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On this, the occasion of the 20th anniversary of the “Ising Lectures” in Lviv (Ukraine), we
give some personal reflections about the famous model that was suggested by Wilhelm Lenz for
ferromagnetism in 1920 and solved in one dimension by his PhD student, Ernst Ising, in 1924.
That work of Lenz and Ising marked the start of a scientific direction that, over nearly 100 years,
delivered extraordinary successes in explaining collective behaviour in a vast variety of systems,
both within and beyond the natural sciences. The broadness of the appeal of the Ising model is
reflected in the variety of talks presented at the Ising lectures (http://www.icmp.lviv.ua/ising/)
over the past two decades but requires that we restrict this report to a small selection of topics.
The paper starts with some personal memoirs of Thomas Ising (Ernst’s son). We then discuss the
history of the model, exact solutions, experimental realisations, and its extension to other fields.
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I. INTRODUCTION

In seeking to explain a particular phenomenon in
physics, namely the onset of ferromagnetism, Wilhelm
Lenz proposed a model that was solved in one dimen-
sion by his PhD student, Ernst Ising in 1924. This event
marked the start of a process that, over nearly 100 years,
delivered tremendous and multiple successes in explain-
ing collective behaviour in a vast variety of systems, in-
cluding many beyond the natural sciences.

Fig. 1. Ernst (Ernest) Ising (May 10, 1900 in Cologne, Ger-
many - May 11, 1998 in Peoria, USA). Photo taken in 1987.

When Ernst Ising started his work on the phenomenon
of ferromagnetism, the nature of the microscopic, inter-
atomic interactions was not yet understood. Indeed, it
was not at all clear how a macroscopic magnetization
could be generated by the interactions between elemen-
tary magnets. It was already known that magnetism is
a quantum phenomenon but quantum theory was at a
stage where the classical Bohr–Sommerfeld model was in
disagreement with experiments. Ernst Ising succeeded in
answering the question in the specific context of Lenz’s
suggestion for a linear chain. At the same time, Wolf-
gang Pauli, who was also at Lenz’s institute, contributed
to quantum mechanics by suggesting that the electron
possesses a two valued non-classical magnetic moment.
While these were important steps towards answering the
above questions, the full picture had to wait for further
new ideas.

Nowadays literature based on the Ising model is abun-
dant and there are several good reviews that report the
history of the model [1–3] and its applications in differ-
ent fields of science [4–6]. About 800 papers on the Ising
model are published every year [3](b). It has found ap-
plications in a range of different circumstances such as
tumor modelling [7], seismic-hazard assessment [8] and
sonification of science (instead of visualization) [9]. Quite
recently a universal simulator modelling spin models has
been found [10]. Such broad impact of the Ising model is
also reflected in the contributions to the “Ising lectures”

∗The paper is a reprint of a chapter from the book Ising lectures in Lviv (1997–2017), edited by M. Krasnytska, R. de Regt,
P. Sarkanych (Lviv, Institute for Condensed Matter Physics, 2017).
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– an annual workshop in Lviv that in 2017 celebrates its
20th anniversary [11], the occasion for which this paper is
written. The broadness of the appeal of the Ising model
requires that we restrict our report to a small selection of
topics. Our paper is not meant to be comprehensive but
rather reflects our own opinions on certain fields tight-
ly related to the Ising model and its developments. In
particular, in what follows we discuss the history of the
model and its formulation as we now know it (Section
III); exact solutions (Section IV); experimental realisa-
tions (Section V); and its extension to other fields (Sec-
tion VI). We start with the personal memoirs of Thomas
Ising (Ernst’s son) in the next section.

II. MY FATHER — ERNEST ISING

My father was a wonderful person who was in love
with life. He thoroughly enjoyed teaching: “I got some of
the students in the front row wet with my experiment.”
He often stated that no class was complete unless his
students had laughed with him.

When I first got to know him physics was something
far away. He was only interested in keeping himself and
our family alive in the middle of WWII. Starting with
1933, there were really only twelve very bad years for
him.

He was born Ernst Ising, at the beginning of the 20th
century on May 10th in Köln (or Cologne) near the
cathedral. His mother, Thekla Loewe, came from a very
successful Jewish merchant family in Duisburg. His fa-
ther, Gustav, grew up in the small town of Rietberg
in rural Westphalia, as a son of the local blacksmith.
We do not know how or when Thekla and Gustav met,
but Kaufhaus Loewe had quite a few male and female
employees. Thekla, my grandmother, spoke of the table
usually being set for about forty people. Gustav and his
brother (?) Bernard ran a very successful upscale wom-
en’s clothing store in Bochum until the Hitler years. By
the time his sister, Charlotte (Lotte), was born in 1904,

his parents had a wonderful home in a wealthier part of
Bochum. Their home became a stopping point for many
artistes of the period. It included a two-story stained
glass stairwell by Johan Thorn Prikker. This unfortu-
nately did not survive the war.

My father liked acting and had a stage in the basement
where he and his friend, Heinz Wildhagen put on plays.
Heinz spent his life as an actor and theater owner. Lat-
er the actor Willie Busch became my father’s dictation
coach.

After completing Gymnasium in 1918 he spent a few
compulsory months as a soldier near the end of WWI.
On the day that the war ended he was on a ladder hang-
ing a banner. He said he looked around and everyone was
gone! The war was over and they had all left.

In 1919 he started studying at the university in
Göttingen majoring in math and physics. Later he was
at the University in Bonn.

In graduate school at Hamburg University in 1922 he
came under the tutelage of Professor Wilhelm Lenz, who
suggested a doctoral thesis in ferromagnetism following
up on his paper of 1920. The thesis was completed in
1924. One of his fellow students was Wolfgang Pauli. Al-
so at this time his sister, Lotte, married Hermann Busch
(Willie’s brother) of the famous Busch family.

After receiving his PhD he went to work in the
patent office of the AEG or the Allgemeine Elektriz-
itätsgesellschaft (General Electric) in Berlin. While he
enjoyed the work, he knew that he preferred teaching.
During this time he joined and hiked with members of
the math and physics group where he met my mother.
She had just received her Doctorate in Economics and
was working for a professor at the university. In 1927 for
a year Ernst worked as a teacher at the famous boarding
school, Schule Schloss Salem, in Salem, near Lake Con-
stance. He then went back to Berlin University in 1928
so he could begin studies on pedagogy and philosophy.
Two years later, in 1930, he passed the state exams on
higher education and they were married.

Fig. 2. Ernst Ising teaching one of his classes at Landschulheim Caputh. c©Herbert Sonnenfeld, Judisches Museum Berlin.
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My parents moved to Strausberg where he had a teach-
ing position and my mother could take the train to
Berlin. This lasted for two wonderful years until April
of 1933 when Jewish teachers were removed from their
positions. This was the start of “12 years on a tightrope”
as my mother described it.

There followed a year of searching, including a very
temporary job at a school for emigrant children in Paris.

In 1934, he got a new job as a teacher for Jewish chil-
dren at the Judishes Landschulheim in Caputh, a few
miles from Potsdam (see Fig. 2). It was founded in 1931
by Gertrude Feiertag, who was a known progressive so-
cial educationalist. Next-door was the summerhouse of
Albert Einstein. When Einstein permanently extended
his USA visit in 1932, the school rented his house to be
used as additional classrooms. This allowed the number
of enrollees to increase due to the fact that Jewish chil-
dren were being expelled from German public schools.
Three years later my father took over the headmaster
position. But as one survivor said, “the supposedly safe
island threatened to go under the brown sea at any time,
and the children and teachers knew that too”.

While they were able to live near the campus by the
relaxing Havel River, it was possible to take a daily swim
and take out their Klepper foldboat, although the Nazi
threat was constant. Once when they thought my father
was about to have a nervous breakdown, my mother per-
suaded him to take a camping trip down the Danube
River in their foldboat (see Fig. 3). At the end my father
said it was much better than a sanitarium.

On 10 November 1938, the school was destroyed, as
part of Kristalnacht, a program to get rid of the Jewish
people in Germany. The children had been prepared and
were led in four groups through the woods to transporta-
tion, home or safety. As one survivor put it, “it was just
like in the ‘Sound of Music’.”

Fig. 3. Ernst Ising and his wife Jane (Johanna) Ehmer
Ising during a camping trip down the Danube River in 1938.

On 27 January 1939, he was taken by the Gestapo and
interrogated for four hours. He was only released after
he promised that he and his wife would leave Germany.
They gained entry to the closed borders of Luxembourg
with the help of Dannie Heineman (of the Dannie Heine-
man physics prize) via his brother-in-law Hermann Busch
and the Busch Quartet. The quartet always gave two ex-
tra private performances in Belgium, one for the Queen
and one for Mr. Heineman. My parents had planned to
emigrate to the United States, but at that time the quo-
tas were full and they were forced to remain in Luxem-
bourg where I was born. Dannie Heineman had arranged
for some 100 German-Jewish families to occupy vacant
hotels and to pay their room and board. The Germans in-
vaded on my father’s 40th birthday. After the Germans
arrived Mr. Heineman made arrangements for one last
payment of a six-month allowance.

