томатического контроля содержания полезного компонента (железа) без предварительного отбора и подготовки проб в технологических потоках в реальном масштабе времени позволяет создавать комплексные системы управления качеством продукции, как отдельных технологических процессов переработки минерального сырья, так и целых производств.

Список литературы

- 1. **А.А. Азарян.** Исследование и оптимизация параметров центральносмещенной геометрии измерения интенсивности гамма-излучения. Сборник научных трудов «Качество минерального сырья» Кривой Рог. –2008 г., -224 с.
- 2. **А.А. Азарян.** Ядерно-физический метод контроля качества минерального сырья», -К.: УкрННТН, -1990, -С. 4-15.

УДК 658.562.64:622.3

А.А. АЗАРЯН, д-р техн. наук, Г.Н. ЛИСОВОЙ ст. науч. сотр., В.Е. ВАСИЛЕНКО ст. науч. сотр., Криворожский технический университет

АНАЛИЗ ПОГРЕШНОСТЕЙ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЖЕЛЕЗА РАДИОМЕТРАМИ ПАКС

Проблема достоверности контроля минерального сырья, со сложным химическим составом при экспрессном опробовании, тесно связана с мешающими факторами, флуктуации которых необходимо компенсировать при помощи специальных методов и средств.

Проблема достовірності контролю мінеральної сировини, із складним хімічним складом при експресному опробуванні, тісно пов'язана з негативними факторами, флуктуації яких необхідно компенсувати за допомогою спеціальних методів і засобів.

Проблема и ее связь с научными и практическими задачами. Согласно паспортным данным, на рудничные радиометры ПАКС они обеспечивают точность определения содержания железа в пробах руды ± 2 % относительных. При этом оговаривается, что материал пробы должен иметь крупность -5 мм.

К сожалению пользователи, (службы ОТК горнодобывающих предприятий) не выполняя требований по крупности материала предъявляют претензии на достоверность результатов контроля и большие расхождения данных с результатами химического анализа.

Анализ исследований и публикаций. В данной работе на примере экспресс-анализа проб руды крупностью до - 25...30 мм показаны основные источники столь высоких расхождений. Для исследований были взяты 12 проб руды указанной выше крупности с содержанием железа в диапазоне 49...63 %.

Изложение материала и результаты. Эксперимент сводился к измерению радиометром ПАКС-4 интенсивности рассеянного материалом проб излучения. Причем, использовали зонд БДНО-1, с 4-мя источниками излучения на основе америция—241, активностью по $1,85x10^8$ Бк каждый, время экспо-

зиции брали 10 с. Облучение материала проб вели через дно кюветы. Материал каждой пробы пересыпали в кювете по 10 раз и, кроме того, при одной засыпке делали по 3 экспозиции, проворачивая кювету на 120 градусов после каждой экспозиции. Таким образом, для каждой пробы было получено 30 значений величин интенсивности рассеянного излучения. По результатам измерений по формуле 1 определяли величину воспроизводимости $\sigma_{\rm B}$ интенсивности излучения, и пересчетом, воспроизводимость измерения содержания железа.

$$\sigma_{\rm B} = \sqrt{\frac{\sum \left(N_i - \overline{N}\right)^2}{n - 1}} \tag{1}$$

где N_i - величина интенсивности излучения при i-том замере от i-той пробы, \overline{N} -среднее по всем замерам значение величины интенсивности от i-той пробы, n -число замеров интенсивности от пробы

Кроме того, был сделан рассев материала проб ситами с диаметром отверстий 5, 10, и 20мм.

Результаты экспериментов приведены в табл. 1 и на рис. 1, где показана связь величины интенсивности рассеянного излучения с содержанием железа в пробе (по данным химического анализа).

Из рис. 1 наглядно видна низкая корреляционная связь между интенсивностью регистрируемого излучения и содержанием железа в пробах руды.

