UDC 544.723 + *544.47*

HAMMETT ACIDITY FUNCTION FOR MIXED ZrO₂–SiO₂ OXIDE AT ELEVATED TEMPERATURES

E.I. Inshina¹, D.V. Shistka¹, G.M. Telbiz², V.V. Brei¹*

¹ Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine 13 General Naumov Str., Kyiv, 03164, Ukraine

²L.V. Pisarzhevsky Institute of Physical Chemistry of National Academy of Sciences of Ukraine

31 Nauki Pr., Kiev, 03039, Ukraine

The mixed ZrO_2 -SiO₂ oxides with different $4 \ge Zr/Si \ge 0.25$ atomic ratios have been prepared using a sol-gel method. It was shown that the concentration-strength acid site distributions on the surface of ZrO_2 -SiO₂ are caused by Zr^{4+}/Si^{4+} ratio. The ZrO_2 -SiO₂ with Zr/Si = 0.5 is characterized by the highest strength of acid sites ($H_0 = -11.35$). According to the IR-spectra of adsorbed pyridine, the B- and L-acid sites are present in the ZrO_2 -SiO₂ samples with Zr/Si < 1 whereas at Zr/Si > 1 only L-sites are formed. Basing on the UV-Vis diffuse reflectance spectra of adsorbed indicators, the H_0 values for ZrO_2 -2SiO₂ have been determined at elevated temperatures. The Hammett acidity function reaches the superacid value of $H_0 \le -14.5$ at $T \ge 85$ °C.

INTRODUCTION

Mixed ZrO_2 -SiO₂ oxide was proposed by Standard Oil as a cracking catalyst in 1944 [1]. Soon C. Thomas [2] explained how acid sites could be formed in ZrO_2 -SiO₂ structure. The ZrO_2 -SiO₂ catalyst is used in industry for production of polytetramethylene ether from tetrahydrofuran with addition of acetic anhydride [3]. During the last years several sol-gel methods for obtaining ZrO_2 -SiO₂ have been proposed [4– 8]. However, further study of the influence of Zr^{4+}/Si^{4+} ratio in ZrO_2 -SiO₂ on the concentration, type, and strength of its acid sites is of interest.

In this communication the data on an acidity of the ZrO_2 -SiO₂ samples with different Zr/Si ratios and Hammett acidity function for this oxide at elevated temperatures are presented.

EXPERIMENTAL

Zirconyl chloride octahydrate ZrOCl₂·8H₂O (ABCR GmbH & Co. KG), tetraethoxysilane (TEOS, Sigma-Aldrich) and carbamide were used as starting chemicals.

Synthesis of the samples was based on the procedure described in [8]. 322 g ZrOCl₂·8H₂O (1 g-mol) was dissolved in 1.5 l of distilled water. Water solution of silicic acid oligomers was obtained by hydrolysis of TEOS (417 g) (2 g-mol) with aqueous-alcoholic solution of HCl. After mixing these two solutions, 250 g of urea was

added at stirring. Then this solution was aged within 4 days at 90 °C. The obtained opalescent transparent gel was washed to remove Cl⁻ ions and then dried at 120 °C. In a similar manner the samples with ratios of Zr/Si = 1:3, 1:1, 2:1, 3:1, 4:1, 5:1 were synthesized. All the samples synthesized were calcined at 700 °C for 2 h in air. The marking of a sample as ZrSi2 means that its structure contains twice more Si⁴⁺ ions than Zr⁴⁺.

XRD patterns of samples were recorded on a DRON-4-07 diffractometer (CuK α).

Nitrogen adsorption-desorption isotherms were obtained with using a Nova 2200e Surface Area and a Pore Size Analyzer.

Total acidity of the samples was determined by reverse titration using *n*-butylamine solution in cyclohexane with bromthymol blue as an indicator. The strength of ZrO₂-SiO₂ acid sites was estimated by direct titration with *n*butylamine using following indicators (Aldrich): dicinnamalacetone ($pK_{BH^+} = -3.0$),

benzalacetophenone ($pK_{BH^+} = -5.6$),

antraquinone ($pK_{_{RH^+}} = -8.2$),

4-nitrotoluene ($pK_{BH^+} = -11.35$).