After that they survived in Luxembourg during the
whole war by my father doing mostly menial farm jobs.
In between, there were ten months of teaching Jewish
children denied public schools in Luxemburg City. Later
there were several months of caring for sick and old Jews
who had not yet been deported from the Cinqfontaines
Monastery in northern Luxembourg. The Nazis had con-
fiscated the Monastery and were using it as a deportation
center to send the Jews to the camps. Near the end of
the war, he was forced with other mixed married Jewish
men to help dismantle rails of the Maginot line to be sent
to the eastern front. He was left relatively unthreatened
as he had both a non-Jewish wife and an “Aryan” son.

During this whole uncertain time they had acquired
two used bicycles and we were able to escape on long
bike rides through the countryside. Except for German
control we were never in a war zone until the end. On
September 10, 1944 allied soldiers arrived in Mersch and
the horror was over. Later we escaped the Battle of the
Bulge by only ten miles. Google indicates only 36 Jews
survived in Luxemburg.

By 1946 we were able to take a month long vacation
with my grandparents who had been lucky enough to sur-
vive the war safely in Basel, Switzerland. This included
a five-day hike through the Alps with my 71-year-old
grandmother (see Fig. 4).

It took over two years after the war ended for us to
complete the paper work necessary to enter the US.
In April 1947, we finally arrived in New York on the
freighter “Lipscomb Lykes”. That spring my father went
to a physics convention in Boston to get a job. There he
was asked for the first time if he was the “Ising” of the
Ising Model.

During that summer my parents found work at the
Tapawingo Farm Camp near Gouldsboro, PA. I was
among other seven year olds who had Hanna Tillich as
our housemother. Our English improved tremendously.

That fall my father started as a teacher at the State
Teacher’s College in Minot, North Dakota. He had to
make a very radical change from teaching in a German
high school nine years earlier to teaching in an American
college in English. The next year he became a Physics
Professor at Bradley University in Peoria, Illinois. His
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wife Jane (Americanized from Hanna) also became a
teacher at the school. This was where they stayed. He
retired in 1976. In 1953 we were granted our US cit-

izenships. He officially became Ernest and my mother
became Jane.

Fig. 4. Thekla Ising, Tom Ising, Ernst Ising and Johanna Ehmer Ising (from left to right) during their five-day hike through
the Swiss Alps (1946).

My parents soon made many lasting friendships. Every
summer we, or they, went on a significant trip, even driv-
ing up to Alaska one year. They also took several trips to
Europe and many other parts of the world. On a lonely
beach in Oregon the summer after my graduation, they
happened to meet one of my physics professors. He ex-
claimed that he was writing a chapter on the Ising model
in his new book.

My father passed away at home one day after his 98th
birthday after only five days in hospice.

III. FROM LENZ UMKLAPPMAGNETS VIA
ISING’S CHAIN TO PAULI’S ZWEIDEUTIGKEIT

The most successful elaboration of tech-

nique in statistical mechanics exists in con-

nection with the Ising model. (G. H. Wannier
1966 [12])

Starting around 1925, a change occurred:

With the work of Ising, statistical mechan-

ics began to be used to describe the behaviour

of many particles at once. (L. P. Kadanoff
2013)1

A. Lenz paper from 1920

Magnetism and especially ferromagnetism was a less
understood phenomenon at the beginning of the 20th
century. Pierre Curie discovered in 1895 that perma-
nent magnets (ferromagnets) lose their magnetization if
they are heated above a certain temperature TC , now
called Curie temperature [14]. Curie recognized that the
behaviour near the critical point in fluids and mag-
nets seems to be the same and introduced a kind of
universality2 by pointing to the “analogy between the
way in which the intensity of magnetization of a mag-
netic body increases under the influence of temperature
and the intensity of the field, and the way in which the
density of a fluid increases under the influence of tem-
perature and of the pressure.”

Already in 1911 Niels Bohr and independently Hendri-
ka Johanna van Leeuwen discovered that magnetism is
not a classical but a quantum mechanical phenomenon.
They proved3: “At any finite temperature, and in all fi-
nite applied electrical or thermal fields, the net magneti-
zation of a collection of electrons in thermal equilibrium
vanishes identically” [16,17]. Bohr postulated within his
atomic model that the planetary-like electron orbiting

1In [13] Kadanoff cites together with Ising’s 1925 paper Brush’s review [1] who made a similar statement at the end of his
paper.
2“Analogie entre la manière dont augmente l’intensité d’aimantation d’un corps magnétique sous l’influence de la température

et l’intensité du champ, et la manière dont augmente la densité d’un fluide sous l’influence de la température et de la pres-
sion.” [14]
3Bohr concluded in his thesis: a piece of metal in electric and thermal equilibrium will not possess any magnetic properties

whatever due to the presence of free electrons (see [16], page 380).
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around the atomic nucleus has a quantized angular mo-
mentum and induces a magnetic moment. This condition
allowed one to introduce atomic (molecular) magnetic
moments, which could respond to an external field and
to set up models for para- and diamagnetism. In gases
the magnets, according to the freedom of the atoms or
molecules, could be oriented in every direction. On the
basis of such assumptions Curie’s law (the dependence
of the susceptibility χ with temperature T as χ ∼ c/T )
for paramagnets could be derived.

In 1920 Lenz questioned the assumption of free rota-
tion of the elementary magnets in solids and suggested
instead that they may change their direction just turning
around by 180 degrees (Umklapp-Prozess) [18]. He then
derived Curie’s law. In the last paragraph of his short
communication he suggested his two-state model also for
ferromagnets in order to explain the appearance of a per-
manent magnetism at temperatures below TC . He says:4

“If one assumes that in ferromagnetic bodies the poten-
tial energy of an atom (elementary magnet) with respect
to its neighbors is different in the null position and in

the π position, then there arises a natural directedness
of the atom corresponding to the crystal state, and hence
a spontaneous magnetization.” (translation from [2](a)).

In Weiss’s domain model for ferromagnetism [19] it
is the reaction of already ordered domains to a mag-
netic field which leads to the Curie–Weiss susceptibility
χ ∼ c/(T − TC), whereas in Lenz’s suggestion it is an
unknown kind of non-magnetic interaction between the
two directions of the elementary magnets.

After Lenz took up the post of Chair of Theoretical
Physics at the University of Hamburg he was able to lead
a group of physicists and young students to work on the
project he suggested in his short paper [20]. Einstein con-
sidered Lenz’s papers on magnetism, although published
incompletely, as “extremely important” ( [20] p. 93). The
first to become involved in this project was Ernst Ising,
who was already a student in Hamburg when Lenz be-
came full professor. In 1922 Lenz proposed the problem
outlined in his 1920 paper for Ising’s thesis, Beitrag zur

Theorie des Ferro- und Paramagnetismus [21].5

Fig. 5. Ernst Ising and Wolfgang Pauli during the time in Hamburg about 1925.

In May of the same year (1922) Lenz managed to ob-
tain Wolfgang Pauli as an assistant.6 He was of the same
age as Ising but already an internationally well-known
physicist. He came from Göttingen where he worked with
Max Born [34] on problems with the Bohr–Sommerfeld’s
atomic model and remained in Hamburg where he sub-
mitted his Habilitation on 17 January 1924. He stayed in
Hamburg until March 1928 and moved to Zürich when
he got a Chair at the Technical University. In 1923, dur-
ing his stay at the institute of Lenz, he visited for almost
one year Bohr’s institute at Copenhagen. During this

time Ising replaced Pauli until his return at the end of
September 1923 (see Fig. 5).

B. Ising’s thesis and his 1925 publication

The goal of Ising’s task assigned by Lenz was to ex-
plain the appearance of a ferromagnetic state in a three
dimensional (3D) solid. In fact this job was a twofold one:
First he had to set up the model for the interaction of

4“Nimmt man an, daß im ferromagnetischen Körper die potentielle Energie eines Atoms (Elementarmagnets) gegenüber
seinen Nachbarn in der Nullage eine andere ist als in der π Lage, so entsteht eine natürliche zum Kristallzustand gehörige
Gerichtetheit der Atome und daher spontane Magnetisierung.”

5Contribution to the theory of the ferro- and paramagnetism.
6In fact his title was “wissenschaftlicher Hilfsarbeiter”.
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the elementary magnetic units, which prefer alignment,
a problem which belonged to the new and undeveloped
quantum mechanics. Second he then had to calculate an-

alytically the macroscopic magnetization with the meth-
ods of statistical mechanics.

Both tasks were far too big to be solved in a thesis
as the development of quantum mechanics and statis-
tical physics later showed. The first problem one could
say was answered in 1928 by Heisenberg [22] after the
theory of quantum mechanics proceeded far enough and
the second in 1941 by Onsager [23] in 2D after special
properties of the model had been clarified by Kramers
and Wannier and new methods of calculating a partition
function had been found [24, 25]. The 3D problem re-
mained analytically unsolved until now (see chapter IV
for more details).

