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THERMOELECTRIC DEVICE 
IN PERIODIC STEADY STATE 

 
We propose a rotating thermoelectric (TE) device comprised of a single TE conductor operating in 
two periodic steady state modes: switching periodic mode (P-mode) when the hot and cold ends of 
the TE conductor are periodically instantly reversed and continuous sinusoidal mode (S-mode) when 
the temperature of TE conductor edges varies continuously according to sine wave. Power 
generation and cooling regimes of the rotating (TE) device in the periodic steady state were studied 
analytically. The efficiency and cooling temperature of the rotating TE device was found to depend 
not only on a dimensionless TE figure of merit, but also upon an additional dimensionless parameter 
comprising of the rotation period, the size and the thermal diffusivity of the TE conductor. The 
proposed analytical method can be generalized to even more complex timing modes and allows 
solving the optimization problem for TE device parameters. We investigated whether it is possible to 
achieve better performance for the rotating TE device comparing to conventional stationary steady 
state, S-mode was shown to demonstrate deeper cooling at certain times.  
Key words: thermoelectric device, periodic steady state, figure of merit, power generation, 
cooling. 

Introduction 

The main way to improve the efficiency of thermoelectric (TE) devices – power generators, 

coolers etc. is to increase the dimensionless figure of merit of TE materials, 2 /ZT T    , where   

is the thermopower or the Seebeck coefficient,   is the electrical conductivity, T  is the absolute 

temperature,   is the thermal conductivity. 
Unlike superconductivity, where new materials with high temperatures of transition to the 

superconducting state have been invented, the progress in ZT improvement of TE materials is quite 

disappointing. Thus, for example, at room temperature ( 300 KT   ) since 1950 to the present time the 

figure of merit has increased from 1ZT  to 1.2 1.3 ZT  only [1-5]. Moreover, today there are no 

commercially available TE materials with 1.3ZT . Indeed, for common appliances use, for example, 

in the household or industrial refrigeration, TE materials with the figure of merit 2.0ZT   [6-8] are 

required. There were expectations that the success could be achieved using tunneling and other 
quantum effects in nanostructured TE materials [5, 9-13]. However, there has been no significant 
progress so far. 

The parameters of TE device in the stationary steady state depend only on the figure of merit 
ZT [14]. The higher ZT , the lower cooling temperature can be reached. 

In transient modes, the efficiency of TE device is affected by many other parameters, such as 
the temperature diffusivity, the current pulse duration in a pulsed mode [6, 15-20], the relaxation time 
of thermal processes etc. Such transient modes are constantly in the focus of researchers [5, 15-29], 
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because they have advantages over the steady state. For example, at certain times in a pulsed cooling 
mode [15-20] deeper cooling can be reached. Optimization of transient mode parameters allows 
improving the operation of TE device as compared with the steady state even if the same TE materials 
are used. 

Qualitatively, the improved performance of TE devices in transient mode is possible due to the 
fact that the relaxation time of electrical processes is negligible compared to the relaxation time of 
thermal processes [14]. When current flows through TE device in cooling regime in the stationary 
steady state, the Peltier heat removed from the cold junction and the Joule heat generated in the TE 
conductor are balanced. Increased current and, consequently, increased Joule heat would make the TE 
device inoperative. In the transient state, due to the relaxation times difference, the heat balance is 
uncompensated. Higher current passed through the TE device for a short time delivers additional 
cooling. Optimization of length and shape of the current pulses can give deeper cooling for limited 
time intervals [18] or cooling of small objects in a shorter time [19]. 

The pulsed cooling [21-24] consists of two major phases. The first phase is highly transient one 
implementing fast and deep cooling, the second phase is the relaxation, in this phase, as a rule, the TE 
device is out of use. Thus, if in the pulsed mode the second phase duration is equal to or longer than 
the relaxation time of thermal processes (i.e. the period during which thermal equilibrium has time to 
be established), in the mode in hand the characteristic times (the period of change in the boundary 
conditions in generator mode, or current in cooling mode) are, generally speaking, shorter than the 
relaxation time of thermal processes. 