Таблица 1

Характеристика пробы								Параметры отраженного. от пробы излучения		
	%(x/a)	%;	%	Содержание фракции круп-					%,	
			рж.	ностью, %						16c.
№ пробы	Содерж. Fe, 9	Содерж. Fe, (ПАКС)	Разница содерж.	05мм	010мм	020мм	>20 мм	N имп/с	σ _{в,} имп./ %	σ _в % Fe, абс.
1	56,7	52,5	4,2	61,2	90,5	100	0	24540	74/0,3	0,79
2	49,5	46	3,5	19,8	36,7	84,2	15,8	25248	500/1,98	5,29
3	51,62	49,4	2,22	24,3	43	98	2	24850	145/0,58	1,53
4	58,4	62,7	4,3	26,4	43,6	88,6	11,4	23577	214/0,91	2,26
5	60,53	54	6,53	34	55	94	6	24371	287/1,18	3,04
6	62	65	3	22	428	89	10,8	23328	92/0,39	0,98
7	50,6	52,5	1,9	25,4	44	87,7	12,3	24543	175/0,71	1,85
8	59,38	62,7	3,32	23,8	45	92,7	7,3	23578	163/0,7	1,72
9	52,71	60	7,29	17	36,8	89,2	10,8	23837	190/08	2,0
10	59,28	58	1,28	26,2	45,6	92,7	7,3	24046	294/1,22	3,11
11	63,7	65	1,3	27	41,6	88,3	11,7	23331	234/1,0	2,5
12	63,3	59,8	3,5	19,3	35,6	87,6	12,4	23853	257/1,08	2,72

Примечание. В графе "Содерж. Fe, % (ПАКС)" приводятся значения содержания железа рассчитанные аналитически, путем аппроксимации значений интенсивности, полученных в эксперименте, по линейному закону N=29509.7-94.467g.

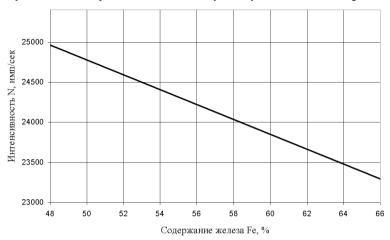


Рис. 1. Связь интенсивности рассеянного излучения с содержанием в пробе руды железа

В результате обработки данных получено аналитическое выражение N=-92,603Fe +29409, надежность аппроксимации $R^2=0.56$.

Математическая обработка показывает, что коэффициент корреляции между этими параметрами не превышает 0.77, тогда как на пробах класса -5 мм он обычно выше 0.9.

Анализ результатов показывает, что воспроизводимость по интенсивности в среднем равна 0.9% и колеблется от 0.3 до 1.98, а в пересчете на содержание железа среднее значение равно 2.38% (минимальное -0.79%, максимальное -5.29%).

Только у двух проб воспроизводимость по содержанию железа не хуже $1\,\%$. Безусловно, с такой низкой воспроизводимостью не представляется возможным контроль содержания железа даже с точностью $\pm 1,5...2,0\,\%$ абс.

Основная причина низкой корреляционной связи и воспроизводимости — невозможность качественного усреднения по содержанию железа материала по объему пробы из-за наличия в ней крупных фракций и существенного отличия содержания железа в мелких и крупных фракциях пробы. Следует подчеркнуть, что в первую очередь негативно влияет на воспроизводимость не столько наличие крупных фракций материала, а именно большое различие в содержании железа в мелкой и крупной фракциях пробы. Это подтверждается тем, что пробы с практически одинаковым гранулометрическим составом (проба №8 и №10) имеют существенно различные воспроизводимости (1.72 и 3.11 % соответственно) и, в тоже время, пробы с разным гранулометрическим составом (проба №1 и №6) имеют практически одинаковую и до-

вольно хорошую воспроизводимость, поскольку, в них содержание железа в мелкой и крупной фракциях отличаются незначительно.

