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Using a modified model of NH3CH2COOH·H2PO3 ferroelectric by taking into account the piezo-
electric coupling with strains εi within the Glauber method in a two-particle cluster approximation,
the system of kinetic equations for mean values of pseudospins has been obtained. On the basis of
the solutions of these equations we obtained the expressions for the components of the dynamic
dielectric permittivity tensor of GPI and the relaxation times of the model. The influence of uniaxial
pressures on these characteristics at different temperatures and frequencies have been studied.
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I. INTRODUCTION

An attempt to shed light onto the
NH3CH2COOH·H2PO3 (GPI) phase transition mech-
anism is the main motivation for the studies that we
proposed last year. Our aim is to develop a pseudospin
model of a GPI crystal, which can describe the ex-
perimentally observed temperature, frequency, field and
pressure dependences of the thermodynamic and dynam-
ic characteristics of such crystal. While constructing such
a model, we must take into consideration the structural
feature of hydrogen bonds in GPI and find out how the
phase transition in the crystal relates to proton order-
ing on the O–H. . .O hydrogen bonds, which connect the
phosphite groups HPO3 into chains along c-axis of the
crystal. All other structural changes in these materials
are considered by us through effective model parameters.

The autors of [1] we proposed the proton ordering
model of GPI which explains the temperature depen-
dence of the dielectric permittivity of GPI. In [2] this
model is modified by taking into account the piezoelectric
coupling of ordering structure elements with strains εi.
Within a two-particle cluster approximation, the polar-
ization vector, the components of the dielectric permit-
tivity tensor for mechanically free and clamped crystals,
their piezoelectric and thermal characteristics are cal-
culated. At the proper set of theory parameters, a good
quantitative description of the available experimental da-
ta for these characteristics was obtained. On the basis of
this model, we succeeded in producing a quantitatively
right description of electric field effects [3] and the ef-
fects of hydrostatic [4] and uniaxial [5] pressures on the
physical characteristics of GPI.

In [6], on the basis of model [2], using the Glauber ap-
proach we succeeded in describing the dynamic dielectric
permittivity tensor for a mechanically clamped GPI crys-
tal. In the present paper, the approach proposed in [6] is

used for the study of the influence of uniaxial pressures
on the dynamic dielectric permittivity of GPI.
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Fig. 1. The orientations of vectors dqf in the primitive cell
in the ferroelectric phase [2, 3].

II. THE MODEL OF A GPI CRYSTAL

In the paraelectric phase, a GPI crystal crystalizes
in a monoclinic P21/a space group. At the tempera-
ture 225 K, the crystal transits to a ferroelectric state
(space group P21) with the spontaneous polarization
along crystallographic b-axis (Fig. 1). The pseudospin
model proposed in [1] considers the system of protons
in GPI, localised on O-H. . .O bonds with a double-well
potential between phosphite groups HPO3, which form
chains along the crystalographic c-axis. Dipole moments
dqf = µf

σqf

2 are ascribed to the protons on the bonds.

Here q is the number of primitive cell, f = 1, . . . , 4;
σqf

2
are pseudospin variables that describe the changes con-
nected with the reorientation of the dipole moments.

The Hamiltonian of the model at applied electric fields
E1, E2, E3 along positive directions of the Cartesian ax-
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es X , Y and Z (X ⊥ (b, c), Y ‖ b, Z ‖ c) can be written
as follows:

Ĥ = NUseed + Ĥshort + Ĥlong + ĤE , (2.1)

where N is the total number of primitive cells. The first
term in (2.1) is the “seed” energy, which relates to the
heavy ion sublattice and does not depend explicitly on
the configuration of the proton subsystem. It includes
the elastic, piezolectric and dielectric parts, expressed in
terms of electric fields Ei and strains εi:

Useed = v

(
1

2

6∑

j,j′=1

cE0
jj′ (T )εjεj′ (2.2)

−

3∑

i=1

6∑

j=1

e0ijεjEi −

3∑

i,i′=1

1

2
χε0

ii′EiEi′

)
.

Parameters cE0
ij (T ), e0ij , χ

ε0
ij are so called “seed” elastic

constants, piezoelectric stresses and dielectric suscepti-
bilities, respectively; v is the volume of a primitive cell.

The second term in (2.1) is the Hamiltonian of short-
range interactions:

Ĥshort = 2w
∑

qq′

(σq1

2

σq2

2
+
σq3

2

σq4

2

)

×
(
δRqRq′

+ δRq+Rc,Rq′

)
. (2.3)

In (2.3) σqf is the z-component of the pseudospin op-
erator, that describes the state of the f -th bond (f =
1, 2, 3, 4) in the q-th cell. The first Kronecker delta cor-
responds to the interaction between the protons in the
chains near the tetrahedra HPO3 of type “I” (Fig. 1),
while the second near the tetrahedra HPO3 of type “II”,
Rc is the lattice vector along the crystallographic c-axis.
Parameter w, which describes the short-range interac-
tions within the chains, is expanded linearly into series
over strains εi:

w = w0 +

6∑

i=1

δiεi. (2.4)

