УДК 537.63:537.39:539.26

ВЛИЯНИЕ ИМПУЛЬСНОЙ ЭЛЕКТРОМАГНИТНОЙ ОБРАБОТКИ НА СТРУКТУРНЫЕ ПЕРЕСТРОЙКИ СПЛАВА ТИТАНА ВТ3-1

С. В. Сейдаметов, С. В. Лоскутов

Запорожский национальный технический университет, Запорожье, Украина Поступила в редакцию 06.11.2015

Исследовано влияние импульсов магнитного и электрического полей на эволюцию дефектной структуры сплава титана ВТ3-1. Показано, что электромагнитная обработка приводит к релаксационным процессам дислокационной структуры, в результате чего изменяется напряженно-деформированное состояние кристаллической решетки титанового сплава.

Ключевые слова: сплавы титана, нитридные покрытия, электромагнитное поле, дефектная структура, остаточные макронапряжения, микродеформации.

ВПЛИВ ІМПУЛЬСНОЇ ЕЛЕКТРОМАГНІТНОЇ ОБРОБКИ НА СТРУКТУРНІ ПЕРЕБУДОВИ СПЛАВУ ТИТАНА ВТЗ-1

С. В. Сейдаметов, С. В. Лоскутов

Досліджено вплив імпульсів магнітного та електричного полів на еволюцію дефектної структури сплаву титана ВТ3-1. Показано, що електромагнітна обробка призводить до релаксаційних процесів дислокаційної структури в результаті чого змінюється напружено-деформований стан кристалічної решітки титанового сплаву.

Ключові слова: сплави титану, нітридні покриття, електромагнітне поле, дефектна структура, залишкові макронапруження, мікродеформації.

THE INFLUENCE OF PULSE ELECTROMAGNETIC FIELD ON REBUILDING OF STRUCTURE OF TITANIUM ALLOY VT3-1

S. V. Seidametov, S. V. Loskutov

The effect of pulse magnetic and electric fields on the evolution of the defective structure of titanium alloy VT3-1 was investigated. It was shown that electromagnetic treatment leads to relaxation processes of the dislocation structure resulting in a change of the stress-strain state of the crystal lattice of the titanium alloy.

Keywords: titanium alloy, nitride coatings, electromagnetic field, defect structure, residual macrostresses, microstrains.

ВВЕДЕНИЕ

В результате механических, тепловых и различного рода электромагнитных воздействий в поверхностном слое металлов происходят изменения в структуре, формируется определённое напряжённодеформированное состояние материала приповерхностного слоя. С целью исследования влияния электрических и магнитных полей на физико-механические характеристики металлов, была поставлена задача изучения закономерностей формирования остаточных напряжений вблизи поверхности при импульсной электромагнитной обработке.

В качестве материала для исследований был выбран конструкционный титановый сплав марки ВТ3-1, который нашел широкое применение в авиационной промышленности для изготовления лопаток компрессора газотурбинных двигателей [1, 2]. Такого рода исследования представляют практический и научный интерес, поскольку, во-первых, природа многих аспектов взаимодействия ионной и электронной подсистем неферромагнитных металлов под воздействием электрических и магнитных полей на сегодняшний день еще недостаточно ясна [3–6]. Во-вторых, изучение закономерностей модификации дефектной структуры

неферромагнитных металлов при помощи электрических и магнитных полей позволит расширить теорию оптимальных кристаллических структур с прогнозируемыми физическими и механическими свойствами.

УСЛОВИЯ ЭКСПЕРИМЕНТА

Для экспериментальных исследований были подготовлены 3 группы титановых образцов различной формы: 1) плоские пластинки с размерами $1 \times 15 \times 25 \text{ mm}^3$; 2) образцы в форме лопатки компрессора газотурбинного двигателя с размерами пера $15 \times 25 \text{ mm}^2$; 3) образцы в форме параллелепипеда с размерами $4,4 \times 70 \times 10 \text{ mm}^3$ с покрытием нитрида титана толщиной 2—3 µm. Нитридные покрытия наносились методом конденсации из плазменной фазы в условиях ионной бомбардировки поверхности на установке типа «Булат».