Другим выводом анализа является то, что интенсивности рассеянного излучения материалом проб № 9 и № 12 практически одинаковы, а данные химического анализов указывают на расхождение в содержании железа на 10.6 %! Подобная ситуация с пробами №1 и №7, где расхождение в содержании железа составляет 6 %. Объяснение этому может быть только одно – материал проб по которому проводился химический анализ не адекватен материалу проб для экспресс-анализа радиометром ПАКС. Причина неадекватности – невозможность отбора двух идентичных по содержанию железа проб из материала такой крупности. Поэтому сопоставление результатов экспрессанализа и химического правомерно только в том случае, когда вся масса пробы, входящая в кювету радиометра, после обмера измельчена до крупности аналитического порошка или хотя бы до —3 мм и уже после этого отобрана навеска для химического анализа.

Анализируя характер расхождения результатов контроля содержания железа радиометром ПАКС с данными химического анализа, можно отметить, что в подавляющем большинстве случаев радиометр завышает содержание. Причин этого две.

Первая - материал мелких фракций пробы, более богатых железом, при засыпке кюветы скапливается на ее дне, т.е. происходит дифференциация материала пробы по крупности и содержанию. В процессе приборного контроля содержания железа с датчиком БДНО именно нижние слои пробы, расположенные ближе к источникам и детектору излучений, обладают большей информативностью, и, в итоге, радиометр показывает завышенное содержание железа.

Это подтверждается характером приведенной на рис. 2 зависимости интенсивности рассеянного излучения от толщины слоя руды в кювете при облучении через дно кюветы проб с содержанием железа 25,9 и 32,5 %%. В результате обработки получены аналитические выражения:

- $1 N=58,94h^3 938,22h^2 + 4590,7h + 5317,4$, надежность аппроксимации $R^2=0.99$;
- 2 N=54,19h³ 847,19h² + 4047,6h + 5311,2, надежность аппроксимации R^2 =0,99.

Это также подтверждается приведенными на рис. З зависимостями интенсивности рассеянного излучения от толщины слоя руды с содержанием 62 % железа при размещении руды на поверхности из алюминия (кривая 1) и свинца (кривая 2), при облучении материала пробы сверху.

Как видно из рис. 2, из общего числа регистрируемых квантов 96..97%% идет от слоя руды толщиной 3 см, причем, вклад от дна кюветы (толщина 0,8мм алюминия) составляет 44...45 %. Из рис. 2 также видно, что после толщины слоя в 3,0 см приращение интенсивности не наблюдается (незначительные колебания объясняются статистическим разбросом). Исходя из сказанного, информативный слой для руды с указанным содержанием железа

ограничен 3.0 см, а остальной материал пробы является балластом. Причем, согласно классическому определению слоя насыщения (толщина слоя, от которого рассеивается 95 % от числа квантов, рассеиваемых слоем бесконечной толщины) слой насыщения для руд с указанным содержанием железа находится в пределах 2,5 см, а для руд с содержанием 50...65 % это значение еще меньше, что подтверждается экспериментом, результаты которого приведены на рис. 3.

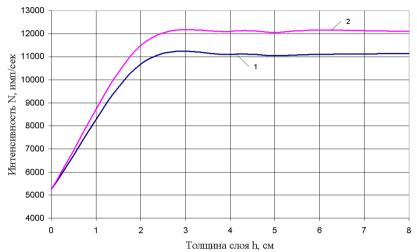


Рис. 2. Зависимость интенсивности рассеянного излучения от толщины слоя руды в кювете: 1 – Содержание железа 32,5 %, 2 – содержание железа 25,9 %

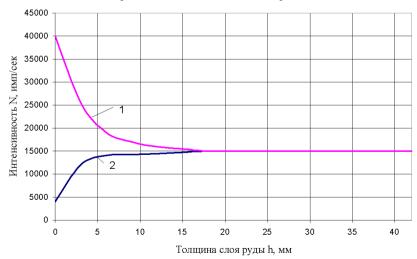


Рис. 3. Зависимость интенсивности рассеянного излучения от толщины слоя руды на поверхности из Al (1) и Pb(2)

