25) there is no summa-
tion. The conditions give the possibility to solve a list
of problems in the noncommutative phase space. Among
them are the problem of the dependence of the motion
of the center-of-mass of a composite system on the rel-
ative motion; the problem of the violation of the equiv-
alence principle; the problem of the violation of proper-
ties of the kinetic energy. We would also like to note here

that a similar condition on the parameter of deformation√
βm = γ = const is important in a space with minimal

length [X̂, P̂ ] = i~(1+βP̂ 2). As was shown in [47–49], the
equivalence principle is recovered, the properties of the
kinetic energy are preserved, the Galilean and Lorentz
transformations do not depend on mass if this condition
holds.

It is clear that commutators (18), (19) are equal to
zero when relations (24), (25) are satisfied. Therefore,[

(P̃)2

2M
,
(∆P)2

2µ
+ U(|∆X|)

]
= 0, (26)

and the two-particle problem can be reduced to the prob-
lems of the motion of the center-of-mass and the relative
motion, which can be studied separately.

III. THE ENERGY LEVELS OF A
TWO-PARTICLE SYSTEM WITH HARMONIC

OSCILLATOR INTERACTION

Let us study a particular case when a system consists
of two particles with harmonic oscillator interaction

U(|X(1) −X(2)|) =
k

2

(
X(1) −X(2)

)2

, (27)

here k is a constant. In this case the Hamiltonian of the
system reads

H =
(P(1))2

2m1
+

(P(2))2

2m2
+

k

2

(
X(1) −X(2)

)2

. (28)

Using (9)–(12), the Hamiltonian can be rewritten as

H = Hc + Hrel, (29)

where the Hamiltonians

Hc =
P̃2

2M
, (30)

Hrel =
∆P2

2µ
+

k

2
∆X2, (31)

describe the motion of the center-of-mass and the relative
motion, respectively, M = m1 + m2, µ = m1m2/(m1 +
m2). Let us find the energy levels of a two-particle system
with harmonic oscillator interaction in noncommutative
phase space. As was shown in the previous section, the
motion of the center-of-mass and the relative motion are
independent if conditions (24), (25) hold. So, in this case
we can consider eigenvalue problems for Hrel and Hc in-
dependently.

First, let us study the motion of the center-of-mass de-
scribed by Hc. Note that the total momenta P̃i satisfy
commutation relations (14). So, Hc corresponds to the
Hamiltonian of free particle in noncommutative phase
space with the effective parameter of noncommutativity
η̃. The influence of noncommutativity on the motion of
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the free particle has been studied [10]. The noncommu-
tative momenta P̃i which satisfy (14) can be represented
as

P̃1 = p̃1 +
η̃

2
x̃2, (32)

P̃2 = p̃2 −
η̃

2
x̃1, (33)

where the coordinates x̃i and the momenta p̃i satisfy the
ordinary commutation relations

[x̃1, x̃2] = 0, (34)
[p̃1, p̃2] = 0, (35)
[x̃i, p̃j ] = i~. (36)

Therefore, the Hamiltonian Hc can be rewritten as

Hc =
p̃2
1

2M
+

p̃2
2

2M
+

η̃2

8M

(
x̃2

1 + x̃2
2

)
− η̃

2M
(x̃1p̃2 − x̃2p̃1) . (37)

Introducing the following operators (see, for example,
[6, 11])

b1 =
1
2

(
−iξ1 − i

d

dξ1
+ ξ2 +

d

dξ2

)
, (38)

b+
1 =

1
2

(
iξ1 − i

d

dξ1
+ ξ2 −

d

dξ2

)
, (39)

with

ξ1 =

√
η̃

2~
x1, ξ2 =

√
η̃

2~
x2, (40)

(41)

we can write

Hc =
~η̃

M

(
b+
1 b1 +

1
2

)
. (42)

Note that the following relation is satisfied

[b1, b
+
1 ] = 1. (43)

So, the eigenvalues of Hc read [10]

Ec
n1

= ~Ω1

(
n1 +

1
2

)
, (44)

Ω1 =
η̃

M
, (45)

where n1 is a quantum number, n1 = 0, 1, 2, 3, . . . .
Now let us consider the relative motion which is de-

scribed by Hrel. Note that the coordinates and the mo-
menta of the relative motion satisfy commutation rela-
tions (15)–(17) and can be represented as

∆X1 =

√
∆θ∆η

2(1−
√

1−∆θ∆η)