Therefore Ising had to restrict himself for the first
problem to arguments for the model and for the second
problem to reductions and approximations. In order to
come along with the first problem he refers in the in-
troduction to the paper of E. A. Ewing [26], “where it
was shown experimentally and theoretically, that ferro-

magnetism is caused by a mutual interaction of the el-
ementary magnets.” But the interaction is not thought
to be the well known interaction between dipoles. In fact
“no statement on the nature of this force, which might be
of electrical nature [27] can be made, but it is assumed
that it decays rapidly with the distance.” It is interesting
that these references are missing from his 1925 publica-
tion. So Ising concludes a nearest neighbor interaction is
sufficient. He further points out that this is “in crass dis-
agreement” with the hypothesis of a molecular field. We
now know that the critical behaviour of systems with
phase transitions is described by mean field in dimen-
sions high enough otherwise it is an approximation or
misleading as in the 1D case here.

In order to attack the second task Ising restricted him-
self to the 1D case — the famous Ising chain.7 In the the-
sis the configurations on the chain are displayed as vec-
tors parallel or antiparallel to the direction of the chain.
This presentation in the publication is replaced by the
short notation plus and minus restricting to orientations
only parallel or antiparallel to the direction of the chain.

Fig. 6. Ernst Ising’s result for the magnetization of the chain [28].

The calculation follows the standard methods of equi-
librium statistical mechanics. Namely counting the con-
figuration of different energy in order to obtain the parti-
tion function and in a next step the mean magnetization
J

J = m · n · sinhα
√

sinh2 α + e−
2ε

kT

, α =
mH

kT
(1)

where m is the elementary magnetic moment, H is the
external field, T the temperature, k the Boltzmann con-
stant and n the number of elements of the chain (see

Fig. 6). Thus in zero field no macroscopic magnetization
arises at finite temperature.

Ising tried to generalize the model to higher
dimensions8: “It is imaginable that a spatial model, in
which all elements that in some way are neighbors af-
fect each other, brings with it the necessary stability to
prevent the magnetization intensity to vanish with H .
However, in that case the calculations do not seem to
be feasible; at any rate, so far it has not been possible
to sort and count the appropriate arrangement possibil-
ities.” (translation from [2](a)). Indeed this is not possi-
ble (so far) and one had to look for approximations. He

7This problem is reconsidered by Kramers and Wannier in paper [24] in section 2 as an easy introduction to their new method.
In section 3 they explain: “The reduction of the linear chain problem can be described in a qualitative way as follows. It is
possible to build up a chain by repeating constantly one and the same operation, namely adding another spin beyond the one
just placed previously” (emphasis by the authors of this paper) They explain, that the successful mathematical treatment is
based on one hand on the fact that no physical change takes place by this procedure, if the chain is very long and on the other
hand that the state of the last added spin depends only upon the state of the predecessor.
8“Es ist ja denkbar, dass ein räumliches Modell, bei dem alle irgendwie benachbarten Elemente auf einander wirken, die

nötige Stabilität mit sich bringt, um zu verhindern, dass die Magnetisierungsintensität mit H verschwindet. Doch es scheint
in diesem Fall die Rechnung nicht durchführbar zu sein; jedenfalls ist es bisher nicht gelungen, die Anordnungsmöglichkeiten
geeignet zu sortieren und abzuzählen.”
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considered different kinds of arranging 1D chains. In the
publication (section 3. “The spatial model”) he assumed
the special limit where n1 identical chains are spacially
arranged. He argues that differences in the configuration
of the interacting chains are energetically unfavorable.
Therefore the result is

J = m · n · n1 ·
sinh n1α

√

sinh2 n1α + e−
2n1ε

kT

(2)

and once again (although not surprising due to the ap-
proximation) one does not find a finite magnetization in
zero magnetic field.

Based on these results in the thesis he concludes:9 “So,
if we do not assume, as P. Weiss did, that also quite dis-
tant elements exert an influence on each other — and this
seems to us not to be allowed under any circumstances
— we do not succeed in explaining ferromagnetism from
our assumptions. It is to be expected that this asser-
tion also holds true for a spatial model in which only
elements in the nearby environment interact with each
other” (translation from [2](a)).

Ising finished his thesis in 1924 and published in 1925
a short paper [28] with his results. There is not much
known about the contact between Ising and Pauli, but
Brush [1] reports a letter from Ising to him where he stat-
ed “. . . I discussed the result of my paper widely with
Professor Lenz and with Dr. Wolfgang Pauli, who at
that time was teaching in Hamburg. There was some
disappointment that the linear model did not show the
expected ferromagnetic properties. . . ”. No further com-
munication is reported apart from a letter from Pauli
to Ising found by Sigmund Kobe [3](d), where Pauli in-
formed Ising about his fate and that of other colleagues
in Hamburg after Ising left the institute and which were
also known by Ising.

C. Pauli’s struggle with the Bohr–Sommerfeld
model of the atom

The Bohr–Sommerfeld model of atoms was only part-
ly successful in explaining the experiments. It failed in
cases where more than one electron was present in the

shell, but even in the case of one electron discrepancies
appeared. The situation in the year 1923 is explained
by Landé in a short note [29]. He mentioned that10 “It
turns out that in systems with more than one electron
not even the quantum theoretical stationary states and
their adiabatic changes are mechanically calculable.” He
notes as an example the helium atom and adds:11 “The
second particularly drastic example for the failure of the
mechanical basic principles also in stationary quantum
states illustrates the multiplet structure and especially
the anomalous Zeeman effect . . . ”.

After his stay in Kopenhagen Pauli gave his
“Antrittsvorlesung” where he described the situation of
the mechanical atomic theory. He states:12 “The contents
of this lecture appeared very unsatisfactory to me, since
the problem of the closing of the electronic shells had
been clarified no further. The only thing that was clear
was that a closer relation of this problem to the theory of
multiplet structure must exist.” For another description
of the desperate situation by 1924 see [30, p. 125].

Another severe problem was the understanding of the
periodic system although Bohr constructed with the help
of an additional principle (“Aufbauprinzip”) the structure
of the shells in the classical atomic model. Pauli tried to
connect all these problems and solve them with a new
principle by postulating a fourth quantum number for
the electron and formulating his exclusion principle (the
name was given to it by Paul Dirac [32, p. 59]) for the
electrons. He published those ideas in 1925 [33, p. 385](a)

and [33, p. 765](b) where he concludes:13 “According to
this point of view the doublet structure of the alkali spec-
tra, as also the piercing of the Larmor theorem, comes
about by a peculiar, classically not describable kind of
two-valuedness of the quantum mechanical properties of
the valence electron.” (translation from [34, p. 107]) The
expression “classically not describable” (nonclassic ) was
certified by later development since Bohr was able to
show that the spin could not be measured by classically
describable experiments [31].

The dramatic story of Pauli’s struggle to increase the
quantity of quantum numbers from three to four is de-
scribed by A. I. Miller [32] (see also [35–37]). Immediately
afterwards G. Uhlenbeck and S. A. Goudsmit introduced

9“Wenn wir also nicht annehmen, wie dies P. Weiss tut, dass auch recht entfernte Elemente einen Einfluss aufeinander ausüben
— und das scheint uns auf keinen Fall zulässig zu sein — so gelangen wir bei unseren Annahmen nicht zu einer Erklärung des
Ferromagnetismus. Es ist zu vermuten, dass diese Aussage auch für ein räumliches Modell zutrifft, bei dem nur Elemente der
näheren Umgebung aufeinander wirken.”

10“Es zeigt sich nämlich, daß bei Systemen aus mehreren Elektronen nicht einmal die quantentheoretisch stationären Zustände
und ihre adiabatischen änderungen mechanisch berechenbar sind.”

11“Das zweite besonders drastische Beispiel für das Versagen der mechanischen Grundprinzipien auch in stationären Quan-
tenzuständen gibt die Multiplettstruktur und speziell der anomale Zeemanneffekt . . . ”

12“Der Inhalt dieser Vorlesung schien mir sehr unbefriedigend, da das Problem des Abschlusses der Elektronenschalen noch
nicht weiter geklärt war. Das einzige was klar war, war, daß eine engere Beziehung zwischen diesem Problem und der Theorie
der Multiplettstruktur bestehen muß.”

13“Die Dublettstruktur der Alkalispektren sowie die Durchbrechung des Larmortheorems kommt gemäß diesem Standpunkt
durch eine eigentümliche, klassisch nicht beschreibbare Art von Zweideutigkeit der quantentheoretischen Eigenschaften des
Leuchtelektrons zustande.”
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for this two-valuedness the concept of the spin for the
electron [38]. Already in 1921 A. K. Compton discussed
the possibility that the electron possesses a magnetic mo-
ment as a result of its spinning motion. A similar idea
was formulated by Ralph Kronig but never published.