Из рис. 3 видно, что кривые 1 и 2 сливаются при толщине слоя руды 18 мм. Это говорит о том, информативным является слой такой толщины, и материал лежащий за слоем толщиной 18...20 мм не несет никакой информации. В результате обработки получены аналитические выражения:

- 1- N=-1,8368 h^3 + 142,36 h^2 3272,2h + 36839, надежность аппроксимации R^2 =0,93;
- 2- $N=0.8196h^3$ $62.345h^2$ + 1391.4h + 6119.3, надежность аппроксимании $R^2=0.84$.

Полученные значения толщины информативного слоя удовлетворительно согласуются с рекомендациями [1] определения толщины слоя насыщения как $d_{\text{нас}}=1,5/\mu$, где μ -линейный коэффициент ослабления интенсивности излучения, см⁻¹. Измеренные нами значения μ для проб руды крупностью –5 мм с содержанием железа 52...63% лежат в диапазоне 1,6...2,15 см⁻¹, а отсюда $d_{\text{наc}}=1,7...1,9$ см

Для сравнения можно указать что слой насыщения при использовании излучения радионуклида кобальт—57 более чем в 3 раза больший, чем для радионуклида америций -241 (например, для Z=20 массовые коэффициенты ослабления равны 0.2 и 0.637 см²/г соответственно [2]).

На рис. 4, для наглядности, приведена зависимость вклада в суммарную интенсивность рассеянного излучения от толщины слоя руды крупностью –1 мм с содержанием железа 62 %.

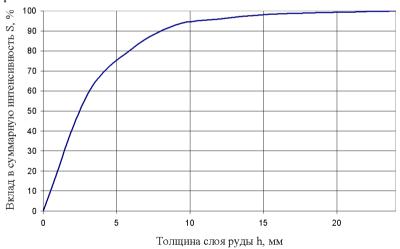


Рис. 4. Зависимость вклада в суммарную интенсивность рассеянного излучения от толщины слоя руды с содержанием железа 62 %

Из рис. 4 следует, что слой насыщения для руды этого содержания находится в пределах 6 мм, что согласуется, например, с данными Финской фирмы Оутокумпу [3], которая гарантирует, при использовании излучения радионуклида Am-241, глубинность контроля руд черных металлов рав-

ную 15 мм. В результате обработки получено аналитическое выражение $S=0,027h^3-1,3017h^2+19,763h+3,3251$, $R^2=0,98$.

Вторая причина расхождения данных экспресс-анализа и химического метода заключается в том, что наиболее крупные куски пробы (+20 мм) являются и наиболее бедными, что существенно снижает содержание железа. Поскольку они монолитны, то занимают в кювете меньший объем и поэтому меньше их вероятность попадания в информативную область пробы.

Это подтверждается проведенными нами исследованиями непосредственно на пробах товарной руды ш. Октябрьская. Эксперименты проводились с использованием радиометра ПАКС-4М.

Из аглоруды (в которой допускается 5 % фракции крупности +10 мм) была отобрана проба, которая после предварительного усреднения рассыпана по 3 кюветам. В первом случае анализ материала всех 3х кювет проводили без предварительного дробления материала пробы. В результате анализа получено значение содержания железа q=60.95 %, при среднеквадратическом расхождении (СКО) в содержании между кюветами 1,01 %. После первой стадии дробления материала пробы на валковой дробилке (крупность –6 мм) прибор показал содержание железа q=59,24 %, и СКО=0,3 %, после второй стадии (крупность –3 мм) - q=58.6 %, СКО=0,3 %. В приведенном примере четко прослеживается связь показаний прибора с крупностью пробы – с уменьшением крупности материала пробы уменьшается значение содержания. Снижение крупности с –10 мм до –3 мм приводит к снижению показаний прибора более чем на 2%. С уменьшением крупности увеличивается достоверность результатов контроля, что видно по снижению СКО.