(
∆x1 −

1
∆η

(
1−

√
1−∆θ∆η

)
∆p2

)
, (46)

∆X2 =

√
∆θ∆η

2(1−
√

1−∆θ∆η)

(
∆x2 +

1
∆η

(
1−

√
1−∆θ∆η

)
∆p1

)
, (47)

∆P1 =

√
∆θ∆η

2(1−
√

1−∆θ∆η)

(
∆p1 +

1
∆θ

(
1−

√
1−∆θ∆η

)
∆x2

)
, (48)

∆P2 =

√
∆θ∆η

2(1−
√

1−∆θ∆η)

(
∆p2 −

1
∆θ

(
1−

√
1−∆θ∆η

)
∆x1

)
. (49)

So, the Hamiltonian Hrel can be rewritten as

Hrel =

(
∆θ∆η

4µ
(
1−

√
1−∆θ∆η

) +
k∆θ

(
1−

√
1−∆θ∆η

)
4∆η

)
∆p2

+

(
k∆θ∆η

4
(
1−

√
1−∆θ∆η

) +
∆η
(
1−

√
1−∆θ∆η

)
4µ∆θ

)
∆x2 +

(
∆η

2µ
+

k∆θ

2

)
(∆x1∆p2 −∆x2∆p1) . (50)

Introducing the set of operators (see, for example, [6, 11])

b2 =
1
2

(
−iξ̃1 − i

d

dξ̃1

+ ξ̃2 +
d

dξ̃2

)
, (51)

b+
2 =

1
2

(
iξ̃1 − i

d

dξ̃1

+ ξ̃2 −
d

dξ̃2

)
, (52)

b3 =
1
2

(
−iξ̃1 − i

d

dξ̃1

− ξ̃2 −
d

dξ̃2

)
, (53)

b+
3 =

1
2

(
iξ̃1 − i

d

dξ̃1

− ξ̃2 +
d

dξ̃2

)
, (54)
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where ξ̃1 = l0x1, ξ̃2 = l0x2 with

l0 =

√
~

µ̃ω̃
, (55)

1
µ̃

=
∆θ∆η

2µ
(
1−

√
1−∆θ∆η

) +
k∆θ

(
1−

√
1−∆θ∆η

)
2∆η

, (56)

ω̃ =

√
∆θ∆η

2µ
(
1−

√
1−∆θ∆η

) +
k∆θ

(
1−

√
1−∆θ∆η

)
2∆η

×

√√√√( k∆θ∆η

2
(
1−

√
1−∆θ∆η

) +
∆η
(
1−

√
1−∆θ∆η

)
2µ∆θ

)
, (57)

the Hamiltonian Hrel reads

Hrel = ~Ω2

(
b+
2 b2 +

1
2

)
+ ~Ω3

(
b+
3 b3 +

1
2

)
(58)

where

Ω2 = ω̃ +
(

∆η

2µ
+

k∆θ

2

)
, (59)

Ω3 = ω̃ −
(

∆η

2µ
+

k∆θ

2

)
. (60)

Note that operators (51)–(54) satisfy the following com-
mutation relations

[b1, b
+
1 ] = [b2, b

+
2 ] = 1, (61)

[b+
1 , b2] = [b+

1 , b+
2 ] = [b+

2 , b1] = [b+
2 , b+

1 ] = 0. (62)

So, the eigenvalues of Hrel read

Erel
n2,n3

= ~Ω2

(
n2 +

1
2

)
+ ~Ω3

(
n3 +

1
2

)
(63)

where n2, n3 are the quantum numbers n2 = 0, 1, 2, 3 . . .,
n3 = 0, 1, 2, 3 . . . and Ω2, Ω3 are defined by (45), (59),
(60). Taking into account (29), (44), (63), we can write
the spectrum of a two-particle system with harmonic os-
cillator interaction in noncommutative phase space

En1,n2,n3 = Ec
n1

+ Erel
n2,n3

= ~Ω1

(
n1 +

1
2

)
+ ~Ω2

(
n2 +

1
2

)
+ ~Ω3

(
n3 +

1
2

)
. (64)

So, because of noncommutativity of momenta the mo-
tion of the center-of-mass is not free in noncommuta-
tive phase space. The energy levels of Hc are determined
by the first two terms in (64). These levels correspond
to the energy levels of the harmonic oscillator with the
frequency η̃/M . The relative motion of the system is de-
scribed by Hrel. The spectrum of the motion corresponds

to the spectrum of the two-dimensional harmonic oscil-
lator with frequencies (22), (23). So, the spectrum of a
two-particle system with harmonic oscillator interaction
corresponds to the spectrum of the tree-dimensional har-
monic oscillator with frequencies Ω1, Ω2, Ω3 which de-
pend on the effective parameters of noncommutativity η̃,
∆θ, ∆η. Note that in the limits θi → 0, ηi → 0, i = (1, 2)
(in these limits, according to (20)–(23), one has η̃ → 0,
∆θ → 0, ∆η → 0) one obtains the well known result
for the spectrum of a two-particle system with harmonic
oscillator interaction.