This paper studies TE devices operating in the periodic steady state mode. Unlike pulsed 
cooling, a TE device in the periodic steady state mode operates continuously. The basic question 
considered here is whether it is possible in this periodic steady state mode to achieve better 
performance relative to the stationary steady state mode, at least better at certain times. In this study, 
we omit particular technical details such as the contact resistance of the plates, the lateral heat transfer, 
parameters of the cooled object etc.  

The proposed TE devices consist of a single TE conductor with the constant cross section made 
of thermoelectric material and the role of second conductor is played by the body of TE device, which 
is an ordinary metal conductor.  

We consider two types of periodic steady state modes for proposed TE devices: the switching 
periodic mode (P-mode) when the hot and cold ends of TE conductor are periodically instantly 
reversed and the continuous sinusoidal mode (S-mode) when the temperature of TE conductor edges 
varies continuously according to sine wave.  

For periodic steady state modes, along with ZT  we found a new dimensionless parameter that 
is a combination of the period of temperature change, the TE conductor size and its temperature 
diffusivity. The optimal value of above parameter was calculated.  

In the next section, TE devices in P- and S-modes are schematically described. The following 
sections contain analytical calculations and results for P-mode in the power generation and cooling 
regimes, and for S-mode cooling regime. The last section presents discussion and conclusions. 

1. Model of TE device in a periodic steady state  

The TE device operating in a switching periodic mode (P-mode) is shown schematically in 
Fig. 1a. The TE conductor turns periodically in the plane of the figure and its hot and cold ends 
(junctions) are instantly swapped.  
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The TE device operating in a continuous sinusoidal mode (S-mode) is presented schematically 
in Fig 1b. Let the TE conductor rotate in the hole of the orifice plate with linear temperature 
distribution from up to down (see Fig. 1b), consequently at the ends (junctions) of the rotating TE 
conductor (see Fig. 1b) the temperature varies continuously by sine wave. 

 

Fig. 1. Schematic sketch of proposed TE devices operating in a) the switching periodic mode (P-mode) 
and b) the continuous sinusoidal mode (S-mode). 

The TE device (Fig. 1a, b) consists of a single TE conductor with a constant cross section S  of 

length 2l a . Other parts of TE device do not have TE properties. The period of rotation P  is fixed.  

Performing further analytical calculations for both P- and S-modes we assume for convenience 
that a TE conductor is fixed in plane but the temperature at its ends (junctions) varies according to the 
periodic law specific for each mode.  

The heat conduction equation for the TE conductor in TE devices has the standard form [14]  

 
2

2
0 2v

T T
c j

t x

 
    

 
, (1) 

where t  is the time, x  is the coordinate along TE conductor,  ,T x t  is the temperature of TE 

conductor,  j t  is the current density in TE conductor, 1 /    is the specific resistivity,   is the 

thermal conductivity, vc  is the specific heat, 0  is the bulk density, and 0/ vc     is the thermal 

diffusivity. 
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For P-mode (Fig. 1a) the boundary conditions are as follows  
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( , ) ( )
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x l

T x t T T t

T x t T T t




  

  
, (2) 

where T  is the external mean temperature, 0T  is the amplitude of variation of the external 

temperature, the function ( )t  is set to 1 in the even half-periods and in the odd ones it is equal to 1   

 
1, ( 1 / 2)

( )
1, ( 1 / 2) ( 1)

nP t n P
t

n P t n P

   
      

. (3) 

S-mode (Fig 1b) corresponds to the case when the temperature of the ends (junctions) of TE 
conductor varies continuously according to sine wave, therefore the boundary conditions in S-mode are  

    0, sin
x a

T x t T T t


   , (4) 

where / 2P   is the angular frequency of temperature change, T  and 0T  have the same meanings 

as in P-mode. 
Thus, during the period the TE conductor in P- and S-modes has the maximum temperature at 

the hot end (junction) 0HT T T   and minimal at cold end (junction) 0CT T T  . 

The current that flows through the TE conductor in cooling regime is set to  

 
0

0

( ), ( mode)

2
sin . ( mode)

j j t P

j j t S
P

  

   
 

  (5) 

In the power generation regime the TE conductor current is calculated according to Seebeck’s 

law j T , where α is the thermo power or the Seebeck coefficient, we assume it to be temperature 

independent 

 
0

0

, 2 , (P mode)

2
, 2 sin . (S mode)

j T T T

j T T T t
P

    

      
 

 (6) 

where 02T T   is the maximum temperature difference between the hot and cold ends (junctions). 