The third term in (2.1) describes the long-range dipole-
dipole interactions and indirect (through the lattice vi-
brations) interactions between protons, which are taken
into account in the mean field approximation:

Ĥlong =
1

2

∑

qq′

ff′

Jff ′(qq′)
〈σqf 〉

2

〈σq′f ′〉

2

−
∑

qq′

ff′

Jff ′(qq′)
〈σq′f ′〉

2

σqf

2
. (2.5)

The fourier transforms of the interaction constants
Jff ′ =

∑
q′

Jff ′(qq′) at k = 0 are linearly expanded over

the strains εi:

Jff ′ = J0
ff ′ +

∂Jff ′

∂εi

εi = J0
ff ′ +

6∑

i=1

ψff ′iεi. (2.6)

As a result, (2.5) can be written as:

Ĥlong = NH0 −
∑

q

4∑

f=1

Hf

σqf

2
, (2.7)

where

H0 =
1

8
J11(η

2
1 + η2

3) +
1

8
J22(η

2
2 + η2

4) +
1

4
J13η1η3

+
1

4
J24η2η4 +

1

4
J12(η1η2 + η3η4) (2.8)

+
1

4
J14(η1η4 + η2η3), ηf = 〈σqf 〉.

In (2.7) the notations are used:

H1 =
1

2
J11η1 +

1

2
J12η2 +

1

2
J13η3 +

1

2
J14η4,

H2 =
1

2
J22η2 +

1

2
J12η1 +

1

2
J24η4 +

1

2
J14η3,

H3 =
1

2
J11η3 +

1

2
J12η4 +

1

2
J13η1 +

1

2
J14η2, (2.9)

H4 =
1

2
J22η4 +

1

2
J12η3 +

1

2
J24η2 +

1

2
J14η1.

The fourth term in (2.1) describes the interactions of
pseudospins with an external electric field:

ĤE = −
∑

qf

µf
~E
σqf

2
. (2.10)

Here µ1 = (µx
13, µ

y
13, µ

z
13), µ3 = (−µx

13, µ
y
13,−µ

z
13), µ2 =

(−µx
24,−µ

y
24, µ

z
24), µ4 = (µx

24,−µ
y
24,−µ

z
24) are the effec-

tive dipole moments per one pseudospin.
The two-particle cluster approximation for short-range

interactions and the mean field approximation for long-
range interactions are used for the calculation of the ther-
modynamic characteristics of GPI. In this approximation
thermodynamic potential is given by:

G = NUseed +NH0 −Nv

6∑

i=1

σiεi

− kBT
∑

q

{
2 ln Sp e−βĤ(2)

q −

4∑

f=1

ln Sp e−βĤ
(1)
qf

}
, (2.11)

Here β = 1/kBT , kB is the Boltzmann constant, Ĥ
(2)
q ,

Ĥ
(1)
qf are two-particle and one-particle Hamiltonians:

Ĥ(2)
q = −2w

(σq1

2

σq2

2
+
σq3

2

σq4

2

)
−

4∑

f=1

yf

β

σqf

2
, (2.12)

Ĥ
(1)
qf = −

ȳf

β

σqf

2
, (2.13)

where such notations are used:

yf = β(∆f + Hf + µfE), (2.14)

ȳf = β∆f + yf . (2.15)

2702-2



INFLUENCE OF UNIAXIAL PRESSURES ON DYNAMIC PROPERTIES OF. . .

The symbols ∆f are the effective cluster fields created
by the neighboring bonds from the outside of the clus-
ter. By minimizing the thermodynamic potential (2.11)
with respect to the cluster fields ∆f and the strains εi,
and expressing ∆f through the equilibrium order param-

eters η̃1 = η̃3 = η̃13, η̃2 = η̃4 = η̃24 we have obtained the
system of equations for the equilibrium order parameters
and strains in the case of zero mechanical stresses and
fields:

η̃13 =
1

D̃
[sinh(ỹ13 + η̃24) + a2 sinh(ỹ13 − η̃24) + 2a sinh ỹ13], (2.16)

η̃24 =
1

D̃
[sinh(ỹ13 + η̃24) − a2 sinh(ỹ13 − η̃24) + 2a sinh η̃24],

−pl =

6∑

i=1

cE0
li εi −

2δl
v

+
2δl

vD̃
Mε −

ψ+
1l

4v
η̃2
13 −

ψ+
2l

2v
η̃13η̃24 −

ψ+
3l

4v
η̃2
24, (l = 1, . . . , 6), p4 = p5 = p6 = 0,

where such notations are used:

ỹ13 =
1

2
ln

1 + η̃13
1 − η̃13

+ βν+
1 η̃13 + βν+

2 η̃24,

ỹ24 = βν+
2 η̃13 +

1

2
ln

1 + η̃24
1 − η̃24

+ βν+
3 ˜η24,

ν±l = ν0±
l +

6∑

i=1

ψ±

li εi,

ν0±
1 =

1

4
(J0

11 ± J0
13); ψ±

1i =
1

4
(ψ11i ± ψ13i),

ν0±
2 =

1

4
(J0

12 ± J0
14); ψ±

2i =
1

4
(ψ12i ± ψ14i),

ν0±
3 =

1

4
(J0

22 ± J0
24); ψ±

3i =
1

4
(ψ22i ± ψ24i).