IV. CONCLUSIONS

In this paper, a space with noncommutativity of coor-
dinates and noncommutativity of momenta (1)–(3) has
been studied. We have considered the case when different
particles feel noncommutativity with different parame-
ters. In this case, the two-particle problem has been ex-
amined. It is worth noting that the motion of the center-
of-mass of the system and the relative motion are not
independent in the noncommutative phase space (18),
(19). In our previous paper [40], it has been shown that
in the case when the parameters of noncommutativity
which correspond to a particle are determined by its mass
as (24), (25), a list of problems is solved in the noncom-
mutative phase space. Among them are the problem of
the dependence of the motion of the center-of-mass of
a composite system on the relative motion, the problem
of the violation of the equivalence principle, the prob-
lem of the violation of properties of the kinetic energy.
The importance of conditions (24), (25) is stressed by the
number of problems which can be solved. Therefore, in
this paper we have considered the noncommutative phase
space with parameters of noncommutativity determined
as (24), (25). In this case the motion of the center-of-
mass of a composite system and the relative motion are
independent. Therefore, the two-particle problem can be
reduced to the problem of one particle in the noncom-
mutative phase space.

A two-particle system with harmonic oscillator inter-
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action has been examined. We have studied the influence
of the coordinates noncommutativity and the momenta
noncommutativity on the motion of the center-of-mass
and the relative motion. We have found exactly the en-
ergy levels of the system in the noncommutative phase
space (64). These levels correspond to the spectrum of
harmonic oscillator with frequences Ω1, Ω2, Ω3 (45), (59),
(60) which depend on the effective parameters of non-
commutativity η̃, ∆θ, ∆η (21)–(23).

ACKNOWLEDGMENTS

This work was supported in part by the European
Commission under the project STREVCOMS PIRSES-
2013-612669 and projects Фф-63Нр (No. 0117U007190),
Фф-30Ф (No. 0116U001539) from the Ministry of Edu-
cation and Science of Ukraine.

[1] R. Jackiw, Ann. Henri Poincarre 4, 913 (2003).
[2] H. Snyder, Phys. Rev. 71, 38 (1947).
[3] N. Seiberg, E. Witten, J. High En. Phys. 9909, 032

(1999).
[4] S. Doplicher, K. Fredenhagen, J. E. Roberts, Phys. Lett.

B 331, 39 (1994).
[5] A. Hatzinikitas, I. Smyrnakis, J. Math. Phys. 43, 113

(2002).
[6] A. Kijanka, P. Kosinski, Phys. Rev. D 70, 127702 (2004).
[7] Jing Jian, Jian-Feng Chen, Eur. Phys. J. C 60, 669

(2009).
[8] A. Smailagic, E. Spallucci, Phys. Rev. D 65, 107701

(2002).
[9] A. Smailagic, E. Spallucci, J. Phys. A 35, 363 (2002).

[10] A. E. F. Djemai, H. Smail, Commun. Theor. Phys. 41,
837 (2004).

[11] P. R. Giri, P. Roy, Eur. Phys. J. C 57, 835 (2008).
[12] J. Ben Geloun, S. Gangopadhyay, F. G. Scholtz, Euro-

phys. Lett. 86, 51001 (2009).
[13] D. Nath, P. Roy Ann. Phys, 377, 115 (2017).
[14] Pei-Ming Ho, Hsien-Chung Kao, Phys. Rev. Lett. 88

151602 (2002).
[15] M. Chaichian, M. M. Sheikh-Jabbari, A. Tureanu, Phys.

Rev. Lett. 86, 2716 (2001).
[16] M. Chaichian, M. M. Sheikh-Jabbari, A. Tureanu, Eur.