The equation (1) with the boundary conditions (2) or (4) and the relations for the TE conductor 
current (5) or (6) in the periodic steady state are solved analytically in the following sections. 

2. Temperature distribution and heat fluxes in the switching periodic mode (P-mode)  

2.1. The temperature distribution in P-mode 

The solution of the equation (1) with the boundary conditions (2) for P-mode was analytically 
calculated using the method described in [30, Chapter 15].  

First, we represent ( , )T x t  in the following form 

 
2

( , ) ( ) ( , )
2

j
T x t T x l x T x t


   


 .  (7) 

Then (1) gives the equation for ( , )T x t  

 
2T T

t x

 
 

 

 
  (8) 

and the boundary conditions (2) become 
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 (9) 

Next, according to [30] we write ( , )T x t  in the form of a series 

 
1

( , ) ( )sink
k

k
T x t T t x

l






 . (10) 

Substituting ( , )T x t  (10) in Eq. (8), integrating by parts twice and using the boundary conditions 

(9) we obtain the following relation for ( )kT t  

  02

2
( ) 1 1

kk
k

dT k k
T T t

dt l l

              
. (11)  

The solution of the ordinary differential equation (11) is as follows [31-33] 
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k
T t T e e t e dt

l
           ,  (12) 

where 

 
2

k

k
A

l

   
 

.  (13) 

At longer times when the periodic steady state is reached, the first transient term has to 
disappear. 

Let t mP    where 0 / 2P  and m >> 1, i.e. the time τ is measured from the beginning 

of the period and at that time the left junction ( 0x  ) is cold and the right one ( x l ) is hot (see 

Fig. 1a). Then, according to (3), the integral in (12) is divided into three terms, which represent the 

sum of odd ( ( ) 1t   ) and even ( ( ) 1t   ) half-periods, and the third term, which depends on τ 
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         . (14) 

Calculating integrals in the first and second terms of (14) and considering 1 kmAe  at 1m , 

we obtain geometric progressions. The sums of the above progressions we use in (12) to get the final 
formulae  
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Substituting now (15) in (1) and considering that 
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we obtain 
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where  
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Finally, the solution (1) with the boundary conditions (3) for P-mode has the form 
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 ,  (19) 

where   belongs to  0 ... / 2P . 

Fig. 2 shows the temperature distribution along the TE conductor in P-mode at different times. 
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Fig. 2. Temperature distribution of TE conductor in P-mode at different times measured from the beginning of 

the period / /P 128...P 2 . External temperatures: T 0 C  , 0T 10 C  , TE conductor length l 0.08 m , TE 

material parameters /1.7W mK  , /-6 21.2 10 m s   , current density 2/6j 0.1 10 A m   

 and rotation period P 1s . 

At , 2 , 3 , ...t P P P  the temperature of TE conductor edges is changing instantly. Then after 

this leap the TE conductor starts warming up, it is clearly seen from Fig. 2, but there is still part of TE 

conductor with the temperature ( , )T x T  . Eventually, the size of this part decreases and its 

temperature increases.  
Selected TE conductor and operational parameters show the case when temperature in the 

middle of the TE conductor is stable, i.e. heat waves do not enter deeply the TE conductor. It is similar 
to permafrost, when a periodic variation of the temperature on Earth's surface does not affect the 
temperature at a certain depth. 

It should be noted also that the temperature in the middle of TE conductor is slightly higher than 

T  because of the emitted Joule heat. When no current flows the temperature in the center of TE 

conductor, of course, would be equal to T .  

2.2. Power generation efficiency in P-mode 

The power generation efficiency   of TE device in P-mode depends on the heat flux coming 

into the hot junction and coming out of the cold junction of the TE conductor (at 0x   and x l  

respectively) [14]. The heat flux density xq  is the sum of the flux densities created by the temperature 

distribution /  T x  and the Peltier heat flux j , where T    is the Peltier coefficient (we 

assume that the thermoEMF or the Seebeck coefficient α is temperature independent). 

 x

T
q Tj

x


  


 . (20) 
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We find the heat flux at cold CQ and hot HQ  junctions using (19)   
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          . (22) 

Here S  is the cross section of TE conductor, J  is the current flows through TE conductor. J  is 

governed by the  generated according to the Seebeck effect  H CT T     and by connected in 

series the TE conductor resistance /r l S   and the load resistance R : 

                                              
2

,
(1 )

H CT T T r
J

r R r R


     

 
 . (23) 

The signs of the Peltier heat terms in (21) and (22) are selected in the way that the flux positive 

direction is from the hot to cold junction i.e. the heat flux coming to the hot junction ( x l )  and 

coming out of the cold ( 0x  ) junction is set to be positive. 