D̃ = cosh(ỹ13 + ỹ24) + a2 cosh(ỹ13 − ỹ24)

+ 2a cosh ỹ13 + 2a cosh ỹ24 + a2 + 1,

Mε = 2a2 cosh(ỹ13 − ỹ24)

+ 2a cosh ỹ13 + 2a cosh ỹ24 + 2a2,

a = e
−

1
kB T

 

w0+
3
P

i=1
δiεi+

6
P

j=4
δjεj

!

.

III. THE RELAXATIONAL DYNAMICS OF A
MECHANICALLY CLAMPED GPI CRYSTAL

For the calculations of dynamic properties we use the
approach which is based on the ideas of thestochastic
Glauber model [7]. Using the methods developed in [6,8],
we obtain the following system of the Glauber equations
for time dependent correlation functions of the pseu-
dospins:

−α
d

dt
〈
∏

f

σqf 〉

=
∑

f ′

〈 ∏

f

σqf

[
1 − σqf ′ tanh

1

2
βεqf ′(t)

] 〉
, (3.1)

where parameter α determines the time scale of dynam-
ic processes, εqf ′(t) is the local field acting on the f ′-th
pseudospin in q-th cell. We use a two-particle cluster ap-
proximation to obtain a closed system of equations. In
this approximation, local fields εqf (t) are coefficients at
σqf/2 in a two-particle and a one-particle Hamiltonians
(2.12) and (2.13). These fields are presented in a two-
particle approximation

εq1 =wσq2+
y1
β
, εq2 =wσq1+

y2
β

(3.2)

εq3 =wσq4+
y3
β
, εq4 =wσq3+

y4
β
,

and in a one-particle approximation

εqf =
ȳf

β
.

As a result, from (3.1) we obtain the system of equa-
tions for the mean values of pseudospins 〈σqf 〉 = ηf in a
two-particle approximation

α
d

dt
η1 =−η1+P1η2+L1, α

d

dt
η3 =−η3+P3η4+L3, (3.3)

α
d

dt
η2 =P2η1−η2+L2, α

d

dt
η4 =P4η3−η4+L4

and in a one-particle approximation as follows

α
d

dt
η1 = −η1 + tanh

ȳ1
2
, α

d

dt
η3 = −η3 + tanh

ȳ3
2

(3.4)

α
d

dt
η2 = −η2 + tanh

ȳ2
2
, α

d

dt
η4 = −η4 + tanh

ȳ4
2
,

where the following notations are used:
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Pf =
1

2

[
tanh

(
βw

2
+
yf

2

)
−th

(
−
βw

2
+
yf

2

)]
, (3.5)

Lf =
1

2

[
tanh

(
βw

2
+
yf

2

)
+th

(
−
βw

2
+
yf

2

)]
.

Let us confine ourselves to the case of small deviations
from the equilibrium state for solving equations (3.3) and
(3.4). For this case, we write ηf and effective fields yf ,
ȳf in the form of a sum of equilibrium values and their
deviations from the equilibrium values (a mechanically
clamped crystal):

η1,3 = η̃13 + η1,3t, η2,4 = η̃24 + η2,4t, (3.6)

y1 = ỹ13 + y1t = β∆13 + 2βν1η̃13 + 2βν2η̃24

+∆1t + 2ν11η1t + 2ν12η2t + 2ν13η3t + 2ν14η4t

+µx
13E1t + µy

13E2t + µz
13E3t, Eit = Eie

iωt,

y3 = ỹ13 + y3t = β∆13 + 2βν1η̃13 + 2βν2η̃24

+∆3t + 2ν11η3t + 2ν12η4t + 2ν13η1t + 2ν14η2t

−µx
13E1t + µy

13E2t − µz
13E3t,

y2 = ỹ24 + y2t = β∆24 + 2βν2η̃13 + 2βν3η̃24

+∆2t + 2ν22η2t + 2ν12η1t + 2ν24η4t + 2ν14η3t

−µx
24E1t − µy

24E2t + µz
24E3t,

y4 = ỹ24 + y4t = β∆24 + 2βν2η̃13 + 2βν3η̃24

+∆4t + 2ν22η4t + 2ν12η3t + 2ν24η2t + 2ν14η1t

+µx
24E1t − µy

24E2t − µz
24E3t,

ȳf = β∆f + ỹf + β∆ft + yft.

Here ∆13 = ∆1 = ∆3, ∆24 = ∆2 = ∆4 are equilibrium
effective cluster fields, and ∆ft are their deviations from
equilibrium values. Parameters ν±i describe long-range
interactions.