В работе [7] установлено, что для обнаружения влияния магнитного поля на пластичность кристаллов (магнитопластический эффект) при комнатных температурах и значениях индукции магнитного поля B_{0} , для которых выполняется неравенство $U_{_{M}}/kT << 1$ (где $U_{_{M}} \approx gs\mu_{_{B}}B_{_{0}}$ — энергия, передаваемая парамагнитной частице в постоянном магнитном поле с индукцией B_{0}), необходимо создание неравновесных дефектов внешними воздействиями такими как: воздействие светом, экспозиция в переменном электрическом поле, пластическая деформация, нагрев и охлаждение. Для создания неравновесной дислокационной структуры образцы 1 и 2 группы подвергались поверхностной упрочняющей обработке стальными шариками диаметром 1 mm в течении 70 s в ультразвуковом поле, в результате которой в поверхностном слое были наведены остаточные сжимающие макронапряжения $\sigma = -(300-350)$ MPa. Для получения импульсного магнитного поля был выбран метод прямого разряда батареи конденсаторов типа ИМ 5-140 ($C = 400 \mu F$, $U_{\rm max}$ = 10 kV) через медный соленоид диаметром 43 mm, длиной 45 mm, в который помещался исследуемый образец. Для регулировки тока через соленоид и исключения перезарядки батареи конденсаторов в электрическую цепь экспериментальной

установки последовательно был включен медный проводник диаметром 0,5 mm и длиной 20 mm, который взрывался при разрядке батареи конденсаторов.

Обработка титановых образцов 1 и 2 группы магнитным импульсом проводилась многократно в режиме зарядки конденсаторной батареи до 5 kV. В таблице 1 приведены параметры осциллограмм импульсного разряда через медный соленоид. Амплитудное значение индукции магнитного поля в импульсе составляло B = 0,37 T.

На образцах 1 и 2 группы рентгенодифрактометрическим (РД) методом были измерены остаточные напряжения I и II рода. Использовалось монохроматическое излучение линии CoK_{B} . Площадь исследуемого участка поверхности образцов составляла 1 × 3 mm². Осуществлялось однократное сканирование с шагом 0,1° и постоянной времени 5 s. Данные, полученные на рентгеновском дифрактометре ДРОН-3М, подвергались обработке в программе «Origin». Для определения остаточных напряжений І рода была выбрана и анализировалась линия (213) α-Ті. Проводились следующие операции: сглаживание кривых; вычитание фона; аппроксимация по Гауссу; расчет центра тяжести дифракционных пиков. При расчете напряжений по пяти точкам, использовали модуль Юнга E = 117 GPa и коэффициент Пуассона µ = 0,3. Погрешность измерения макронапряжений δσ оценивали по формуле [8]:

$$\delta \sigma = \frac{E}{\Pi} \operatorname{ctg} \theta \delta \Delta \theta, \qquad (1)$$

где θ — угол дифракции рентгеновских лучей; $\delta\Delta\theta=0.05^\circ$ — точность измерения смещения угла θ .

Как известно, существенный вклад в изменение характеристик механической прочности металлов и сплавов вносят их субструктурные параметры: размер областей когерентного рассеяния и величина микродеформаций [8]. Изменение этих характеристик в процессе деформации дает информацию, необходимую для понимания процессов формирования той или иной структуры материала, явлений, происходящих при деформации сплава. Для определения размеров областей

	Таблица 1
Параметры осциллограмм импульсного разряда через медный солен	оид

Рабочее напряжение <i>U</i> , kV	Амплитуда тока <i>I</i> , А	Период <i>t</i> , µs	Декремент затухания	Индукция магнитного поля <i>В</i> , Т
5	4740	286	2,09	0,37

когерентного рассеяния D и величины микроскопических деформаций ε применяли метод гармонического анализа формы рентгеновских линий. Рабочими отражениями служили линии Ti_{α} (102) и (213). По полученным экспериментальным данным рассчитывались коэффициенты Фурье для исследуемых образцов и для эталона (титановый образец после вакуумного отжига).