The heat coming out of the hot HQ and coming to the cold CQ  junctions depends on time, 

therefore to get the efficiency  , we have to integrate HQ and CQ  for a certain time, such time for 

P-mode is / 2P  – half of the period: 

 
/2 /2

0 0

,
P P

H H C CQ Q d Q Q d      . (24) 

Substituting in (24) the expressions for HQ  (21) and CQ  (22) we find 
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where the renormalized thermal conductivity is 
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   (26) 

and 

 2 2
0

1
l

P
 


. (27) 

Comparing the relations (25) and (26) for P-mode and the formulae for the stationary steady 

state [14], one can realize that they differ only in the thermal conductivity value. The efficiency   in 

the stationary steady state depends only on the thermal conductivity  , but in P-mode it depends upon 

the renormalized thermal conductivity e  (26) which is a complex parameter proportional not only to 

the TE conductor thermal conductivity  , but also to the length of TE conductor, the switching period 

P and the thermal diffusivity  .  

Therefore, the corresponding expression for the efficiency ( ) /H C HQ Q Q    for P-mode is 

similar to the stationary steady state but it uses the renormalized thermal conductivity e  (26). The 

appropriate calculations can be found for instance in [14] and below is the final expression  
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, (28) 

where 2 /e eZ     is  a dimensionless TE figure of merit renormalized using (26). 

As in the stationary steady state [14], the maximum efficiency   in P-mode is achieved at the 

optimal ratio / 1opt eR r Z T    . Using  opt  in (28) we find the value of maximal efficiency 

max  for P-mode that depends only on HT , CT  and eZ  

 max

1 1

1

e

CH
e

H

Z TT
TT Z T
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 . (29) 

The maximum efficiency max  is a monotonically increasing function of eZ , thus higher eZ  

and, accordingly, lower e  yields a better max value.  

The renormalized thermal conductivity e  in P-mode (26) is always greater than  , e    , 

thus the efficiency in P-mode (28) is always less than the efficiency in the stationary steady state. In 

the case, when 2 / 4 3P l   , the hyperbolic tangent in (26) is nearly one and considering 

    2

1

1 1 1 /12
k

k

k




    
   we get the approximated expression for the renormalized thermal 

conductivity  

 2
0

1
1

3e

      
 

. (30) 

To have the efficiency of TE device in P-mode as high as possible, we need e    or 2
0 0   

(30). The latter means higher   values or shorter lengths l  of the TE conductor. In other words, for 

half of the period the TE conductor has to be warmed almost as the TE conductor in the stationary 
steady state.  

2.3. Cooling in P-mode 

Calculations for the cooling regime in P-mode are similar to those for the efficiency, except that 

it must be borne in mind that the current is determined by (5) 0 ( )J J t   rather than by the Seebeck 

effect. The optimal current optJ  will minimize the cooling temperature or maximize the coefficient of 

performance K . 

The heat fluxes CQ  and HQ  in P-mode cooling regime differ from (21) and (22) only by the 

signs of the Peltier heat term because the current in the TE conductor flows in the direction opposite to 
power generation regime. 
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Q rJ S T J
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. (31) 

In cooling regime, we have to follow variations of the effective (normalized) thermal 

conductivity ( )e   to find the time when the lowest possible cooling temperature can be reached. 

( )e   depends on the time  as follows 
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It should be noted that ( )e   in contrast to e  (26) does not use the factor 2
0  (27).  

Next, as in the stationary steady state, the condition / 0CQ J    for the current gives  

 C C
opt

T T
J S

l r

 
 


. (33) 

Note that in contrast to the stationary steady state, the thermo conductivity  e    (32) depends 

on the time  , however, it does not affect the value of the optimal current optJ . 