Phys. J. C 36, 251 (2004).
[17] O. Bertolami, R. Queiroz, Phys. Lett. A 375, 4116

(2011).
[18] N. Chair, M. A. Dalabeeh, J. Phys. A: Math. Gen. 38,

1553 (2005).
[19] A. Stern, Phys. Rev. Lett. 100, 061601 (2008).
[20] S. Zaim, L. Khodja, Y. Delenda, Int. J. Mod. Phys. A

26, 4133 (2011).
[21] T. C. Adorno, M. C. Baldiotti, M. Chaichian, D. M. Git-

man, A. Tureanu, Phys. Lett. B 682, 235 (2009).
[22] L. Khodja, S. Zaim, Int. J. Mod. Phys. A 27, 1250100

(2012).
[23] S. A. Alavi, Mod. Phys. Lett. A 22, 377 (2007).
[24] Kh. P. Gnatenko, V. M. Tkachuk, Phys. Lett. A 378,

3509 (2014).
[25] Kh. P. Gnatenko, Yu. S. Krynytskyi, V. M. Tkachuk,

Mod. Phys. Lett. A 30, 1550033 (2015).
[26] Kh. P. Gnatenko, J. Phys.: Conf. Ser. 670, 012023

(2016).
[27] Kh. P. Gnatenko, V. M. Tkachuk, Int. J. Mod. Phys. A

32, 1750161 (2017).
[28] M. M. Stetsko, V. M. Tkachuk, Phys. Lett. A 372, 5126

(2008).
[29] J. Gamboa, M. Loewe, F. Mendez, J. C. Rojas, Mod.

Phys. Lett. A 16, 2075 (2001).
[30] P. A. Horvathy, Ann. Phys. 299 128 (2002).
[31] O. F. Dayi, L. T. Kelleyane, Mod. Phys. Lett. A 17 1937

(2002).
[32] M. Daszkiewicz, Acta Phys. Polon. B 44, 59 (2013).
[33] O. Bertolami, J. G. Rosa, C. M. L. de Aragao, P. Casto-

rina, D. Zappala, Phys. Rev. D 72, 025010 (2005)
[34] C. Bastos, O. Bertolami, Phys. Lett. A 372, 5556 (2008).
[35] J. Gamboa, M. Loewe, J. C. Rojas, Phys. Rev. D 64,

067901 (2001).
[36] J. M. Romero, J. D. Vergara, Mod. Phys. Lett. A 18,

1673 (2003).
[37] B. Mirza, M. Dehghani, Commun. Theor. Phys. 42, 183

(2004).
[38] A. E. F. Djemai, Int. J. Theor. Phys. 43, 299 (2004).
[39] Kh. P. Gnatenko, V. M. Tkachuk, Mod. Phys. Lett. A

31, 1650026 (2016).
[40] Kh. P. Gnatenko, V. M. Tkachuk, Phys. Lett. A 381,

2463 (2017).
[41] Kh. P. Gnatenko, Mod. Phys. Lett. A 32, 1750166

(2017).
[42] M. Daszkiewicz, C. J. Walczyk, Mod. Phys. Lett. A 26,

819 (2011).
[43] Kh. P. Gnatenko, Phys. Lett. A 377, 3061 (2013).
[44] Kh. P. Gnatenko, J. Phys. Stud. 17, 4001 (2013).
[45] M. Daszkiewicz, Acta Phys. Polon. B 44, 699 (2013).
[46] Kh. P. Gnatenko, V. M. Tkachuk, Ukr. J. Phys. 61, 432

(2016)
[47] V. M. Tkachuk, Phys. Rev. A 86, 062112 (2012).
[48] C. Quesne, V. M. Tkachuk, Phys. Rev. A 81, 012106

(2010).
[49] V. M. Tkachuk, Found. Phys. 46, 1666 (2016).

3001-5



Kh. P. GNATENKO, V. M. TKACHUK

СИСТЕМА ДВОХ ЧАСТИНОК З ОЦИЛЯТОРНОЮ ВЗАЄМОДIЄЮ В
НЕКОМУТАТИВНОМУ ФАЗОВОМУ ПРОСТОРI

Х. П. Гнатенко, В. М. Ткачук
Кафедра теоретичної фiзики, Львiвський нацiональний унiверситет iменi Iвана Франка,

вул. Драгоманова, 12, Львiв, 79005, Україна

Систему двох частинок дослiджено у просторi з некомутативнiстю координат та некомутативнiстю iм-
пульсiв. Розглянуто випадок, коли рiзнi частинки вiдчувають некомутативнiсть iз рiзними параметрами, що
визначаються їхньою масою. Знайдено точно спектр двочастинкової системи з осциляторною взаємодiєю в
некомутативному фазовому просторi.
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