We decompose the coefficients Pf and Lf in a series
of

yft

2 limited by linear terms:

P1,3 = P
(0)
13 +

y1,3t

2
P

(1)
13 , L1,3 = L

(0)
13 +

y1,3t

2
L

(1)
13 , (3.7)

P2,4 = P
(0)
24 +

y2,4t

2
P

(1)
24 , L2,4 = L

(0)
24 +

y2,4t

2
L

(1)
24 ,

where the following notations are used:

P
(0)
13 =

1 − a2

Z13
, P

(1)
13 =

−4a(1−a2) sinh ỹ13
Z2

13

,

L
(0)
13 =

2a sinh ỹ13
Z13

, L
(1)
13 =

4a[2a+ (1 + a2) cosh ỹ13]

Z2
13

,

P
(0)
24 =

1 − a2

Z24
, P

(1)
24 =

−4a(1−a2) sinh ỹ24
Z2

24

,

L
(0)
24 =

2a sinh ỹ24
Z24

, L
(1)
24 =

4a[2a+ (1 + a2) cosh ỹ24]

Z2
24

,

Z13 = 1 + a2 + 2a cosh ỹ13; Z24 = 1 + a2 +2a cosh ỹ24,

Substituting (3.6), (3.7) into equations (3.3), (3.4) and
excluding parameters ∆ft, we obtained the following dif-
ferential equations for the sums and differences of proton
unary distribution functions:

d

dt

(
(η(1−3)t

(η(2−4)t

)
=

(
m−

11 −m−

12

−m−

21 m
−

22

)(
(η(1−3)t

(η(2−4)t

)

−βE1t

(
m1µ

x
13

−m2µ
x
24

)
. (3.8)

d

dt

(
(η(1+3)t

(η(2+4)t

)
=

(
m+

11 −m+
12

−m+
21 m

+
22

) (
(η(1+3)t

(η(2+4)t

)

−βE2t

(
m1µ

y
13

−m2µ
y
24

)
. (3.9)

d

dt

(
(η(1−3)t

(η(2−4)t

)
=

(
m−

11 −m−

12

−m−

21 m
−

22

)(
(η(1−3)t

(η(2−4)t

)

−βE3t

(
m1µ

z
13

m2µ
z
24

)
. (3.10)

where

m±

11 =
1

α

(
1− βν±1 r13K13

)
,

m±

12 =
1

α
[(1 +K13)P

(0)
13 + βν±2 r13K13],

m±

21 =
1

α
[(1 +K24)P

(0)
24 + βν±2 r24K24],

m±

22 =
1

α

(
1− βν±3 r24K24

)
,

m1 =
1

α
K13r13, m2 =

1

α
K24r24,

K13 =
P

(1)
13 η̃13 + L

(1)
13

2r13−(P
(1)
13 η̃13 + L

(1)
13 )

, r13 =1−
(
η̃13

)2
,

K24 =
P

(1)
24 η̃24+L

(1)
24

2r24−(P
(1)
24 η̃24+L

(1)
24 )

, r24 =1−
(
η̃24

)2
.

Solving equations (3.8)–(3.10), we obtained the time-
dependent mean values of the pseudospins of GPI. The
components of the dynamic susceptibility of a GPI
clamped crystal can be written as:

χ11(ω) = χ0
11 (3.11)

+ lim
E1t→0

1

υ

[
µx

13

d(η1t − η3t)1
dE1t

− µx
24

d(η2t − η4t)1
dE1t

]
,

χ22(ω) = χ0
22 (3.12)

+ lim
E2t→0

1

υ

(
µy

13

d(η1t + η3t)2
dE2t

− µy
24

d(η2t + η4t)2
dE2t

)
,

χ33(ω) = χ0
33 (3.13)

+ lim
E3t→0

1

υ

(
µz

13

d(η1t − η3t)3
dE3t

+ µz
24

d(η2t − η4t)3
dE3t

)
,

The obtained susceptibilities consist of the “seed” part
and two relaxational modes:

2702-4
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χii(ω) = χ0
ii +

2∑

l=1

χi
l

1 + iωτ i
l

, i = 1, 2, 3 → (x, y, z) (3.14)

where

χi
l =

β

2v

τ i
1τ

i
2

τ i
2 − τ i

1

{(−1)l−1[(µi
13)

2m1 + (µi
24)

2m2]

+ (−1)lτ i
l [(µ

i
13)

2m1m
γ
22+(µi

24)
2m2m

γ
11

− µi
13µ

i
24(m1m

γ
21+m2m

γ
12)]}, (3.15)

where τ i
1,2 are the relaxation times of polarization, which

have the following form:

(τ i
1,2)

−1 =
1

2
{(mγ

11 +mγ
22) ± (3.16)

±
√

(mγ
11 +mγ

22)
2 − 4(mγ

11m
γ
22 −mγ

12m
γ
21)}.