The IR spectra of ZrO_2 -SiO₂ samples were recorded on a Specord IR-75 spectrometer. The samples were pressed into thin pellets (10– 12 mg/cm²) which were placed into a quartz cell

^{*} corresponding author *brei@ukr.net* CPTS 2012. V. 3. N 4

with water cooled KBr windows. The tablets were evacuated at 400 °C, 2 h before pyridine adsorption. A sample was cooled to 150 °C and pyridine was adsorbed. This sample was evacuated (30 min, 10^{-1} Pa) to remove physically adsorbed pyridine, cooled to room temperature, and then its IR spectrum was recorded.

The UV-Vis diffuse reflectance spectra of 1-chloro-3-nitrobenzene ($pK_{BH^+} = -13.16$), 2,4-dinitrotoluene ($pK_{BH^+} = -13.75$), and 1-fluoro-2,4-dinitrobenzene ($pK_{BH^+} = -14.52$) indicators adsorbed on ZrO₂-SiO₂ were recorded at 20–160 °C according to the procedure described in [9].

Catalytic activity of the ZrO₂-SiO₂ samples was estimated using a test TPR reaction of 2methyl-3-butyn-2-ol (MBOH) transformation with a mass spectrometric control of the products [10].

RESULTS AND DISCUSSION

According to the X-ray analysis (Fig. 1), all synthesized samples except 4ZrSi are amorphous what agrees with the data [4, 8]. Crystallization of tetragonal ZrO_2 is observed in 4ZrSi sample with a high content of zirconium. Also at raising Zr^{4+} content, the specific surface area and average diameter of mesopores for the samples decrease significantly (Table 1).

The content of acid sites in ZrO_2 -SiO₂ samples reaches of maximal value at Zr:Si = 1:2 (Fig. 2) in agreement with Thomas model [2] and the data [4, 6]. The concentration of B-sites sharply decreases with increasing Zr⁴⁺ content from 1.7 mmol/g for ZrSi2 to 0.3 mmol/g for 2ZrSi (Fig. 2). Also only ZrSi2 sample contains strong acid sites with H₀ = -11.35 (0.2 mmol/g)

Table 1. Textural parameters and acidity of ZrSi samples

while for medium acid ZrSi and 4ZrSi the values of $H_0 \leq -5.6$ (Fig. 3).

The strength of ZrO_2 -SiO₂ acid sites correlates with their activity in the dehydration reaction of 2-methyl-3-butyn-2-ol (MBOH, m/e = 69) to 3-methyl-3-buten-1-yne (Mbyne, m/e = 66). The maximum rate of Mbyn formation over ZrSi2 is observed at 45 °C and for less acid 4ZrSi – at 110 °C (Fig. 4).

The IR spectra of pyridine adsorbed on ZrSi2 are presented in Fig. 5. The bands at 1440 and 1490 cm⁻¹ correspond to pyridine adsorbed on L-sites and 1540 cm⁻¹ – to protonated pyridine with B-sites [5, 11]. After adsorption of pyridine on 4ZrSi only band at 1437 cm⁻¹ is observed in the IR spectrum (Fig. 6) that indicates a presence of the L-sites on 4ZrSi surface.

Fig. 1. XRD patterns of ZrO₂–SiO₂ samples calcined at 700°C: ZrSi4 (1), ZrSi3 (2), ZrSi2 (3), ZrSi (4), 2ZrSi (5), 4ZrSi (6)

Sample	Specific surface area, m ² /g	Pore volume, cm ³ /g	Average pore diameter, nm	Total acidity	
				mmol/g	site/nm ²
ZrSi4	445	0.32	2.8	1.4	1.9
ZrSi3	420	0.30	2.8	1.5	2.2
ZrSi2	360	0.27	3.0	1.7	2.8
ZrSi	250	0.14	2.2	1.0	2.3
2ZrSi	180	0.10	2.2	0.3	1.0
3ZrSi	145	0.09	2.3	0.3	1.2
4ZrSi	120	0.08	2.5	0.4	2.1
5ZrSi	105	0.06	2.3	0.6	3.2

Fig. 2. Concentration of acid sites (a – total concentration, b – number of sites per 1 nm²) at different Si/Zr ratios

Fig. 3. Concentration-strength acid site distributions on the surface of ZrO₂-SiO₂ samples: ZrSi2 (a), ZrSi (b), 4ZrSi (c)

The obtained results are agreed with the Tanabe rule [11]. At Si/Zr > 1 the difference of charges per one bond is equal to $+4/8 - 2/2 = -1/2 \text{ e}^-$. This negative charge is compensated by protons forming acidic B-sites. If main component is zirconia, the difference of charge is equal to $+4/4 - 2/4 = +1/2 \text{ e}^-$, and the L-sites are formed.