Обработка образцов 3 группы импульсом электрического тока проводилась многократно путем разрядки батареи конденсаторов через образец. Амплитудное значение плотности тока составляло порядка 100 MA/m², длительность импульса 150 из. РД измерения остаточных напряжений на образцах осуществлялись в двух взаимноперпендикулярных направлениях (вдоль и поперёк образца) в покрытии TiN и в материале подложки (сплав титана BT3-1). Анализировались линии (422) TiN и (204) сплава титана ВТЗ-1. Стравливание пленки TiN на ½ площади поверхности исследуемых образцов осуществлялось химическим способом в смеси концентрированных азотной и соляной кислот.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Анализ результатов измерений остаточных макронапряжений в титановых образцах 1 и 2 группы до и после обработки магнитным импульсом (рис. 1) показал, что многократное действие импульсов магнитного поля приводит к релаксации механических напряжений в их поверхностном слое. Суммарная интегральная ошибка измерений остаточных макронапряжений, учитывающая геометрические и физические факторы, не превышала 20 MPa.

Анализ экспериментальных данных также показал (рис. 2), что такая многократная обработка титановых образцов

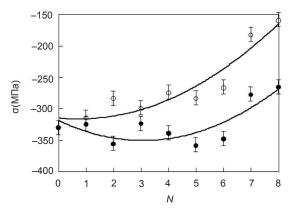


Рис. 1. Зависимость остаточных сжимающих макронапряжений (σ) от числа циклов (N) обработки образцов магнитным импульсом с индукцией $B=0,37~\mathrm{T.}$ \circ , \bullet — измерения в поперечном и продольном направлениях

приводит к монотонному увеличению областей когерентного рассеяния и к одновременному снижению остаточных микроскопических деформаций. Как видно из графиков, полученные результаты для параметров тонкой структуры удовлетворительно согласуются с данными для

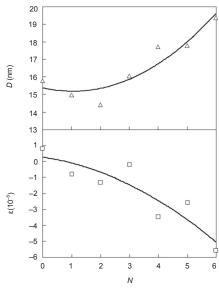


Рис. 2. Зависимость размеров областей когерентного рассеяния (D) и микродеформаций (ε) от числа циклов (N) обработки титановых образцов магнитным импульсом с индукцией B=0,37 Т

макронапряжений: снижение микродеформаций приводит к соответствующему уменьшению механических макронапряжений.

Как известно, из данных о размерах областей когерентного рассеяния D можно оценить значения плотности дислокаций ρ , пользуясь соотношением [8]:

$$\rho = \frac{3}{D^2} \,. \tag{2}$$

Таким образом, как видно из графиков на рис. 2, каждая последующая обработка образцов магнитным импульсом приводит монотонному снижению плотности дислокаций.

Анализ результатов измерений остаточных макронапряжений в титановых образцах с нитридным покрытием до и после многократной обработки импульсом электрического тока (рис. 3) позволил установить следующие экспериментальные закономерности. В приповерхностном слое титановых образцов с нитридным покрытием наблюдаются наибольшие остаточные сжимающие макронапряжения $\sigma = -(2000 -$ 3000) МРа. Многократная обработка образцов электрическим импульсом изменяет глубину залегания остаточных макронапряжений как в материале покрытия, так и в материале подложки. Остаточные макронапряжения в покрытии TiN после второй обработки изменяются наиболее существенно и переходят в растягивающие, а после третьей обработки они релаксируют до уровня значений исходного состояния. Наибольшее

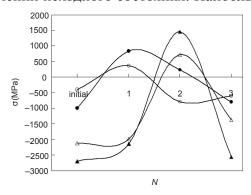


Рис. 3. Зависимость остаточных макронапряжений (σ) в покрытии TiN и в материале подложки (сплав титана BT3-1) от числа циклов (N) обработки образцов импульсом электрического тока $j_m=100~{\rm MA/m^2}.$ •, \circ — линия BT3-1 (204); \blacktriangle , Δ — линия TiN (422). Заштрихованные маркеры — измерения в продольном направлении образцов, незашрихованные — в поперечном

изменение остаточных напряжений в материале подложки наблюдалось после первой обработки.