In (3.15), (3.16) γ=“+” for i = y and γ=“–” for i = x, z.
The components of the dynamic dielectric permittivity

of the proton subsystem of GPI are as follows:

εii(ω) = 1 + 4πχii(ω). (3.17)

IV. COMPARISON OF THE NUMERICAL
CALCULATIONS WITH THE EXPERIMENTAL

DATA. DISCUSSION OF THE OBTAINED
RESULTS

To calculate the temperature, frequency and pres-
sure dependences of the dynamic dielectric characteris-
tics of GPI, we need to set certain values of the following
the parameters: parameters of the short-range interac-
tions w0; the parameters of the long-range interactions
ν0±

f (f =1,2,3); deformational potentials δi, ψ
±

fi (f =1,2,3;

i=1,...,6); effective dipole moments µx
13; µ

x
24; µ

y
13; µ

y
24;

µz
13; µ

z
24; “seed” dielectric susceptibilities χε0

ij , coefficients

of piezoelectric stress e0ij and elastic constants cE0
ij .

The values of the given theory parameters are deter-
mined by studying of the static properties of GPI [2]:
w0(x)/kB = 820 K, ν̃0+

1 = ν̃0+
2 = ν̃0+

3 = 2.643 K,
ν̃0−
1 = ν̃0−

2 = ν̃0−
3 = 0.2 K, where ν̃0±

f = ν0±
f /kB,

δ̃1 = 500 K, δ̃2 = 600 K, δ̃3 = 500 K, δ̃4 = 150 K,
δ̃5 = 100 K, δ̃6 = 150 K; δ̃i=δi/kB;ψ̃+

f1 = 87.9 K, ψ̃+
f2 =

237.0 K, ψ̃+
f3 = 103.8 K, ψ̃+

f4 = 149.1 K, ψ̃+
f5 = 21.3 K,

ψ̃+
f6 = 143.8 K, ψ̃−

fi = 0 K, where ψ̃±

fi =ψ±

fi/kB.

The effective dipole moments in the para-
electric phase are equal to µx

13=0.4·10−18 esu·cm;
µy

13=4.02·10−18 esu·cm; µz
13=4.3·10−18 esu·cm;

µx
24=2.3·10−18 esu·cm; µy

24=3.0·10−18 esu·cm;
µz

24=2.2·10−18 esu·cm. In the ferroelectric phase, the
y-component of the first dipole moment is µy

13ferro(x) =
3.82 · 10−18 esu·cm.

A majority of experimental measurements of thermo-
dynamic characteristics were carried out for the samples
with Tc = 225 K. Therefore, we chose the set of param-
eters from the condition of agreement of the calculated
thermodynamic characteristics and the experimental da-
ta with Tc = 225 K. If we proportionally change the pa-
rameters w0, ν0±

f , δi, ψ
±

fi, µ
x,y,z
13,24, than the temperature

dependences of the calculated thermodynamic character-
istics practically do not change, but only Tc shifts propor-
tionally to the change of these parameters. In the present
paper, we use experimental data [10], where the transi-
tion temperature is Tc = 223.6 K, and the parameters
w0, ν0±

f , δi, ψ
±

fi, µ
x,y,z
13,24 should be multiply by coefficient

k = 223.6/225 ≈ 0.994.

The volume of the primitive cell of GPI is equal to υ
= 0.601·10−21 cm3.

Parameter α is determined from the condition of agree-
ment of the theoretically calculated and experimentally
obtained frequency dependences of ε22(ω). We consider
that parameter α slightly changes with temperature:

α = [1.6− 0.011(∆T )] · 10−14 s, ∆T = T − Tc.

The “seed” parameters e0ij = 0.0 esu · cm−2;

χε0
11 = 0.1, χε0

22= 0.403, χε0
33 = 0.5, χε0

12 = χε0
13 = χε0

23 = 0.0;

c0E
11 =26.91 ·1010 dyn ·cm−2, cE0

12 =14.5 ·1010 dyn ·cm−2, cE0
13 =11.64 ·1010 dyn ·cm−2, cE0

15 = 3.91 ·1010 dyn ·cm−2,

cE0
22 = (64.99−0.04(T − Tc)) · 1010 dyn · cm−2, cE0

23 = 20.38 · 1010 dyn · cm−2, cE0
25 = 5.64 · 1010 dyn · cm−2,

cE0
33 = 24.41 · 1010 dyn · cm−2, cE0

35 = −2.84 · 1010 dyn · cm−2, cE0
55 = 8.54 · 1010 dyn · cm−2,

cE0
44 = 15.31 · 1010 dyn · cm−2, cE0

46 = −1.1 · 1010 dyn · cm−2, cE0
66 = 11.88 · 1010 dyn · cm−2.

Other components cE0
ij ≡ 0.
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Fig. 2. (Color online). The temperature dependence of inverse relaxation time (τ y
2
)−1 at different directions of uniaxial

pressure pi (i=1,2,3), and different values of pressure (109 dyn/cm2): 0.0 — a, � [10]; 0.8 — b.
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Fig. 3. (Color online). Frequency dependences of real ε′22 and imaginary ε′′22 parts of the dielectric permittivity of GPI at
different ∆T (K): 1.1 — 1; 2.0 — 2; 5.0 — 3; 10.0 — 4, at different directions of uniaxial pressure pi (i = 1, 2, 3) and at different
values of pressure (109 dyn · cm−2): 0.0 — a, � [10] and 0.8 — b.
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Fig. 4. (Color online). The temperature dependences of real ε′22 and imaginary ε′′22 parts of the dielectric permittivity of
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Let us now explain the obtained results. From expres-
sion (3.14) we can see that the dynamic dielectric char-
acteristics depend on the behaviour of static dielectric
characteristics χi

1, χ
i
2 and corresponding relaxation times

τ i
1, τ

i
2 in the system. Numerical analysis shows that only

one contribution to the permittivities is determinative
(χi

2 � χi
1).