High acidic ZrSi2 is capable to protonate *n*nitrotoluene ($pK_{BH^+} = -11.35$) at room temperature, that appears in a yellowing of the sample. After adsorption of 3-nitrochlorobenzene ($pK_{BH^+} = -13.16$), the sample remains white. According to the UV-Vis diffuse reflection spectra obtained, a protonation of this indicator is observed at T > 50 °C (Fig. 7). Taking into account the concentration-strength acid site distributions for ZrSi2 (Fig. 3, *a*), it is possible to suppose that the B-sites with H₀ = -11.35 provide the first raising of an intensity of the band of protonated 3-nitrochlorobenzene at 50 – 70 °C, and less acidic sites (H₀ = -8.2) – the second raising at 80 – 140 °C. Similar situation is observed for 2,4-dinitrotoluene (pK_{BH^+} = -13.75). Namely, the strong acidic sites protonate this indicator at lower temperature, than the weak sites (Fig. 7).

Fig. 4. TPR spectra of Mbyne (m/e = 66) formation from MBOH (m/e = 69) adsorbed on ZrSi2 (a) and 4ZrSi (b)

Fig. 5. IR spectra of pyridine adsorbed on ZrSi2 before (1) and after sample vacuumization at 200 (2), 300 °C (3)

The curves presented in Fig. 7 reflect the dependence of the concentration of protonated indicator ([BH⁺]) on temperature in an endothermic process of a proton transfer from surface acidic sites to indicator molecules

 $([BH^+] \sim \exp(-\Delta H_R/RT), \text{ at } \Delta H_R > 0)$. On the basis of these curves, the values of Hammett acidity function $H_0 = pK_{BH}^+ - lg[BH+]/[B]$ at $[BH+]/[B] \approx 1$ were determined at different temperatures (Fig. 8). The increasing of H_0 values is proportional to temperature and the super acid value ($H_0 = -14.5$) is achieved at T = 85 °C. It is interesting that the value of a coefficient b = 0.06 in the equation $-H_0 = a + bT$ is close to that earlier determined for H-Y faujasite [9].

Fig. 6. IR spectra of pyridine adsorbed on ZrSi2 before (1) and after sample vacuumization at 200 °C (2)

- **Fig. 7.** Temperature dependence of optical density of absorption bands for protonated indicator forms on ZrSi2 surface:
 - *l* 1-chloro-3-nitrobenzene (386 nm);
 - 2-2,4-dinitrotoluene (390 nm);
 - 3-1-fluoro-2,4-dinitrobenzene (390 nm)

Fig. 8. H₀ values for ZrSi2 sample at different temperatures

CONCLUSIONS

It was shown that the content and strength of acid sites on ZrO_2 -SiO_2 surface are controlled by Zr^{4+}/Si^{4+} ratio in the oxide matrix. At Zr/Si = 0.5 this mixed oxide is characterized by the highest strength of acid sites (H₀ = -11.35). The excess of Si⁴⁺ ions in ZrO_2 -SiO₂ (Zr/Si < 1) causes the formation of B-sites while at Zr/Si > 1 only L-sites are formed. The Hammett acidity function for ZrO_2 -SiO₂ reaches the superacid value of H₀ \leq -14.5 at T \geq 85°C.

REFERENCES

- Pat. 2364949 United States, Int. Cl. 502/242. Conversion of hydrocarbon oils / Connolly G.C. et al. – Publ. Dec. 12, 1944.
- Thomas C.L. Chemistry of cracking catalysts // Ind. Eng. Chem. – 1949. – V. 41. – P. 2564–2573.
- Setoyama T., Kobayashi M., Kabata Y. et al. New industrial process of PTMG catalyzed by solid acid // Catal. Today. – 2009. – V. 73. – P. 29–37.
- Bosman H. J. M., Kruissink E. C., van der Spoel J., van den Brink F. Characterization of the acid strength of ZrO₂-SiO₂ mixed oxides // J. Catal. – 1994. – V. 148. – P. 660–672.
- Lopez T., Navarrete J., Gomez R. et al. Preparation of sol-gel sulfated ZrO₂-SiO₂ and characterization of its surface acidity // Appl. Catal. A. – 1995. – V. 125. – P. 217–232.