After Ising had published his negative result it re-
mained open in the physical community if the higher
dimensional cases would lead to spontaneous magnetiza-
tion or not. Pauli communicated about this question with
Heisenberg (see [39, p. 129ff.]) and Heisenberg expressed
his belief that if the number of the nearest neighbors (i.e.
the dimension) is high enough one would succeed finding
ferromagnetism.

D. The formulation of the Hamiltonian for the Ising
model

The quantum mechanical foundation of the interaction
which might lead to ferromagnetism was introduced in
1928 by Heisenberg [22]. It is known as the exchange in-
teraction and is due to the overlap of the wave function
of neighboring atoms obeying the exclusion principle. In
this way the magnetic moments due to the spin of the
electron define the interaction. If the spins are parallel
the electrostatic energy is changed so that this config-
uration is more favorable. He concluded in his paper14:
“(1) The crystal lattice has to be such, that each atom
has at least 8 neighbors. (2) The main quantum number
of the electrons which are responsible for the magnetism
has to be n ≥ 3.”

In the year 1930 Pauli was invited to the Solvay confer-
ence His invited talk [40] gave a review of the status of the
theory concerning magnetism and its quantum mechan-
ical nature (for a short content of his talk see [34, p. 220
ff.]) Especially interesting for ferromagnetism is Section
5 of [40]. Here for the first time it is mentioned that the
phase transition could depend on dimensionality. He al-
so mentions Ising’s work in connection with Heisenberg’s
work and its result for the magnetic moment in molecular
field theory

M = Nµ0

[

1 − C

(

T

Θ

)
3

2

]

. (3)

He states:15 “There is in fact a very close relationship
between the problem of Ising and the one we have
just treated” [40, p. 209]. Pauli’s critical appreciation
of Ising’s model was:16 “In Ising’s calculation developed
from the point of view of the old quantum mechanics,
the components of σi that are perpendicular to the field
are considered to be zero, whereas in the new quan-
tum theory these components do not commute with the
components in the direction of the field.” (translation
from [2, p. 291](a) slightly corrected) But Pauli immedi-
ately suspects for the classical variant:17 “Irrespective of
this difference, it is quite likely that an extension of the
theory of Ising to the case of a lattice of three dimensions
would yield ferromagnetism even from the classical point

of view” (emphasis by the authors of this paper).

Fig. 7. Part of page 210 of Pauli’s contribution to the Solvay conference [40], where he presented the Ising model in the
form as it is known nowadays.

14“(1) Das Kristallgitter muß von solcher Art sein, daß jedes Atom mindestens 8 Nachbarn hat. (2) Die Hauptquantenzahl
der für den Magnetismus verantwortlichen Elektronen muß n ≥ 3 sein.”
15“Ce résultat est interéssant en liason avec la discussion d’un modèle semi-classique proposé par Ising.”
16“Dans le calcul d’Ising, développé au point de vue de l’ancienne théorie des quanta, les composantes des σi perpendiculaires

à la direction du champ sont considérées comme nulles, tandis que dans la nouvelle mécanique cette composante n’est pas
commutable avec celle qui correspond à la direction du champ.”
17“Malgré cette différence, il est très vraisemblable qu’une extension de la théorie d’Ising au cas d’un réseau à trois dimensions

donnerait du ferromagnétisme même au point de vue classique.”
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Thus it was Pauli himself who introduced the modern
notation for the Ising model [40, p. 210], see Fig. 7,

H = −A
∑

k

(σk , σk+1) (4)

where A gives the strength of the interaction of the spins
on the chain position k. Pauli pointed to the difference
of the properties of a quantum mechanical spin σk and
called the “spin” appearing in the Ising model a semiclas-
sical spin.

This compact formulation of the Ising model includes
already all the aspects important for the following devel-
opment: (1) the whole system is described as an interact-
ing many-particle system, (2) these individual particles
produce a specific collective behaviour leading eventual-
ly to phase transitions. The formulation also separates
the aspects, the strength A of interaction of the interact-
ing units, and the properties of the units σi themselves.
A is dependent on the ferromagnet considered where-
as the units are the same for the whole group of fer-
romagnets. This reflects the important concept of uni-

versality , at least for ferromagnets, already introduced
in 1908 by Pierre Curie [15] within mean field theory
and comprising phase transitions in liquids and mag-
nets. Future developments like scaling theory and renor-

malization group theory show that this universality con-
cept goes beyond mean field theory and the Ising model
in three dimensions. Rather it describes the critical be-
haviour of a whole universality class containing liquids,
magnets and other physical systems of same dimension,
symmetry and type of short ranged interaction.

E. Comments on Ising’s result

The usual explanation for the negative result for per-
manent magnetization at finite temperature in the 1D
case points to the free energy. It consists of two parts, the
internal energy and a negative entropic term. This en-
tropic term favors disorder in the 1D case against macro-
scopic alignment. Another question was if some kind of
long range interaction could change the result. Already
from the Curie–Weiss model it was known that taking
into account the interaction of all the spins by an effec-
tive field a phase transition came about even in the 1D
case. However an interaction between two positions in
the chain i, j with a decay according to a power law like
1/|i − j|1+α leads to a phase transition for a sufficient
weak decay, α < 1 [41] (see also [42]).

Ising had to struggle with the configurations of the
chain. A much more elegant way, used mainly in text-
books, is to calculate the partition function with the
method of transfer matrices developed by Kramers and
Wannier [24, 25].

Pauli’s criticism that in fact quantum mechanics for-
mulates a model where the units are non-classical was
taken up in the 1960’s. It turned out that (a) there are

physical examples for which such a model might be ap-
plicable and (b) numerical solutions of the problem could
be obtained [43]. It also opened the new field of quantum
phase transitions.

IV. MORE ON EXACT SOLUTIONS

In the 1920’s, the dominant theory for magnetism was
that of Pierre Weiss [19]. This was based on the sug-
gestion that ferromagnets comprise domains of parallel-
aligned micromagnets. Each micromagnet within a do-
main is supposed to experience an effective magnetic field
(the Weiss mean field) coming from its neighboring mag-
netic moments. Each magnetic domain is then randomly
aligned, up to preferences induced by crystallographic
symmetries. Alternatives to Weiss’s formulation include
the Bragg–Williams approximation [48] as well as Bethe-
lattice models [49]. The free energy coming from such
mean-field approaches is

f(β, h) =
qJm2

2
− 1

β
ln [2 coshh + Jβqm], (5)

where β = 1/kT , k is the Boltzmann factor, T is the
temperature, h = βH where H is the strength of an ex-
ternal field, q is the coordination number (the number of
the nearest neighbours of a given site, e.g., q = 2d for a
regular lattice of dimensionality d), J is the strength of
the inter-site couplings and m is the mean-field magneti-
zation. The model manifests a phase transition at h = 0
characterised by non-vanishing and vanishing values of
m on either side of a critical temperature Tc = qJ/k. It
also exhibits discontinuity in the specific heat (the sec-
ond temperature derivative of the free energy) there.

Following the discovery of the specific-heat anoma-
ly of liquid helium at temperatures of around 2.19 K,
Ehrenfest introduced a classification system for phase
transitions [50]. He christened the anomaly the “lambda
point” because of the shape of the experimentally ob-
tained specific-heat curve. He argued that the lambda
point is a phase transition, even though it was dissimi-
lar to other known phase transitions in that it did not
feature a latent heat or change in volume. Ehrenfest had
interpreted the lambda point as a finite discontinuity and
he proposed to classify such phase transitions as first- or
second-order depending on whether such a discontinuity
was in the first or second derivative of the free energy. For
a recent review of Ehrenfest’s scheme and a translation
of his original paper [50], see [51]. Thus the mean-field
model predicts a second-order phase transition in the
original Ehrenfest sense. Moreover this prediction holds
for all dimensionalities.

In [28], Ising explicitly highlights the difference be-
tween his and Weiss’s treatment in that only short-range,
nearest-neighbouring interactions are taken into account
and the orientation of each micromagnet is restricted to
only two possibilities. The solution for the free energy is
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f(β, h) = − 1

β
ln

[

eβJ coshβh +
√

e2βJ(sinh βh)2 + e−2βJ

]

, (6)

and the various thermodynamic functions are easily de-
rived by appropriate differentiation. As we have seen, un-
like mean-field theory, the model does not exhibit spon-
taneous magnetisation.