выводы

Показано, что многократная обработка образцов из титанового сплава ВТ3-1 магнитным импульсом с индукцией B = 0.37 T приводит к стабилизации неравновесной дефектной структуры: на 20-50 % уменьшаются наведенные механической обработкой остаточные макроскопические напряжения; происходит укрупнение блоков мозаики, уменьшаются остаточные микроскопические деформации, снижается плотность дислокаций. Многократная обработка образцов из сплава титана BT3-1 с защитным покрытием на основе нитрида титана импульсом электрического тока $j_m = 100 \text{ MA/m}^2$ приводит к релаксационным процессам дислокационной структуры в результате чего изменяется плоско-напряженное состояние как материала подложки, так и материала покрытия. При этом наибольшие изменения наблюдаются в материале нитридного покрытия.

Возможным механизмом понижения напряженно-деформированного состояния кристаллической решетки сплава титана при обработке магнитным импульсом и нитридного покрытия при обработке электрическим импульсом может быть выход дислокаций на поверхность, а также смещение дислокаций за счет снижения потенциальной энергии стопоров, тормозящих их движение [3, 5, 9].

ЛИТЕРАТУРА

- 1. Плющев В. Е. Справочник по редким металлам. М.: Мир, 1965. 784 с.
- 2. Арзамасов Б. Н. Конструкционные материалы / Справочник. М.: МГТУ им. Н. Э Баумана, 2005. 293 с.
- 3. Головин Ю. И. Магнитопластичность твердых тел (Обзор) // Физика твердого тела. 2004. Т. 46, вып. 5. С. 769–803.
- 4. Васильев М. А. Особенности пластической деформации металлов и сплавов в магнитном поле. Обзор // Успехи физики металлов. 2007. Т. 8, вып. 1. С. 65–105.
- Батаронов И. Л. Механизмы электропластичности // Соросовский образовательный журнал. 1999. № 10. С. 93–99.

- Рощупкин А. М., Батаронов И. Л. Критический анализ теорий электроннопластического эффекта // Известия вузов. Черная металлургия. — 1990. — № 10. — С. 75–76.
- 7. Моргунов Р. Б. Спин-зависимые реакции между дефектами структуры и их влияние на пластичность кристаллов в магнитном поле // Вестник РФФИ. 2003. № 2. С. 19–46.
- 8. Горелик С. С., Расторгуев Л. Н., Скаков Ю. А. Рентгенографический и электроннооптический анализ. — М.: Металлургия, 1970. — 126 с.
- 9. Алехин В. П. Физика прочности и пластичности поверхностных слоев материалов. М.: Наука, 1983. 76 с.

LITERATURA

- 1. Plyuschev V. E. Spravochnik po redkim metallam. M.: Mir, 1965. 784 p.
- Arzamasov B. N. Konstrukcionnye materialy / Spravochnik . — M.: MGTU im. N. E. Baumana, 2005. — 293 p.
- 3. Golovin Yu. I. Magnitoplastichnost' tverdyh tel (Obzor) // Fizika tverdogo tela. 2004. Vol. 46, vyp. 5. P. 769–803.

- 4. Vasil'ev M. A. Osobennosti plasticheskoj deformacii metallov i splavov v magnitnom pole. Obzor // Uspehi fiziki metallov. 2007. Vol. 8, vyp. 1. P. 65–105.
- 5. Bataronov I. L. Mehanizmy elektroplastichnosti // Sorosovskij obrazovatel'nyj zhurnal. 1999. No. 10. P. 93–99.
- 6. Roschupkin A. M., Bataronov I. L. Kriticheskij analiz teorij elektronnoplasticheskogo effekta // Izvestiya vuzov. Chernaya metallurgiya. 1990. No. 10. P. 75–76.
- 7. Morgunov R. B. Spin-zavisimye reakcii mezhdu defektami struktury i ih vliyanie na plastichnost' kristallov v magnitnom pole // Vestnik RFFI. 2003. No. 2. P. 19–46.
- 8. Gorelik S. S., Rastorguev L. N., Skakov Yu. A. Rentgenograficheskij i elektronnoopticheskij analiz. M.: Metallurgiya, 1970. 126 p.
- 9. Alehin V. P. Fizika prochnosti i plastichnosti poverhnostnyh sloev materialov. M.: Nauka, 1983. 76 p.