УДК 543.51+543.573

ОСОБЕННОСТИ ТЕРМИЧЕСКОЙ ДЕСТРУКЦИИ *n*-АМИНОСАЛИЦИЛОВОЙ КИСЛОТЫ В БИНАРНЫХ СИСТЕМАХ С **β**-ЦИКЛОДЕКСТРИНОМ

Л.А. Белякова, Н.В. Роик *, Л.С. Дзюбенко, Т.В. Кулик, Б.Б. Паляница

Институт химии поверхности им. А.А. Чуйко Национальной академии наук Украины ул. Генерала Наумова, 17, Киев, 03164, Украина

Изучена термическая деструкция п-аминосалициловой кислоты в бинарных системах с *β*-циклодекстрином. Установлено, что разложение ароматической аминокислоты в составе эквимолярной механической смеси и комплекса включения типа "хозяин – гость" состава 1:1 начинается с декарбоксилирования, затем происходит окислительная термодеструкция м-аминофенола и В-ииклодекстрина. Температура декарбоксилирования п-аминосалициловой кислоты и окислительной деструкции м-аминофенола повышается при переходе от п-аминосалициловой кислоты и ее механической смеси с В-циклодекстрином к эквимолярному комплексv включения *"В-циклодекстрин – п-аминосалициловая кислота".* Доказано, что увеличение термостабильности капсулированной п-аминосалициловой кислоты является, главным образом, следствием неспецифических межмолекулярных взаимодействий гидрофобной полости циклического олигосахарида и ароматического кольца аминокислоты.

ВВЕДЕНИЕ

п-Аминосалициловая кислота (*n*-ACK) известна своим бактериостатическим, противовоспалительным дезинтоксика-И ционным действием. Она успешно применяется подавления для развития микобактерий туберкулеза И относится к основным противотуберкулезным препаратам. Ee лействие базируется на конкурентном взаимодействии с активным центром фермента, превращающим *п*-аминобензойную кислоту в дигидрофолиевую, и угнетении синтеза фолата в микробной клетке [1]. Особенно эффективной является терапия с использованием *n*-АСК в сочетании с другими противотуберкулезными средствами, что уменьшает вероятность развития резистентности микобактерий туберкулеза усиливает действие И лекарственных препаратов [2-4]. Вместе с тем, применение *п*-аминосалициловой кислоты в медицинской практике осложняется ее низкой химической устойчивостью и раздражающим действием на слизистую оболочку желудочнокишечного тракта. Это требует временной отмены или снижения дозы *n*-АСК при таких сопутствующих туберкулезу заболеваниях как болезнь язвенная желудка И

двенадцатиперстной кишки, а также энтероколит в стадии обострения.

Наиболее перспективным путем преодоления трудностей, связанных с приемом п-АСК. на наш ВЗГЛЯД. является ee капсулирование на молекулярном уровне с циклодекстринов использованием (ЦД). Циклодекстрины – природные олигосахариды торообразной формы с относительно жесткой структурой, образованной глюкопиранозными Наличие ЦД циклами. В внутренней гидрофобной полости, состоящей из метиленовых звеньев и пиранозного кислорода, способствует образованию трехмерных комплексов включения типа "хозяин - гость" с различными органическими/неорганическими нейтральными молекулами. ионами и Эффективность взаимолействия межлу молекулами "хозяина" и "гостя" зависит от соответствия их геометрических размеров и прочности связывания друг с другом за счет ван-дер-ваальсовых гидрофобных И взаимодействий, а также водородных связей [5-8]. Образование комплексов включения, как существенно изменяет физикоправило, химические свойства молекул "гостя", благодаря чему появляется возможность получения лекарственных препаратов с заданной активностью и регулируемым распределением в организме. Можно ожидать, что капсулирование *n*-АСК путем образования комплексов включения будет уменьшать ее негативное влияние на человеческий организм, повышать биодоступность, устойчивость к термо- и окислительной деструкции, а также пролонгировать лечебное действие.

Ранее [9] нами было изучено влияние В-ШЛ на УФ спектральные характеристики *п*-АСК в водных растворах, установлено образование комплексов включения с катионной/анионной формами *n*-АСК, определена стехиометрия и рассчитаны константы устойчивости комплексов включения. В настоящей работе с помощью полного термического анализа и температурно-программированной массспектрометрии изучена термическая выделенного в твердом деструкция виде комплекса включения "β-ЦД – *n*-АСК" с соотношением компонентов 1:1, а также эквимолярной механической смеси ßциклодекстрина п-аминосалициловой И кислоты. Данные о термостабильности могут быть полезны для идентификации комплекса включения "β-ЦД – n-ACK" и оценки полноты комплексообразования, а также при разработке технологии получения лекарственных форм супрамолекулярного комплекса В-шиклодекстрина и *п*-аминосалициловой кислоты.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

β-ЩД фирмы "Fluka" (М.м. = 1135, $T_{nn} = 300$ °C) и *n*-АСК фирмы "ABCR" (М.м. = 153, $T_{nn} = 147$ °C) с содержанием основного вещества не менее 99% использовали без дополнительной очистки.