The expression for the heat flux at the cold junction at the optimum current is equal to 
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C e
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   (34) 

In the stationary steady state, the minimum cooling temperature min
CT  is found from the 

condition 0CQ  . In P-mode the condition 0CQ   is only possible at certain times. Assuming 0CQ   

(34) we get 

 min 1 ( ) 1
2

( )
e

C
e

Z T
T T

Z T

  



 , (35) 

where the renormalized figure of merit 2( ) / ( )e eZ       depends on the time   . 

The only difference between min ( )CT   (35) and the expression for min
CT  in the stationary steady 

state is the value of figure of merit. The min ( )CT   (35) uses the renormalized thermal conductivity 

( )e   which depends on the time   and allows optimization of cooling temperature. 

The ( )eZ   maximum value, i.e. the minimum cooling temperature min
CT  corresponds to the 

minimum min
CT . As it follows from (32), ( )e   has a minimum at / 2P  , however, even in this case 

( / 2)e P      i.e. similar to P-mode power generation regime. 

Due to the fact that ( )e    , the coefficient of performance  /C H CK Q Q Q     and the 

maximum cooling capacity max
CQ  are less than those in the stationary steady state, although at certain values 

of the thermo conductivity, the switching period and other TE conductor parameters are close to it. 
The above conclusions apply only to P-mode. Further, we show that the TE device operating in 

S-mode can demonstrate a better performance. 

3. Temperature distribution and heat flux in S-mode 

3.1. The temperature distribution in S-mode 

The solution of the equation (1) with the boundary conditions (4) for S-mode begins from 

representing ( , )T x t  in the form 

  
2 2

2 2
0 2

, sin 2 ( , )
a x

T x t T j F t T x t
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 , (36) 

where 
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Then  (1) gives the equation for ( , )T x t  
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and the boundary condition (4) becomes 
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0 0( , ) sin( ) Fsin(2 )

x a
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     . (39) 

The solution of  (38) with the boundary conditions can be found in the form  

            2
0 0, sin cos F sin 2 cos 2T x t T S x t C x t j S x t C x t         , (40) 

where 
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The boundary conditions (39) allow finding coefficients in (41): 
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Therefore, the solution of (1) with the boundary conditions (4) can be written as  

 

      

   

0

2 2
2 2

0 2

, sin cos

F sin 2 sin 2 cos2 .

T x t T T S x t C x t

a x
j t S x t C x t

a

     

 
        

 
 

 (43) 

The solution ( , )T x t  (43) includes both the terms proportional to sin t , cos t  and those 

proportional to sin 2 t , cos2 t – double the frequency of the temperature change at the TE conductor 

ends (junctions). The terms in (43) with sin t and cos t  owe their origin to the heat flux generated 

by the temperature difference at the TE conductor ends ( x a  ), their amplitude is proportional 

to 0T . Such terms describe common temperature waves damping with the distance from TE conductor 

ends ( x a  ). Parameter 2  is a combination of the frequency, the length and the thermal diffusivity 

of TE conductor which is similar to 2
0  in P-mode(27).  

The double frequency terms sin 2 t , cos2 t in (43) are proportional to the square of the 

amplitude of the current density amplitude 2
0j . Those terms describe the heat flux, born by the 

heterogeneity of the temperature distribution due to the Joule heat. 
In Fig 3 we present the temperature distribution in the TE conductor which has the same 

parameters as in Fig. 2 above, but used in S-mode.  
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Fig. 3. Temperature distribution of TE conductor in S-mode at different times measured from the beginning of 

the period: ... /0 P 16 . External temperatures: T = 0 °C , 0T 10 C  , TE conductor size a 0.04 m , TE 

material parameters /1.7 W mK  , /-6 21.2 10 m s   , current density amplitude /6 2j 0.1 10 A m   and 

rotation period P 1s . 

Fig. 3 shows that the temperature distribution of TE conductor in S-mode is similar to that for 
P-mode. But the temperature at the TE conductor edges in S-mode is changed continuously by sine 

wave in the range 0T T . In the center of the TE conductor (0, )T t T  because of the Joule heat 

emission. 

3.2. Cooling in S-mode 

Let during the first half-period the TE conductor has the lower end (junction) temperature (see 
Fig. 1b) colder than upper one, i.e. the lower junction is cold one.  