- Navio J.A., Marchena F.J., Macias M. et al. Preparation and characterization of amorphous ZrO₂-SiO₂ composite powders processed by sol-gel chemistry // J. Sol-Gel Sci. Technol. – 1997. – V. 10. – P. 165–175.
- Tarafdar A., Panda A.B., Pramanik P. Synthesis of ZrO₂–SiO₂ mesocomposite with high ZrO₂ content via a novel sol–gel method // Micropor. Mesopor. Mater. – 2005. – V. 84. – P. 223–228.
- Prudius S.V. Synthesis of mezoporous acid oxides ZrO₂–SiO₂ // Catalysis and Petrochemicals. – 2010. – V. 18. – P. 1–5 (in Russian).
- Brei V.V., Shistka D.V., Telbiz G.M. Temperature dependence of Hammett acidity for H-Y Faujasite // Polish J. Chem. – 2008. – V. 82. – P. 179–182.
- Brei V.V. Correlation between the strength of the basic sites of catalysts and their activity in the decomposition of 2-methyl-3-butyn-2ol as a test reaction // Theor. Exp. Chem. – 2008. – V. 44. – P. 320–324.
- 11. *Tanabe K*. Catalysts and Catalytic Processes. – Moscow: Mir, 1993. – 176 p. (in Russian).

Received 17.09.2012, accepted 05.11.2012

Функція кислотності Гаммета для змішаного ZrO₂ – SiO₂ оксиду при підвищених температурах

О.І. Іньшина, Д.В. Шистка, Г.М Тельбіз, В.В. Брей

Інститут сорбції та проблем ендоекології Національної академії наук України вул. Генерала Наумова, 13, Київ, 03164, Україна, brei@ukr.net Інститут фізичної хімії ім. Л.В. Писаржевського Національної академії наук України пр. Науки, 31, Київ, 03039, Україна

Золь-гель методом синтезовані мішані ZrO_2 -SiO₂ оксиди з атомним відношенням $4 \ge Zr/Si \ge 0.25$; визначені їхні текстурні параметри, концентрація кислотних центрів та їх розподіл за силою. На підставі IЧ-спектрів адсорбованого піридину встановлено, що при Zr/Si < 1 на поверхні ZrO_2 -SiO₂ переважають B-центри, а при Zr/Si > 1 - L-центри, що узгоджується с правилом Танабе. На основі UV-vis спектрів дифузного відбиття адсорбованих індикаторів визначені значення H_0 для ZrO_2 -SiO₂ при підвищених температурах. Показано, що H_0 досягає суперкислотних значень ≤ -14.5 при $T \ge 85$ °C.

Функция кислотности Гаммета для смешанного ZrO₂ – SiO₂ оксида при повышенных температурах

Е.И. Иньшина, Д.В. Шистка, Г.М Тельбиз, В.В. Брей

Институт сорбции и проблем эндоэкологии Национальной академии наук Украины ул. Генерала Наумова, 13, Киев, 03164, Украина, brei@ukr.net Институт физической химии им. Л.В. Писаржевского Национальной академии наук Украины пр. Науки, 31, Киев, 03039, Украина

Золь-гель методом синтезированы смешанные ZrO_2 -SiO₂ оксиды с атомным отношением $4 \ge Zr/Si \ge 0.25$; определены их текстурные параметры, концентрация кислотных центров и их распределение по силе. На основании ИК-спектров адсорбированного пиридина установлено, что при Zr/Si < 1 на поверхности ZrO_2 -SiO₂ преобладают В-центры, а при Zr/Si > 1 - L-центры, что согласуется с правилом Танабе. На основе UV-vis спектров диффузного отражения адсорбированных индикаторов определены значения H_0 для ZrO_2 -SiO₂ при повышенных температурах. Показано, что H_0 достигает суперкислотных значений ≤ -14.5 при $T \ge 85$ °C.