In 1936, however, Rudolf Peierls showed that the mod-
el does manifest ferromagnetism in two dimensions [44]
and this problem was investigated by Hendrik Kramers
and Gregory Wannier in 1941 [24]. They write in the in-
troduction to their paper: “The problem has a mechan-
ical and a statistical aspect. On the mechanical side we
wish to improve our understanding of the responsible
coupling forces. On the statistical side we wish to derive
with certainty the thermal properties from a reasonable
accurate mechanical model. Both aspects have received
extensive attention. Quantum theory has explained sat-
isfactorily the origin and nature of the coupling forces.
There are also several theories available which explain
in terms of them the thermal behaviour of ferromag-
nets. Not one, however, applies just straight statistics
to the mechanical data. Generally some simplifying as-
sumption is introduced to facilitate the evaluation of the
partition function. It follows that the results obtained are
not necessarily a consequence of the mechanical model,
but may well be due to the statistical approximation.”
In their paper they then introduced the transfer matrix
concept and related the free energy of the Ising mod-
el for high temperature to a conjugate Ising model at
low temperature. By using this relation they were able

to calculate the transition temperature of the 2D Ising
model. They also developed the transfer matrix method
and demonstrated it by re-deriving Ising’s results for the
one dimensional chain. By their method they reduced
the calculation of the partition function to finding the
largest eigenvalue of a two by two matrix. For the two
dimensional Ising model the matrix turns out to be a
square matrix of infinite dimension and Kramers and
Wannier could calculate the finite transition tempera-
ture Tc. They showed that the partition function for the
infinite system is related to the largest eigenvalue of the
matrix. They also discovered a symmetry in the two-
dimensional model in that its free energy at low temper-
ature is related to that at high temperature. The exact
location for the critical point of the model with square-
lattice geometry is then determined as the point which
is invariant under this self-duality transformation. It is
given by kTc/J = 2/ ln (1 +

√
2) ≈ 2.269185. By way of

comparison mean-field model theory gives kTc/J = 4 for
d = 2 and the Bethe approximation gives 2.88.

Onsager solved the model for the square lattice in the
absence of an external field (i.e., with h = 0) and famous-
ly announced his result at the end of the talk by Wannier
at the February 1942 meeting of the New York academy
of Sciences. He published the result in 1944 in [23]. The
free energy of the infinite system in the absence of an
external field is

−βf = ln 2 +
1

8π2

∫ 2π

0

dθ1

∫ 2π

0

dθ2 ln [cosh (2βJ1) cosh (2βJ2)− sinh (2βJ1) cos θ1 − sinh (2βJ2) cos θ2], (7)

in which J1 and J2 are the coupling constants between
spins in the two different directions.

This was a milestone achievement in the history of
the Ising model in that it was the first exact result for
the model with a finite-temperature phase transition and
proved that these can be captured by statistical mechan-
ics. Strictly speaking, the phase transition was not of the
Ehrenfest type — it has a logarithmic divergence instead
of a discontinuity in the specific heat [25]. Nowadays we
consider Ehrenfest’s classification scheme as extended to
include phase transitions with a divergence as well as
those with a discontinuity. The significance of Onsager’s
achievement is reflected in the comment by Wolfgang
Pauli to Hendrik Casimir who had inquired about devel-
opments in theoretical physics during the second World
War: “nothing much of interest has happened except for
Onsager’s exact solution of the Two-Dimensional Ising
Model” [52]. Onsager’s solution was simplified by Bruria

Kaufman in 1949 [53] and Kaufman and Onsager deter-
mined correlation functions in [54].

Onsager made another important announcement at
the end of the talk by László Tisza at Cornell Univer-
sity in 1948 [52]. This time he stated that Kaufman
and he had derived the spontaneous magnetisation of
the two-dimensional Ising model and he wrote the for-
mula on the blackboard. This was important because
the non-vanishing of the magnetisation on one side of
the transition (T < Tc) and its vanishing on the other
(T > Tc) established the phenomenon as a genuine phase
transition. Onsager repeated the claim in May 1949 at a
conference of the International Union of Physics in Flo-
rence after the talk by George Stanley Rushbrooke [52]
but he and Kaufman did not publish the derivation; the
first to do so was Chen-Ning Yang in 1952 [55]. Rod-
ney Baxter recently reviewed how the Kaufman-Onsager
calculation was developed and added a draft paper giv-
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ing their result [56]. That result is that the spontaneous
magnetisation behaves near the critical point as (Tc−T )β

with β = 1/8. This is different to the mean-field result
which is that β = 1/2. A deviation from mean field expo-
nents was already observed by Verschaffelt [47] in liquids
around 1900 and corroborated by further experimental
material in different systems. With Kaufman in 1949 On-
sager also derived the correlation function at the criti-
cal point, and showed that it decays as 1/r1/4 [54]. In
1965, Alexander Patashinski and Valery Pokrovsky gave
the correlation-function exponential decay away from the
critical point [57]. The two-dimensional model has still
not been solved in the presence of an external field, apart
from the c-theorem approach of Zamolodchikov [58] using
perturbed conformal field theories [59] where the model
turns out to be an example of integrable massive field
theory.

In [2](a), Niss discusses the early years of the Ising
model within the context of quantum- and statistical-
mechanical models of magnetism. From the late 1940’s
and in the 1950’s the model was not believed to provide a
good description of magnetic materials due to its lack of
physical realism [2](b). The restriction of the interatom-
ic forces to nearest-neighbouring sites and the further
restriction of spins of the Ising model to only two orien-
tations were considered to distance the model from the
reality wherein the electron spin can have any direction
in three-dimensional space [60]. It was thought that, at
best, the Ising model may physically represent anisotrop-
ic magnetic materials in which the two spin directions
were allowed or binary alloys with spins of each orien-
tation corresponding to one of the two types of atom in
the compound. It was also considered a model for lattice
gas, in which the presence or absence of a molecule at a
point in space was represented by one of the two spin ori-
entations. But as a model of a magnet, it was considered
deficient and its interest in this regard was instead as a
simplified model of phase transitions in general that has
the advantage of being mathematically tractable [2](b).

The group around Cyril Domb in King’s College Lon-
don did, however, appreciate the physical importance of
the Ising model [2](b). They worked on different types
of 2D lattices, using geometries other than squares, and
pioneered series-expansion approaches, a strategy also
employed by the Rushbrooke group at the University
of Newcastle. They gained the crucial insight that the
critical exponents describing the phase transition depend
strongly on the dimensionality of the system and less so
on the geometry of the lattices. This would later be ex-
plained by the notion of universality (see section V A).
The role of dimensionality in the Ising model was there-
fore quite different to that in mean-field theories, where
it is unimportant for the critical exponents [2](b).

Comparisons between series expansions and the ex-
act solution in two dimensions lent confidence that the
approximate approach may be applied to the three-
dimensional version as well as to other models. Indeed,
and as discussed in [2](c), the Onsager solution to the
two-dimensional Ising model frequently played (and con-
tinues to play) a role analogous to that traditionally

played by experiment in that hypotheses were tested
against it. This includes the scaling relations between the
various critical exponents describing continuous phase
transitions. These establish that the critical exponents
are not all independent. The development of the scaling
relations by figures such as John Essam, Michael Fisher
and Benjamin Widom (and the related inequalities de-
rived by Robert Griffiths, Brian Josephson, Rushbrooke
and others) were pivotal to the development of more
general theories of critical phenomena (for a review, see
e.g., [61]). They helped pave the way for Widom’s hy-
pothesis that the singular part of the free energy is a
homogeneous function of its arguments. The explanation
for Widom’s form was, in turn, given by Leo Kadanoff
who ascribed the singularity in the free energy to the oc-
currence of large-scale fluctuations in the system as the
critical point is approached. These fluctuations cause the
correlation length to diverge and the relation between
temperature, field and length scales, a concept captured
by Kadanoff’s block-spin formulation and ultimately by
Ken Wilson’s renormalisation group. The renormalisa-
tion group forms the foundation stone on which the en-
tire modern theory of critical phenomena is built and
which is of fundamental importance not just for statis-
tical physics but also for high-energy physics and any
physical system which can be viewed at different distance
scales. This also explained the crucial concept of univer-
sality, to use the term coined by Kadanoff in 1971. This
means that critical exponents are independent of many
details of the Hamiltonian, and are functions instead of
the system dimensionality, its internal symmetries and
the range of interaction between its constituent entities
(spins) (see Section V for experimental verifications).

The three-dimensional Ising model has proved to be
a far tougher problem than its lower-dimensional coun-
terparts and a solution remains elusive, even in the ab-
sence of an external field. It has a status in statistical
physics similar to that which Fermat’s last theorem oc-
cupied in mathematics until the proof of the latter by
Andrew Wiles in 1994; the problem is easily formulat-
ed but hard to solve. Already in 1945 Wannier hoped
that an analytic solution was imminent and both On-
sager and Wolfgang Pauli are believed to have attempt-
ed it in the 1950s [2](b). Other notable names worked on
a solution [62, 63] “and in the 1950s physicists gradually
concluded that a solution was not within reach” [2](b).