First, let us consider longitudinal dynamic dielectric
characteristics. It was determined in [5] that uniaxial
pressures decrease the phase transition temperature Tc

(which agrees with the experimental data [9]) and slight-
ly increase the value of the static permittivity of our
model at constant difference of temperature ∆T .

The influence of uniaxial pressures on the relaxation
time is illustrated in Fig. 2 on the temperature depen-
dences of (τy

2 )−1 at different values of pressures pi.
Th vealue of (τy

1 )−1 decreases when approaching the
phase transition temperature and tends to zero at tem-
perature T = Tc. As we can see from Fig. 2, uniaxial
pressures pi decrease the phase transition temperature Tc

and decrease the value of (τy
1 )−1 at constant ∆T (curves

b1, b2, b3 correspond to pressures p1, p2, p3, respective-
ly) in comparison with (τy

1 )−1 without pressure (curve
a). We must note that in this figure and in all further
figures the black color of the curves correspons to zero

pressure, red — to pressure p1, blue — to p2, green — to
p3. Relaxation time τy

2 is connected with some frequency
typical of this crystal relaxation (soft relaxation mode)
νy

s = (2πτy
2 )−1, which conventionally separates the re-

gions of low-frequecy and high-frequency dynamics.

The influence of uniaxial pressures on dynamic per-
mittivity can be seen best of all in the frequency depen-
dences of real ε′22 and imaginary ε′′22 parts of dielectric
permittivity at different values of the temperature differ-
ence ∆T and at different values of the uniaxial pressures
pi (Fig. 3).

The first digit on the designation of the curves is the
number of ∆T , the letters “a”, “b”, “c”... show the value of
pressure, the last digit numbers the direction of applied
pressure (p1, p2, p3). The values of ε′22(ν) and ε′′22(ν)
under pressures (curves 1b1, 1b2, 1b3, 2b1, 2b2, 2b3)
are higher than at zero pressure (curves 1a, 2a), owing
to the increase in static permittivity at pressure. When
∆T decreases the region of dispersion shifts to lower fre-
quencies owing to the increase in relaxation time when
approaching Tc. Moreover, the curves ε′22(ν) and ε′′22(ν)
under pressures (curves 1b1, 1b2, 1b3, 2b1, 2b2, 2b3)
make an additional shift to lower frequencies, due to an
increase in relaxation time under pressures.
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Fig. 5. (Color online). The temperature dependences of the differences of permittivity ε′

22(pi)−ε′22(0) at different frequencies
ν (GHz): 0.1 — 1; 0.4 — 2; 2.0 — 3, at different directions of uniaxial pressure pi (i = 1, 2, 3) and at different values of pressure
(109 dyn · cm−2): 0.4 — a; 0.8 — b.
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(109 dyn · cm−2): 0.4 — a; 0.8 — b.
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Fig. 7. (Color online). The pressure dependences of real
ε′22 and imaginary ε′′22 parts of the dielectric permittivity of
GPI at different ∆T (K): 1.0 — 1; 2.0 — 2; 5.0 — 3, at differ-
ent frequencies ν(109 Hz): 0.015 — a; 0.230 — b; 0.610 — c;
20.0 — d and at different directions of uniaxial pressure pi,
(i = 1, 2, 3).

The uniaxial pressures also manifest themselves in the
temperature dependences of dynamic permittivity, main-
ly in the shift of curves ε′22(T ) and ε′′22(T ) to the lower

temperatures owing to the decrease in temperature Tc

with pressure (Fig. 4).

The curves of temperature dependences in this and
further curves have the following designations. The first
digit is the number of frequency, the letters “a”, “b”, “c”...
show the value of pressure, the last digit numbers the di-
rection of applied pressure (p1, p2, p3). Moreover, at the
temperatures far from Tc, the curves ε′22(T ) are close
to static (curves 1a, 1b1, 1b2, 1b3, and also 2a, 2b1,
2b2, 2b3 at large ∆T ) owing to small relaxation time,
and therefore their values under pressures are larger than
without pressure; imaginary parts ε′′22(T ) are close to ze-
ro. Such behaviour is more evident in the temperature
dependences of the differences of permittivity under pres-
sure and without pressure ε22(pi) − ε22(0) (Figs. 5, 6),
where this difference is positive at large ∆T .