Therefore, the heat flux at the cold junction  x a   is  

 ( ) ( )C x Cx a
x a

T

x
Q q S S T t j t S




    



,  (44) 

where the second term is the Peltier heat flux, S  is the cross section of TE conductor,  

   ,CT t T x a t   . 

Substituting in (44) the expression for the temperature distribution from (43) at x a   we 

obtain 

 

    

   

0

2
2

0

' sin ' cos

2
F ' sin 2 ' cos 2 ( ) ( ),

C

x a

C

Q
T S a t C a t

S

j S a t C a t T t j t
a



       

 
         

 

 
 (45) 

where ', ', ', 'S C S C  are the derivatives with respect to coordinate at x a  .  

At the cold junction according to (4) the temperature will be minimal at / 2t   . We denote it 

as cT . At that moment the heat flux at the cold junction is 

     2

/

0
2

0 0

2

' F 2 / 'C

x a
t

C

Q
T S a j a C a

S
T j


 

        . (46) 



A.A. Snarskii, I.V. Bezsudnov. 
Thermoelectric device in periodic steady state 

 Journal of Thermoelectricity №4, 2014 ISSN 1607-8829 16 

To determine the lowest possible cooling temperature of the cold junction, we have to find the 

minimum of the heat flux at the cold junction i.e. 
/2

/ x aC
t

Q S 
 

 as the function of current density 

amplitude 0j , then to find the optimal current 0
optj  we use the condition 0/ 0CQ j   . Further, using 

0
optj  we calculate the heat flux at the cold junction (46) and finally obtain the minimal cooling 

temperature min
CT . 

The optimal current value 0
optj is 

 
  0 22F 2 / '

Copt

a

T
j

C a






  
. (47) 

At the minimal temperature min
CT  the heat flux CQ  of the cold junction at the current density 

amplitude 0
optj  to be equal to zero 

    
  0

/2

2

2
'

4F /

1
0

2 '
C

x a
t

CQ
T S a

S a C a

T


 

   


   



. (48) 

Using 0 CT T T   for (48) we find 

     
2

2 2
2 2

2
2 ( ) 2 ' 'C C

F
T T T T aC a aS

a
a

T
 

      
 

 . (49)  

Let us denote the term in square brackets in (49) ( , ) /ZT ZT   then using 
2 22 22 / 1 / 2T aF ZT    we write the following formulae for the dimensionless parameter ( )   

 
2 2

2 2

1 sh( )ch( ) cos( )sin( )
( ) 1

2 ch ( ) sin ( )2 2

sh( / 2)ch( / 2) sin( / 2)cos( / 2)

sh ( / 2) sin ( / 2)

      
         

    


  

 (50) 

and the equation (49) is rewritten in the form  

 2 2( ) ( )
0C CT TT T

ZT ZT

   
   . (51) 

To calculate min
CT we have to solve the quadratic equation (51), the positive root of (51) gives min

cT  

 min 2

1 1
( )

C

T
T

ZT


 
 

. (52) 

Let us compare min
CT in S-mode to the minimal cooling temperature in the stationary steady state 

st
CT  that can be expressed [14] as follows  

 
1

st H
C

T
T

ZT



 , (53) 

or using 2H CT T T   

 
2

1 1

st
C

T
T

ZT


 
. (54) 

Relations (52) and (54) have the similar form that allows rewriting the expression for min
cT  
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 min 2

1 1
C

e

T
T

Z T


 
, (55) 

where eZ T  is the renormalized figure of merit 

 
( )e

ZT
Z T 

 
.  (56) 

Thus, S-mode calculations are also similar to the stationary steady state. As seen from (55) min
CT  

is a monotonically increasing function of the dimensionless parameter ( ) / ZT  , at large values 

( ) / 1ZT    we obtain min
CT T , that means no cooling at large ( ) / ZT  , i.e. the smaller the 

value ( ) / ZT  , the lower min
CT .  

Also we can state that the higher TE figure of merit ZT  means better cooling in S-mode (50) 

and opposite, when 0ZT  , ( ) / ZT    and the cooling is impossible. Further, note that (50) и 

(52) show that min
CT depends only on the single dimensionless parameter –  . 