In 1986, Anders Rosengren reported an attempt
to generalise combinatorial considerations of the 2D
nearest-neighbour model to the three-dimensional sim-
ple cubic case. This led to the “Rosengren conjecture”
that the critical temperature for the 3D case is given by
tanh (J/kTc) = (

√
5 − 2) cos (π/8). This gives the val-

ue J/kTc ≈ 0.221 658 63. Although this appears close to
the value 0.221 654 6(10) coming from simulational stud-
ies [65], it is still over four standard deviations away.
In [66], Fisher showed that Rosengren’s form comes from
a “critical polynomial”. A root of such a critical polyno-
mial delivers the critical point in the 1D and 2D cases
and the hope was that one could find the corresponding
polynomial in the 3D case, whose vanishing specifies its
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critical point. Fisher showed that Rosengren’s polyno-
mial is a poor candidate; it does not mimic the desired
features of the d = 2 model, is not unique and the re-
sulting estimate for Tc is not convincing.

The question of an exact solution of the 3D model
has again come under the spotlight recently and claims
to have found the exact exponents were given in Refs.
[67, 68]. Rational values for the critical exponents, in-
cluding α = 0 for the specific heat have been given
with suggestions of the existence of a multiplicative log-
arithmic correction there [67, 68]. Such claims are con-
troversial because they are not in agreement with very
precise (and presumably accurate) approximations com-
ing from a variety of techniques including series expan-
sions, renormalization group, Monte Carlo simulations
and experiment [69]. Additionally, although the values
given in Refs. [67, 68] obey the standard scaling rela-
tions, as they should, a logarithmic term in the specific
heat would contradict the scaling relations for logarith-
mic corrections [72]. The recent claims of [68] and related
papers [70] were criticised in Refs. [71].

Exact studies of the Ising model in low dimensions con-
tinue apace. Boris Kastening recently presented a sim-
plified version of Kaufman’s solution and extended it to
various boundary conditions [73,74]. Alfred Hucht exact-
ly calculated the partition function of the square lattice
Ising model on the rectangle with open boundary con-
ditions for arbitrary system size and temperature [75].
For the three-dimensional model, Sheer El-Showk and
collaborators produced a series of papers hoped to lead
to a solution of the conformal field theory for describing
the three dimensional Ising model at the critical tem-
perature [76, 77]. Their bounds are consistent with pre-
vious estimates such as from renormalization group, ex-
periments and Monte Carlo simulations. As they say in
the final sentence of their first paper: “We have not yet
solved the 3D Ising model, but we have definitely cor-
nered it” [76]. In their second paper they ask: “Could it
be that the critical 3D Ising model is, after all, exactly
solvable?” If not, El-Showk et al. at least have a very
efficient method to solve it numerically [77].

Besides these exact results, a vast number of papers
appear annually which are related to the Ising model.
Indeed, through the renormalization group we now know
that the validity of the Ising model and its critical expo-
nents extends far beyond anything that could have been
envisaged by Lenz or Ising in the 1920s, by Landau in
the 1930s or Onsager in the 1940s. We refer to the second
edition of McCoy and Wu’s famous book for a discussion
of the development in the Ising model since the early
1970s [78].

V. EXPERIMENTAL ASPECTS OF THE ISING
MODEL

A. Universality

As discussed in the previous sections, a key theoreti-
cal concept of critical phenomena which occur at second
order phase transitions is that of universality [79,80]. Ac-
cording to this concept, among the properties which de-

scribe critical singularities in the neighborhood of a sec-
ond order phase transition, some exhibit a rather robust
character, which means that they do only depend on very
general — essential — properties of the system under in-
terest. Other — non-essential — characteristics are often
called details in this context. Among the essential char-
acteristics, one usually mentions space dimensionality,
symmetries, range of interactions (see Section IV). The
very nature of the interactions on the other hand, such as
whether they are of magnetic or of electric origin, would
they follow from classical or from quantum description
of matter, etc, is not essential. This robustness must al-
so be explained in deeper detail. Among the universal
properties or characteristics, the critical exponents which
describe the leading singularities of the thermodynamic
quantities are probably the most famous ones. Certain
combinations of the critical amplitudes, these numbers
which appear in prefactors of the leading singularities,
also are universal. All these are just pure numbers, the
set of which defines a universality class. According to the
universality argument, let us assume that measurements
are performed on some real material which is expected to
have the required symmetries to belong to a given uni-
versality class. Then, extremely strong predictions can
be made for its critical properties. For example if a sys-
tem is expected to fall in the 2D Ising model universal-
ity class, the critical exponent describing, let us say its
spontaneous magnetization, has to be 1/8. Not another
number close to 0.125, but exactly 0.125! And if it is not
the case, then, the experiment is wrong! This is the in-
credibly strong predicting power of the theory of critical
phenomena. Of course, our statement that the experi-
ment would be wrong is exaggerated, and reality does
not always simply fits mathematical symmetries. Prov-
ing that a given material exhibits the correct symmetries
may be very challenging, but there are many experimen-
tal situations in which the expected universal properties
can be measured. Thanks to universality again, although
the real material is often only approximately a represen-
tative of a given universality class, deviations from the
correct symmetry may appear to be non-essential. We
will illustrate below the concept of universality with ex-
periments performed on real materials which belong to
the Ising model universality class, either in 2D or in 3D.
There exist plenty of successful experiments and we will
essentially describe two of them which we consider par-
ticularly outstanding.

B. Ising model behaviour in rare-earth materials

The conditions to be fulfilled by real materials in or-
der to be quantitatively described by the Ising model
are compelling. Magnetic materials offer obvious candi-
dates which are known to exhibit a rich variety of phase
transitions, with transition temperatures ranging from
very low to very high, as a result of the wide range of
variations of the magnetic interactions. We first have to
understand the behaviour of single magnetic ions in a
crystalline environment and two preliminary conditions
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are required. First the ground state has to be a doublet
separated energetically from the excited states by a gap
which is much larger than kBTc, where Tc is the tran-
sition temperature. Second, in order to keep the ground
state degeneracy, the operators involved in the spin-spin
interactions should all have vanishing matrix elements
between the two Ising states. For example, the exchange
interaction −Jsi ·sj transforms like a vector and as such,
obeys the selection rules ∆m = 0,±1 where m is the an-
gular momentum projection. Both conditions are often
satisfied in compounds based on rare-earth and one of
the first materials which has been studied in this context
is the dysprosium ethyl sulfate, Dy(C2H5SO4)3.9H2O
[81–83] with a doublet ground state in the angular mo-
mentum state |15/2,±9/2〉 with weak superposition of
|15/2,∓3/2〉 and |15/2,∓15/2〉. Local anisotropy axes
are furthermore parallel to the hexagonal crystal ax-
is. The system is thus well described by a microscopic
Hamiltonian

H =
1

2

∑

i,j

Kijσziσzj

where the sum extends over the pairs of spins i and j, pre-
sumably decaying with the distance among them. There
is no quantitative theory which would allow for a direct
calculation of the interaction strength Kij , and these pa-
rameters have to be obtained by the comparison between
experimental results and theoretical predictions of ther-
modynamic quantities in regions of the parameters where
such theories are asymptotically exact, i.e. when T is ei-
ther far above Tc or far below Tc. This is for example
the case when the susceptibility is expanded in the mo-
ments of the spin-spin interaction. Earlier studies then
compared experimental results with approximate theo-
ries: molecular field models, cluster models, series expan-
sions, etc, which, having no adjustable parameters, were
quite conclusive except maybe in the very neighborhood
of the transition.

Long power series expansions started to become avail-
able in the 1960’s and allowed for quantitative agree-
ment in a wider range of parameters, leading to the ex-
perimental determination of the 3D Ising model critical
exponents. The difficulty with fits to critical point pre-
dictions is that the asymptotic range is generally very
narrow and limited by rounding effects which broaden
the singularities. These effects are described by correc-
tions to scaling, e.g.

C(T, H = 0) = A±|t|−α±(1 + D±|t|ω±) + B±

with t = (T −Tc)/Tc, which require adjusting the experi-
mental data to non-linear fitting with in our example not
less than 11 parameters (if we do not impose theoretical
requirements like α+ = α−, etc)!

Similar studies then extended over half a century (ex-
tensive early references can be found in the reviews
[84–86]). Many experimental problems were challenging.
For example the presence of dipole-dipole interactions
lead to demagnetizing factors which result in a sample-
shape dependence, or to long-range interactions which

modify the upper critical dimension above which mean
field exponents become exact (the system under consid-
eration is no longer in the Ising universality class). Oth-
er phenomena which can be encountered experimental-
ly are field induced phase transitions (experimentally a
non-zero magnetic field is applied to promote one spin
orientation and single domain samples), frustration (due
to competing local anisotropy axes), disorder (associated
with the presence of vacancies or defects). In spite of all
these shortcomings, which lead to rather large differences
between the model Hamiltonian and the experimental
situation, the agreement between theory and experiment
is relatively unaffected, and this is a result of the ex-
treme robustness of universal quantities in the theory of
critical phenomena in general, and of the Ising model in
particular, which is spectacularly exemplified below.