When ∆T is small, curves ε′22(T ) have lower values
than static curves, and have a depression near Tc owing
to the large relaxation time; the imaginary part ε′′22(T )
has a peak near Tc. Since relaxation time increases with
pressure, curves ε′22(T ) under pressure have lower val-
ues than without pressure; the difference ε′22(pi)−ε

′
22(0)

becomes negative (Fig. 5).

The influence of uniaxial pressures reveals itself in the
pressure dependences of ε′22(p) and ε′′22(p) (Fig. 7), in
the increase in permittivity with pressure at low frequen-
cies (curves 1ai, 2ai, 3ai, 2bi, 3bi for ε′22(p) and 1bi for
ε′′22(p)), and also in the decrease of permittivity at high
frequencies owing to the increase in relaxation time with
pressure.

The first digit on the designation of the curves of pres-
sure dependence is the number of ∆T , the letters “a”,
“b”, “c”... show the number of frequency, the last digit
numbers the direction of applied pressure (p1, p2, p3).
It is necessary to note that the uniaxial pressure p2 in-
fuences the calculated physical characteristics most evi-
dently, while the pressure p1 infuences them least.

It is necessary to note that we do not take into account
domain processes in our model. Therefore, we make no
pretense to a good description of the dielectric dispersion
in the low-frequency region in the ferroelectric phase.
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Fig. 8. (Color online). The temperature dependence of inverse relaxation time (τ xz
2 )−1 at different directions of uniaxial

pressure pi (i = 1, 2, 3), and different values of pressure (109dyn/cm2): 0.0 — a, 0.8 — b.
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Fig. 9. (Color online). The frequency dependences of real ε′11 and imaginary ε′′11 parts of the dielectric permittivity of GPI
at different ∆T (K): 1 — 1; 10 — 2, at different directions of uniaxial pressure pi (i = 1, 2, 3) and at different values of pressure
(109 dyn · cm−2): 0.0 — a, 0.8 — b.

Let us now siscuss the transverse dynamic character-
istics. The designations of the curves are such as in the
case of longitudinal dynamic characteristics. In [5] it was
determined that the uniaxial pressure slightly increases
the values of transverse static permittivity at constant
temperature difference ∆T . The influence of the uniax-
ial pressures on transverse relaxation times is presented
in Fig. 8.

The transverse relaxation times τx
2 and τz

2 are calcu-
lated at the same α as the longitudinal time τ y

2 . They
are smaller than the longitudinal time and also increase
when approaching the phase transition temperature. The
transverse relaxation times τx,z

2 in contrast to τy
2 are fi-

nite at T = Tc. As one can see from Fig. 8, τx,z
2 also

increases under uniaxial pressures.
The frequency dependences of the real and imaginary

parts of transverse dielectric permittivity ε11(ν) (Fig. 9)
and ε33(ν) (Fig. 10) at different values of ∆T are quali-
tatively similar to the frequency dependences of ε22(ν),
but the region of dispersion exists at higher frequencies
and changes with temperature more weakly.

The influence of uniaxial pressures on the frequency
dependences of ε11(ν) and ε33(ν) is similar to the influ-
ence of these pressures on the longitudinal permittivities
ε22(ν). That is the curves ε11(ν) and ε33(ν) have larger
values under pressures than at zero pressure and shift
to lower frequencies owing to the increase in relaxation
time with pressure.

The influence of uniaxial pressures on the temperature
dependences of ε11(T ) (Fig. 11) and ε33(T ), (Fig. 12) is
also similar to the influence of these pressures on the
longitudinal permittivities ε22(T ).

That is at low frequencies and at the temperatures
far from Tc, curves ε′11(T ) and ε′33(T ) are close to the
static ones (curves 1a, 1bi, and also 2a, 2bi at high ∆T )
due to the small relaxation time, and consequently, they
have slightly larger values under pressures than without
pressure. One can see this also from the temperature
dependences of the difference of permittivities with and
without pressures ε11(pi)−ε11(0) (Figs. 13 and 14). This
difference is positive at large ∆T .
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Fig. 10. (Color online). The frequency dependences of real ε′33 and imaginary ε′′33 parts of the dielectric permittivity of GPI
at different ∆T (K): 1 — 1; 10 — 2, at different directions of uniaxial pressure pi (i = 1, 2, 3) and at different values of pressure
(109 dyn · cm−2): 0.0 — a, 0.8 — b.
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Fig. 11. (Color online). The temperature dependences of real ε′11 and imaginary ε′′11 parts of the dielectric permittivity of
GPI at different frequencies ν (GHz): 0 — 1; 10 — 2; 20 — 3; 40 — 4, at different directions of uniaxial pressure pi (i = 1, 2, 3)
and at different values of pressure (109 dyn · cm−2): 0.0 — a, 0.8 — b.
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Fig. 12. (Color online). The temperature dependences of real ε′33 and imaginary ε′′33 parts of the dielectric permittivity of
GPI at different frequencies ν (GHz): 0 — 1; 10 — 2; 20 — 3; 40 — 4, at different directions of uniaxial pressure pi (i = 1, 2, 3)
and at different values of pressure (109 dyn · cm−2): 0.0 — a, 0.8 — b.
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Fig. 13. (Color online). The temperature dependences of the difference ε′