Let examine the ratio of minimal temperatures in S-mode and in the stationary steady state 

 
min 1 1 1 1 / ( )

1 1 1 1

eC
st

C

Z T ZTT

T ZT ZT

     
 

   
 . (57) 

When the figure of merit ZT  is fixed, the ratio (57) depends only on the single parameter ( )  . 

The function ( )   has one minimum and it is invariant relative to ZT . The minimum is at  1.53   

and accordingly 0.76 1    i.e. the TE device in S-mode will deliver deeper cooling at certain times 

than in the stationary steady state (see Fig. 4). 

0 1 2 3 4
0.92

0.96

1.00

1.04

1.08



T
cm

in
/T

cst

 ZT = 1.0
 ZT = 1.3
 ZT = 2.0

 

Fig. 4. Ratio of minimal temperatures /min st
c cT T  for S-mode and stationary steady state on   for 

1.0, 1.4, 2.0ZT  . 

As an example, for the TE device in S-mode with the TE conductor made of Bi2Te3 [34] (the 

temperature diffusivity 6 21.2 10 m /s   ) we choose the length of the TE conductor 2 1.5 mma   

and the rotation period 1.15 sP   that gives optimal min 1.53  . 
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For TE device operating in S-mode with the above parameters, we calculated ( , )T x t , measured 

from the beginning of the period – Fig. 5.  

-0.04 -0.02 0.00 0.02 0.04

-10

0

10

x, m

T(
x,

t)
, o C

 

 t = 0
 t = P/32
 t = P/16
 t = P/8
 t = P/4

 

Fig. 5. Temperature distribution of TE conductor in S-mode at different times measured from the beginning of 

the period: 0... / 32P . External temperatures: T 0 C  , 0T 10 C  , TE material dimensionless parameter 

1.53min  , TE conductor size 0.04a m . 

Comparison of Fig. 3 and Fig. 5 shows that exactly at a critical value of the dimensional 

parameter equal to min 1.53   the coordinate dependence of ( , )T x t  at time moment / 4P  becomes 

linear, the heat penetrates to the middle of the leg and, thus, its entire volume is fully operated.  

For S-mode at optimal ( ) 0.76    the minimal achievable cooling temperature can be 

expressed as  

 min 2

1 1 1.3
c

T
T

ZT


 
. (58) 

In other words, using the TE material with 1ZT   in S-mode, we get cooling as of material with 

1.3ZT   in the stationary steady state. The TE material with 1.3ZT   in S-mode corresponds to 

1.7ZT   in the stationary steady state. 

4. Discussion and conclusions 

The paper describes two types of proposed TE device that operate in periodic steady state 
modes: P-mode – the switching periodic mode and S-mode – the continuous sinusoidal mode. 

In common, the efficiency of TE device is related to the rate of entropy production or 

particularly to the volume integral of the divergence of the entropy flux density / Ts q , 

 
V

B div dV  s . Finally, the efficiency can be written in the form  

 
1

1
c

HBT

A

  


, (59) 

where A  is the work performed by the TE power generator. 
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Thus, the higher entropy production rate, the lower the efficiency of TE device in the power 
generation regime. Transient regimes, having some additional spatial inhomogeneity of the 
temperature distribution, naturally lead to the additional entropy production B  and, as a consequence, 
the efficiency has to be even lower. 

But the relation (59) that binds the efficiency and the entropy production is derived for the 
stationary steady state. Therefore, to predict what could be the efficiency in transient, pulsed or 
periodic modes is almost impossible in advance. Generally, the article discusses the possible benefits 
of TE device usage in transient modes, particularly periodic modes.  

S-mode was shown to demonstrate deeper cooling at certain times, as compared with the 
stationary steady state. 

The proposed method to calculate analytically parameters of TE devices in periodic P- and 
S-modes for the power generation regime or the cooling regime can be generalized to even more 
complex timing modes. The analytical solution allows applying the optimization technique to find 
optimal TE device parameters.  
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Appendix А 

Solution of thermal conductivity equation in P – mode 

Here we cite a solution of temperature distribution problem (1) with the boundary conditions (2) 
in P – mode (see Fig. 1) using a standard method of separation of variables. 

As above in the text of the paper, for thermoelement leg in time intervals from nP  to 

 1 / 2n P , where P  is a period, and 0, 1, ...n   the lower end is cold, and the upper end is hot. 