C. A beautiful test of 2D Ising model universality

Two-dimensional phase transitions may occur in very
different physical systems. The study of two-dimensional
matter was initiated in the 19th century with molecu-
lar films of non-soluble molecules on liquid surfaces, and
later with physisorbed atoms on solid surfaces. During
decades however, investigators were not able to observe
experimentally the characteristics of two-dimensional
transitions, mainly because of the heterogeneity of the
adsorbents with multiple exposed crystal surfaces, de-
fects, or chemisorbed contaminants. In the 1970s, lamel-
lar solids, like graphite appeared well suited to such stud-
ies and nowadays, 2D adsorbed matter is the subject
of numerous works [87]. Reconstruction at crystal sur-
faces also offers natural candidates to test experimental-
ly two-dimensional universality classes, e.g. the continu-
ous structural transition of Au(110) investigated through
LEED experiments, which appears to follow Onsager’s
solution of the two-dimensional Ising model [88].

But we will report here on the wonderful experiments
performed by C. H. Back, Ch. Würsch, A. Vateriaus,
U. Ramsperger, U. Maier and D. Pescia [89], where con-
firmation of a scaling behaviour belonging to the 2D Ising
model universality class was shown to be satisfied over
18 and 32 orders of magnitude in terms of the properly
scaled variables!

The experimental system consists in an atomic lay-
er of ferromagnetic iron deposited on a non-magnetic
substrate made of single-crystal W(110) surface, and
provides a typical two-dimensional system. The epitax-
ial growth guarantees crystalline order and avoids dis-
order (as much as possible). The fact that the system
obeys the Ising symmetry (i.e. typically ±1 magnetiza-
tion in normalized units) was confirmed by the square
shape of the hysteresis loop, measured by the magneto-
optic Kerr effect. It also confirms the absence of do-
mains in the sample. In the vicinity of the critical point
t = (T/Tc − 1) = 0, H = 0, the temperature dependence
of the spontaneous magnetization M(t, H = 0), the criti-
cal isotherm M(t = 0, H) and the zero-field susceptibilty
χ(t, H = 0) were measured, leading to the correspond-
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ing critical exponents through M(t, H = 0) ∼ (−t)β ,
M(t = 0, H) ∼ |H |1/δ and χ(t, H = 0) ∼ |t|−γ ,
β = 0.13 ± 0.02, δ = 14 ± 5 and γ = 1.74 ± 0.05. This
is a typical illustration of the possible experimental ac-
curacy which can be achieved, where 2D Ising expected
exponents are β = 1/8, δ = 15 and γ = 7/4. Even more
impressive is the determination of the susceptibility am-
plitudes Γ± (via expressions χ(t, H = 0) ∼ Γ±|t|−γ) and
their ratio Γ+/Γ− = 40 ± 10, where theory says that
Γ+/Γ− = 37.7.

Testing universality can be pushed further. The scaling
hypothesis [57, 90–93] states that thermodynamic func-
tions can be written in the vicinity of the critical point
as generalized homogenous functions, e.g.

M(t, H) = b−β/νm̃(b1/νt, bβδ/νH)

where b is an arbitrary scaling factor. Fixing b = 1/M ν/β

above yields m̃(t/M1/β , H/M δ) = 1, which then allows
to write the parametric equation of state in terms of
rescaled variables,

H/M δ = f(t/M1/β).

The experiment of Back et al., see Fig. 8, reported this
rescaled equation of state fitted to theoretical results [94]
over 18 orders of magnitude in the variable t/M 1/β and
almost 32 orders of magnitude in H/M δ!

Fig. 8. Universal plot from [89].

This might be considered as a real achievement and
an incredible success of the theoretical prediction, which
even raises the opposite question: how is it that all ex-
perimental imperfections, inhomogeneities which break
translational symmetry, non-localized local magnetic
moments (Fe is a broad-band metallic ferromagnet when
the Ising Hamiltonian is written in terms of localized
ones), non-perfect uniaxial local symmetry and possibly
other sources of discrepancy do not destroy the 2D Ising
model universality class. Although there cannot be a sim-
ple answer to such questions, some of these effects are

understood within the frame of universality. Disorder for
example can be shown not to change (up to logarithmic
corrections) the 2D Ising model universality class [95],
and the experimental evidences reported in [89] support
a scenario where all imperfections mentioned eventually
prove to be non-essential (we say irrelevant in the renor-
malization group language [96, 97]).

VI. SIMPLE MODEL OF COMPLEX SYSTEMS

But let your communication be, Yea, yea; Nay, nay:
for whatsoever is more than these cometh of evil.

(Matthew 5:37)

It is stated sometimes, that although the Ising mod-
el is not realistic, its success to a large extent is caused
by the fact that it allows analytic treatment (see e.g. [2]
and discussions therein). In this sense, it belongs to the
“narrow class of models which are balanced (precarious-
ly!) between realism and solubility” [99]. This is certain-
ly true, but our belief is that there is another – even
more important – reason for the tremendous success of
the Ising model. The simplicity of the model not only
enables its analytic treatment, it also singles out an es-
sential feature: binarity, i.e. representation of something
as a pair of binary oppositions (cf. Umklappmagnets in
section III). It is this feature that enables a much wider
set of applications of the model. Moreover, and as we will
see below, this feature has aided the exportation of very
notions of physics to other fields, giving rise to science
of complex systems [100]. Indeed, the model tailored by
the “usual procedure of separating the phenomena till
one deals with simple elementary facts” (as Ising himself
noted on a different occasion in his other paper [101])
singles out the notion of binarity and enables analytic
treatment. This is corroborated by the remark in [102]
that such an approach in the condensed matter theory
“consists of building a model of the system which is sim-
ple enough to handle, but rich enough to capture the rel-
evant properties. These simplifications give rise, among
others, to classical spin models. A paradigmatic exam-
ple is the Ising model [26], originally devised to study
magnetism.” In turn, this enables one to apply the mod-
el in almost all fields where binarity plays a core role.
Sometimes this role is not obvious from the very begin-
ning and this is the skill of researchers to find a subtle
connection between the cause and the consequence.

In the epigraph to this chapter we have chosen prob-
ably one of the oldest written references suggesting a
binary opposition [98]. Indeed, binary variables (plus or
minus one, up or down, filled or empty, active or passive)
are ubiquitously used in describing various processes oc-
curring in nature and in human society. Quantitative de-
scriptions of such processes, on the one hand, allow us to
apply methods developed in one field to another, and on
the other hand, this triggers a search for similarities be-
tween very different phenomena and ordering them into
different classes. This also fosters transfer of knowledge
from one branch to another. As we will see from several
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examples given below, applications of the Ising model for
quantitative descriptions and understandings of different
phenomena of physical, chemical, biological, or social na-
ture, as well as its application in humanities is based on
the fundamental fact that actually the very essence of
these phenomena is hidden in their statistical nature. In
the so-called agent-based modeling that lies in the core
of such descriptions, one considers a whole system as a
set of agents (individuals in social systems; spins in mag-
nets) that are capable of autonomous behaviour. Usually,
an agent has a well-defined internal state and interacts
with other agents. Allowing such agents to be in one of
two possible states leads to the Ising model description.

Currently, there are numerous applications of the Ising
model to explain chemical or biological phenomena. The
amount of the studies and their success lead to the sit-
uation when e.g. such typically biological phenomena as
the dynamics of pattern formation in neural networks
[103, 104] or protein folding [105] became conventional
and well-established fields of physics. The Ising model
is being successfully used to explain properties of liv-
ing organisms on all scales. Just to give some examples,
on a molecular and cellular scale, it is adapted to the
analysis of complex genetic models with several genetic
effects and with the interaction, or epistasis, between the
genes (see [106] and references therein) and serves as a
framework for phase transitions in multicellular environ-
ments [107]. On the other extreme, at the scale of ecosys-
tems, it explains how a critical transition can emerge di-
rectly from the dynamics of ecological populations [108].
In ecology, long-range synchronization of oscillations in
spatial populations may elevate extinction risk. There-
fore, such phenomena may signal an impending catas-
trophe.

The above examples of the Ising-model applications,
although outside physics still concern systems that tra-
ditionally belong to natural sciences. As a next step, let
us illustrate how it is applied in social sciences, where
an important topic is to understand the social dynamics
of a community, e.g. its transition from an initial dis-
ordered state to a configuration that displays at least
partial order [5,6,109–114], see Fig. 9 as an example. In-
spired by the idea to exploit binarity in social choice,

T.C. Schelling has suggested a model to describe racial
segregation in cities [115]. There, in particular, special
attention is paid to the analysis of the relation between
individual and collective states: “But evidently analysis
of ‘tipping’ phenomena wherever it occurs - in neighbor-
hoods, jobs, restaurants, universities or voting blocs–and
whether it involves blacks and whites, men and wom-
en, French-speaking and English-speaking, officers and
enlisted men, young and old, faculty and students, or
any other dichotomy, requires explicit attention to the
dynamic relationship between individual behaviour and
collective results” [115]. Although the phenomenon of in-
terest in the above example is rather the phase separation
and not an onset of a phase, an analogy with the Ising
model is obvious but it has not been recognized in the
original paper. Only later the similarities between phase
separation into domains in the Ising model at T = 0
and residential segregation in the Schelling model were
recognized and the equivalent of the temperature T was
introduced into the Schelling model [116].