11(pi) − ε′11(0) at different frequencies ν (GHz):
1.0 — 1; 6.0 — 2; 20.0 — 3, at different directions of uniaxial pressure pi (i = 1, 2, 3) and at different values of pressure
(109 dyn · cm−2): 0.4 — a; 0.8 — b.
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Fig. 14. (Color online). The temperature dependences of the difference ε′′

11(pi) − ε′′11(0) at different frequencies ν (GHz):
1.0 — 1; 6.0 — 2; 20.0 — 3, at different directions of uniaxial pressure pi (i = 1, 2, 3) and at different values of pressure
(109 dyn · cm−2): 0.4 — a; 0.8 — b.
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Fig. 15. (Color online). The pressure dependences of real ε′11 and imaginary ε′′11 parts of the dielectric permittivity of GPI
at different ∆T (K): 1 — 1; 10 — 2, at different frequencies ν (GHz): 1.0 – a; 10.0 — b; 20.0 — c; 40.0 — d; 60.0 — f, and at
different directions of uniaxial pressure pi, (i = 1, 2, 3).
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Fig. 16. (Color online). Cole–Cole curves at different ∆T (K):1.0 — 1, � [10], • [11]; 2.0 — 2, � [10]; 5.0 — 3, � [10]; 10.0
— 4, at different directions of uniaxial pressure pi (i = 1, 2, 3) and at different values of pressure (109 dyn · cm−2): 0.0 — a; 0.8
— b.
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When approaching the temperature Tc, the relaxation
time increases; as a result, the curves ε′11(T ) and ε′33(T )
increasingly bend down; but imaginary parts ε′′11(T ) and
ε′′33(T ) increase. Since the relaxation time increases with
pressure, the curves ε′11(T ) and ε′33(T ) have lower values
under pressure than without pressure.

The pressure dependences of real ε′11 and imaginary
ε′′11 parts of the dielectric permittivity of GPI at differ-
ent ∆T and at a different frequencies ν are presented in
Fig. 15.

The character of the pressure dependences of real ε′33
and imaginary ε′′33 parts of the dielectric permittivity of
GPI is analogous to the pressure dependences of ε′11 and
ε′′11, but the numerical values of ε33 are ∼ 10 times larger
then ε11. An increase in uniaxial pressures leads to a lin-
ear increase in permittivities ε′11 and ε′33 at high ∆T and
pre-relaxational frequencies. But in the region of relax-
ational frequencies the permittivities practically do not
change. At higher frequencies the transverse permittivi-
ties slightly decrease with pressures.

The results of calculation of Cole–Cole curves at dif-
ferent ∆T with and without uniaxial pressures (Fig. 16)
show monodispersivity of the dielectric permittivities of
GPI.

Some disagreement with experimental data at ∆T =
1 K may be connected with the low measurement accura-

cy near Tc. In all cases, the radii of Cole–Cole semi-circles
increase when approaching the Tc and with an increase
in pressures.

V. CONCLUSIONS

The influence of uniaxial pressures on the dielectric
properties of GPI reveals itself in a decrease of the phase
transition temperature an increase in static dielectric
permittivities and an increase in relaxation times. This
leads to an increase in dynamic dielectric permittivity
under pressures at the pre-relaxation frequencies and the
shift of the dispersion region to lower frequencies. The
dynamic longitudinal and transverse permittivities have
a monodispersive character. Uniaxial pressures have a
weak influence on the relaxation dynamics of the pro-
ton subsystem of GPI. The effect of the uniaxial pres-
sure p2 on the calculated physical characteristics is the
strongest, and the effect of the pressure p1 is the weakest.
Our model does not take into account domain processes
and cannot describe well the dielectric dispersion in the
low-frequency region in the ferroelectric phase. The ob-
tained results have a predictive character and can stim-
ulate subsequent experimental investigations.
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ДВПЛИВ ОДНОВIСНИХ ТИСКIВ НА ДИНАМIЧНI ВЛАСТИВОСТI
СЕҐНЕТОЕЛЕКТРИКА NH3CH2COOH·H2PO3

I. Р. Зачек1, Р. Р. Левицький2, А. С. Вдович2

1Нацiональний унiверситет “Львiвська полiтехнiка”,

вул. С. Бандери, 12, Львiв, 79013, Україна
2Iнститут фiзики конденсованих систем НАН України,

вул. Свєнцiцького, 1, Львiв, 79011, Україна

Використовуючи модифiковану модель NH3CH2COOH·H2PO3 i врахувавши п’єзоелектричний зв’язок iз
деформацiями εi, методом Ґлаубера в наближеннi двочастинкового кластера отримано систему кiнетичних
рiвнянь для середнiх значень псевдоспiнiв. На основi розв’язкiв цих рiвнянь розраховано залежнi вiд темпе-
ратури, частоти i тискiв компоненти тензора динамiчної дiелектрисної проникностi кристала GPI. Вивчено
вплив одновiсних тискiв на цi характеристики за рiзних частот i температур.
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