We assume, as before, 2l a , and re-write the thermal conductivity equation (1), the boundary 

conditions (2), just as substitution of variables, made in (7) in coordinates ...x a a  .  

Thermal conductivity equation 

 
2

2
2

0V

T T
j

t x c

  
  

  
, (А1) 

and the boundary conditions 

  0x a
T T T t


   . (А2) 

Substituting 

      
2

2 2, ,
j

T x t T a x T x t


   


 , (А3) 

we obtain 

 
2

2

T T

t t

 
 

 

 
, (А4) 

    0,
x a

T x t T t


  . (А5) 
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Let us represent the solution of equation (А1) with the boundary conditions (А2) in the form 

 
       

   

2 2
2 2 2 2

0
1

, ,

2 2
sin cosn n n

n

j j
T x t T a x T x t T a x

T b S x nt C x nt
P P





 
       

 
             





, (А6) 

where 

         

         

1
ch sin sh cos ,

1
ch sin sh cos ,

n n n n n n n
n

n n n n n n n n
n

C x B x x A x x

nS x A x x B x x P

        

           

 . (А7) 

Coefficients nA , nB  and n  are as follows 

        2 2ch sin , sh cos ,n n n n n n n n nA a a B a a A B          , (А8) 

and nb  is coefficient of  t expansion into a Fourier series. 

    
1

2 2
sin , 1 1

n

n n
n

t b nt b
P n





           
 . (А9) 

Fig. А1 shows a dependence of temperature  ,T x t  along the thermocouple length, obtained 

both by the Grinberg method [30] (TG), and by the method of separation of variables (TD) stated 
above. (Parameters of TE device correspond to those given in the paper).  

-0.04 -0.02 0.00 0.02 0.04
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T
(x

, t
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 o C

 t = P/128
 Fourier method
 Grinberg [30]

 

Fig. А1. As an example, temperature distribution along the thermocouple leg is given along thermocouple leg for 

time moment /128t P , continuous line is solution by the Grinberg method [30], (19) triangles – by the method 

of separation of variables (А6).  

As is evident from Fig. А1, temperature distribution  ,T x t  obtained by both methods – the 

method of separation of variables and the Grinberg method [30] practically coincide. For the 
calculation of the generation and cooling modules and for their optimization it is necessary to calculate 

heat fluxes, including the derivatives of temperature /T x  on the ends of thermocouple legs x a  . 

For the solution obtained by the method of separation of variables such a derivative cannot be 

calculated, as long as for x a   formula (A9) gives a divergent series, whereas solution (19) obtained 

according to [30] at x a   converges, and the derivative can be calculated, see (20)-(22). 
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Fig. А2 shows a dependence of temperature  ,T x t  for different thermal diffusivity values. 

Coefficients n  are inversely proportional to thermal diffusivity (and, hence, thermal conductivity), 

thus, the higher n , the deeper temperature variations will penetrate into a TE device leg.  

Note that dependence 3 in Fig. А2 is given for thermal diffusivity value corresponding to the 

value of 0  (27) equal to 1.53, i.e. the one found in (56). Further thermal diffusivity increase does not 

change the form of dependence 3 in Fig. А2. With such thermal conductivity value heat fully comes to 

the middle of thermocouple leg, and the dependence  , / 4T x P  becomes fixed. 
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Fig. А2. Temperature distribution at time moment P / 4  along thermoelement leg at different thermal diffusivity 

values 1 – -6 21.214 10 m / s   ,  2– -6 212.14 10 m / s   , 3 – -5 24.183 10 m / s   . 

Fig. А3 gives dependences  ,T x t  and /T x   at different time points. To calculate the 

derivative, the solution by the Grinberg method was used [30]. 
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 a) b) 

Fig. А3. Dependences of temperature T(x,t)  (а) and temperature gradient /T x   (b) at time points P / 128 , 

P / 32 , P / 4  for -5 24.183 10 m / s   . 
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As is seen from Fig. А3, that part of heat flux which is due to temperature gradient /T x   

( /x xq T x j     ) in the middle of thermocouple leg, close to 0x  , is much less that the flux 

on the ends, where there are large heat fluxes entering the hot end and coming into the cold end. In so 

doing, due to smallness of 
0

/
x

T x


   there is practically no through flux through thermocouple leg. 
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