When the authors of [117] identified the binarity of
the states of social agents to describe the phenomenon
of strikes, the analogy with the Ising model was apparent.
As Serge Galam recalls in his book: “we developed the
idea of using an Ising ferromagnetic system to describe
the collective state of an assembly of agents, each be-
ing in either one of two distinct individual states, that of
working or striking. This produces two collective ordered
states: a working state versus a striking state. The ferro-
magnetic coupling between agents was motivated by the
social fact that people have the tendency to reproduce
the leading choice of their neighbors, in particular in con-
flicting situations. We thus implemented the first appli-
cation of the Ising model to describe the global state of a
firm. . . ” [6]. Currently, the analysis of opinion dynamics
widely exploits agent-based modeling with agents being
in discrete binary states. The most widely used models
in this context are the voter model [118, 119], majority
rule models [120], the Sznajd model [121,122] and other
models based on a social impact theory [123] and its ex-
tensions [125, 126]. A detailed review of these and other
models may be found in [5].

Fig. 9. People, similarly to magnets, may experience symmetry breaking. At the beginning all of them look in different
directions (low order, high symmetry). Then somebody shouts from the other side and all start staring in the same direction
(high order, low symmetry). And this is in spite of the fact that only one of them has heard the call: curiosity serves as an
interaction between the people. (Illustration and caption is taken from the mass media article about phase transitions: Der
Standard, 02.04.2002, Austria).
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Concepts of the phase transition theory, and, more
specifically, the Ising model are being also actively used
in the field of economics and financial markets, explain-
ing, in particular, the statistical properties that are com-
mon to a wide range of financial assets [127,128]. In mod-
eling financial markets, agents are identified with spin
variables which can take specific values depending on
the agent’s decisions: the +1 spin as a buyer and −1 as a
seller [129–135]. Considering also the case when an agent
may stay inactive (S = 0) leads to further generaliza-
tion [136–140]. Such approaches allow to study inherent
features observed in the collective behaviour of financial
markets: herding, bubbles or crashes, and to reproduce
main statistical observations of the real-world markets
such as fat-tailed distribution of returns or volatility clus-
tering.

In Social Sciences, we can also mention elegant ap-
plications of the Ising model to Natural Language Pro-
cessing, via the ability of magnetic models of statistical
physics to extract the essential information contained in
texts. Documents are represented as sets of interacting
magnetic units (words), and a textual energy is defined
as an indicator of information relevance which allows au-
tomatic abstract production, information retrieval, docu-
ment classification and thematic segmentation. The com-
pression of a sentence appears as the ground state of the
chain of terms and variants are produced by thermal fluc-
tuations [142].

In almost every example given above the Ising mod-
el was used to shed light on the behaviour of systems
composed of many interacting agents, which display col-
lective behaviour that does not follow trivially from the
behaviours of the individual parts. Such systems are
currently known as complex systems [141]. Their inher-
ent features incorporate self-organization, emergence of
new functionalities, extreme sensitiveness to small vari-
ations in the initial conditions, power laws governing
their statistics (fat-tail behaviour) [143–145]. Their sys-
tematic study gave rise to complex system science: the
field of knowledge that is actively developed and shaped
nowadays.18 Usually, quantitative description of such
systems is achieved by considering agents located on the
nodes of a graph called complex network [147–149]. Link-
ing between the graph nodes corresponds to the interac-
tion between the agents under analysis. For social sys-
tems it corresponds to social interactions, for ecologi-
cal systems it may reflect the predator–pray relation be-
tween species, for transportation systems it correspond
to transportation links, etc. In this sense, treating the
Ising model on complex networks has various applica-
tions in complex system science. Of special importance
are the so-called small-world [150] and scale-free [151]
networks. The former are characterized by small charac-
teristic sizes (usually, their typical size ` logarithmically

grows with number of nodes N : ` ∼ ln N). The latter are
characterized by the power-law decay of the node degree
distribution P (k) ∼ k−λ. Many important natural and
man-made networks are small world and scale-free. Ex-
amples are given by the internet, world-wide web, some
transportation, biological, social networks [147–149]. The
properties of the Ising model on such types of networks
essentially differ from its properties on d-dimensional lat-
tice. The scale-free networks with slowly decaying node-
degree distribution (fat-tailed distributions with small
λ) are highly inhomogeneous. It appears that the decay
exponent λ plays a role in some sense similar to that
of dimensionality d: the Ising model on a scale-free net-
work with λ ≤ 3 is ordered for any finite temperature T
whereas it has a finite T second order phase transition
for λ > 3. Moreover, the basic concept of universality
is revised: the critical exponents attain λ-dependency in
the region 3 < λ < 5 [152–154] and the logarithmic cor-
rections to scaling appear at λ = 5 [72, 155].

These and many more unusual features of the Ising
model on complex networks are currently well estab-
lished by different approaches (see [156] for a review) and
recently revisited by the Lee–Yang–Fisher zeros analy-
sis [157,158].

There are at least two lessons one can learn from the
short account given in this chapter. Indeed, exploiting
the Ising archetype in the agent-based modeling of vari-
ous complex systems of chemical, biological, social, eco-
nomical origin gives a possibility to quantify them and to
understand some of the mechanisms of their behaviour.
In this sense the model enables one to single out univer-
sal common features of different systems. However, more
than this: it would be too trivial to reduce the behaviour
of these systems just to a single archetype no matter how
powerful and general the archetype is. Along with uni-
versality in the behaviour of many-agent interacting sys-
tems, they are characterized by system-specific diversity.
Subtle changes in their parameters may lead to crucial
changes in their global behaviour: this is another inher-
ent feature of complex systems. In their description, the
Ising model plays a role of the main ‘course’, however
these are the spices which make the whole dish tasty.

We have already mentioned Ising’s paper [101] at the
beginning of this chapter. There, discussing Goethe’s ap-
proach to analysing nature he says the following: “. . . his
approach to science was that of an artist who thought he
could conceive the secrets of nature in all their complex-
ity. . . He was convinced that translation into language
of mathematics was distortion of reality. . . ”. Contrary
to Goethe’s belief, nowadays Ising-like models complet-
ed by ideas from complex system science come into play
as simple models on the way to “conceive the secrets of
nature in all their complexity”.

18It is worth mentioning here words of Wolfgang Pauli from his letter to Herman Levin Goldschmidt (Feb. 19, 1949) [146]:
“It seems to me as a philosophical layman that the task of philosophy consists in generalizing the emerging insights of current
physics — that is, all its essential elements — in such a way that it can be applied to fields more general than physics. Such
an achievement would, in turn, enrich the individual disciplines and prepare future developments.”
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de la deuxiéme Reunion Annuelle tenue en commun
avec la commission de Thermodynamique de l’Union
Internationale de Physique (Paris, Société de Chimie
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ДОЛЯ ЕРНСТА IЗIНҐА I ДОЛЯ ЙОГО МОДЕЛI

Т. Iзiнґ1, Р. Фольк2, Р. Кенна3,1, Б. Берш4,1, Ю. Головач5,1

1
L

4 спiвпраця i Докторський коледж статистичної фiзики складних систем
Ляйпциґ–Лотаринґiя–Львiв–Ковентрi

2Iнститут теоретичної фiзики, Унiверситет Йогана Кеплера, Лiнц, А-4040, Австрiя
3Дослiдницький центр прикладної математики, Унiверситет Ковентрi, CV1 5FB, Англiя

4Група статистичної фiзики, лабораторiя теоретичної фiзики та хiмiї,
Унiверситет Лотаринґiї, F-54506 Нансi, Францiя

5Iнститут фiзики конденсованих систем НАН України, 79011, Львiв, Україна

У цiй статтi з нагоди 20-рiччя “Iзiнґiвських читань” у Львовi (Україна) ми подаємо власнi роздуми про

модель феромагнетизму, яку в 1920 роцi запропонував Вiльгельм Ленц, а в 1924 роцi розв’язав в одно-

вимiрному випадку його аспiрант Ернст Iзiнґ. Ця робота Ленца й Iзiнґа ознаменувала початок наукового

напрямку, який за останнi майже 100 рокiв досягнув неабиякого успiху в описi колективної поведiнки ши-

рокого кола об’єктiв фiзичної й нефiзичної природи. Широта застосування моделi Iзiнґа вiдображається

в рiзноманiттi лекцiй, представлених у межах “Iзiнґiвських читань” за останнi два десятилiття, але вима-

гає, щоб ми обмежилися лише вузькою сферою тем. Стаття розпочинається зi спогадiв Томаса Iзiнґа (сина

Ернста). Вiдтак ми обговорюємо iсторiю моделi, деякi точнi результати, експериментальнi реалiзацiї та її

застосування в iнших галузях.
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