Выводы. Таким образом, на основании проведенных исследований установлено:

- воспроизводимость результатов при экспресс контроле радиометрами ПАКС проб руды крупностью -20...25 мм находится в пределах 0.8...5.3 % (средняя 2.32), что ограничивает точность определения содержания в пределах $\pm 2...3$ % абс. и ниже;
- причинами низкой воспроизводимости и точности являются неоднородность гранулометрического состава проб, большое количество материала крупностью более 5 мм (60...80 %) и, самое главное, существенное различие по содержанию железа в материале мелкой и крупной фракций пробы;
- основной причиной высоких расхождений результатов (>5 %) экспрессного и химического анализов руд крупностью 20...25 мм является нетождественность материала проб поступающих на экспресс и химический анализы. Для увеличения сходимости результатов необходимо после проведения экспрессного контроля весь материал пробы, заполняющий кювету радиометра, дробить до крупности как минимум 3 мм и уже из него отбирать пробу для химического анализа;
- при невозможности обеспечить лучшее измельчение материала проб можно добиться несколько лучшей точности контроля использованием в качестве источника излучения радионуклида кобальт—57 (120 кэВ), обеспечи-

вающего в три раз большую глубинность контроля, и применение радиометра ПАКС-4М, блок измерения которого позволяет увеличить объем контролируемого материала пробы, чем повышается достоверность контроля.

Список литературы

- 1. **А.Г Рысенко, У.А. Улманис.** Некоторые исследования альбедо гамма-лучей "Радиоактивные излучения и методы их исследования" АН Латв. ССР, Рига, 1961.
- 2. **Г.В. Горшков.** Проникающие излучения радиоактивных источников. -Л.: "Наука", 1967.
 - 3. Проспект фирмы Оутокумпу.

УДК 658.652.64:622.3

А.В. ГОЛОВКО, Криворожский технический университет

СЕЛЕКТИВНЫЙ ГАММА-ГАММА КАРОТАЖ ПОДЗЕМНЫХ СКВАЖИН С ПОМОЩЬЮ УСТРОЙСТВА ПАКС-4-01

Приведено опис пристрою та програмного забезпечення свердловинного рудничного радіометра, що використовується при каротажі підземних свердловин.

Приведено описание устройства и программного обеспечения скважинного рудничного радиометра, применяемого для каротажа подземных скважин.

Проблема и ее связь с научными и практическими задачами. Горнодобывающий комплекс занимает ведущее место в промышленности Украины. Острой и актуальной остается проблема обеспечения металлургического производства высококачественным сырьем. Известно, что процесс отработки каждого месторождения сопровождается комплексом геологоразведочных работ, в состав которых входит построение детальных геологотехнологических планов и разрезов с обязательным контролем качества сырья в естественном залегании.

Получение оперативных данных о содержании железа непосредственно в зоне залегания, а также определение контактов и контуров рудных тел по данным геофизического каротажа разведочных и эксплуатационных подземных скважин позволяет управлять процессом добычи горной массы, рассчитывать массу взрывчатых веществ и планировать объемы и качество добываемых руд. В результате этого уменьшаются потери и засорение руд, а также снижается себестоимость и повышается качество товарной продукции

Анализ последних исследований. Радиометрические методы занимают ведущее место в комплексе поисково-разведочных работ. Эти методы позволяют не только обнаружить повышенные концентрации химических элементов, но и оперативно получать информацию о содержании полезного компонента, как в отобранных пробах, так и в рудах на месте залегания [1]. Подобные возможности методов важны на всех этапах поисков и разведки, а также разработки месторождений полезных ископаемых. Метод гамма-гамма каротажа основан на облучении горных пород γ -квантами средней энергии и измерении рассеянного γ -излучения. Гамма-гамма каротаж используется при