Методика приготовления комплекса "β-ЦД – п-АСК". включения Лля приготовления комплекса включения "β-ЦД – *n*-АСК" в твердом виде использовали методику, описанную в работах [10, 11]. Механическую смесь в-ШЛ и *п*-АСК. взятых в мольном отношении 1:1, смачивали небольшим дистиллированной количеством воды и тщательно растирали в агатовой ступке в течение 3 ч, затем выдерживали в сушильном шкафу при 60 °С в течение 2 ч. Полученный порошкообразный продукт хранили в эксикаторе.

Термический анализ. Термический анализ проводили на дериватографе Q-1500Д

(Венгрия) в интервале 20–500 °С в открытом платиновом тигле на воздухе, используя Al_2O_3 в качестве инертного стандарта. Скорость нагрева составляла 10 °С·мин⁻¹, навеска анализируемого вещества 20–130 мг, чувствительность $T\Gamma = 500$, ДTA = 100, $ДT\Gamma = 500$.

Температурно-программированная deсорбционная масс-спектрометрия. Спектры летучих продуктов термолиза β-ЦД, *n*-АСК, их механической смеси и комплекса включения "β-ЦД – *n*-АСК" регистрировали в диапазоне масс 2-210 а.е.м. с помощью монопольного масс-спектрометра МХ-7304 (Украина) с ионизацией электронами, переоборудованного для проведения термодесорбционных измерений. Навеску исследуемого вещества 1-10 мг помещали в кварцевомассой молибденовую ампулу и вакуумировали до $\sim 5.10^{-5}$ Па. лавления остаточного Затем осуществляли программированный линейный нагрев со скоростью 10 °С мин⁻¹ до 750 °С при постоянной откачке выделяющихся летучих продуктов термолиза. Газообразные вещества через высоковакуумный вентиль диаметром 5.4 мм поступали в ионизационную камеру масс-спектрометра, ионизировались и фрагментировались под действием электронов. разделения по массам После в массанализаторе интенсивность ионного тока продуктов десорбции И термолиза вторично-электронным регистрировали умножителем "ВЭУ-6". Для регистрации массспектров использовали автоматизированную Анализ полученных результатов систему. осуществляли с помощью компьютерной обработки.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изучение термической деструкиии п-аминосалициловой кислоты в бинарных системах с помощью полного термического Процесс деструкции **β-цикло**анализа. декстрина (рис. 1) характеризуется тремя термоэффектами на кривой ДТА, которым соответствует потеря массы на кривых ТГ и **Д**ТГ.

Низкотемпературный эндоэффект ($T_{\text{макс}} = 125 \text{ °C}$), сопровождающийся потерей массы (12.24 %) в интервале 20–160 °C, относится к десорбции воды: внутренняя полость β-ЦД содержит 9 молекул воды.

При 295 °С на кривой ДТА имеется экзотермический эффект, который резко переходит в глубокий эндотермический эффект с максимумами при 308, 325 и 342 °С. Такое сочетание экзо- и эндоэффектов присуще процессам плавления, протекающим с разложением анализируемого вещества. В данном случае плавление β-ЦД сопровождается окислительной деструкцией, которая приводит разрушению к

Рис. 1. Кривые ДТА, ТГ и ДТГ для β-циклодекстрина

Рис. 2. Кривые ДТА, ТГ и ДТГ для *п*-аминосалициловой кислоты

150 °C Эндоэффект при имеет асимметричную форму, а на кривой ТГ ему соответствуют две потери массы. Так как п-аминосалициловая кислота плавится при 147 °C. то можно предположить, что существенная потеря массы при 150 °С связана с декарбоксилированием *n*-АСК в процессе плавления. Потеря массы в интервале 20-180 °С, вычисленная по кривой ТГ, составляет 30.77 %; расчет потери массы для реакции декарбоксилирования *n*-АСК дает 28.76 %. Завышенное значение экспериментальной

величины потери массы может быть вызвано сублимацией *п*-АСК, происходящей как до, так и в процессе плавления этой ароматической аминокислоты [12].

Вторая область потери массы (150-180 °C) относится к началу окислительной деструкции декарбоксилирования *n*-ACK продукта Этот м-аминофенола $(M-A\Phi)$. процесс заканчивается около 600 °С, и на кривой ДТА в области 180-400 °С ему соответствуют три экзотермических эффекта (рис. 2).

гидроксильных групп и глюкопиранозных звеньев циклического олигосахарида (потеря 280-405 °C массы в интервале равна 63.91 %).

Ha кривой ДТА *п*-аминосалициловой кислоты (рис. 2) регистрируются эндоэффект с T_{макс} = 150 °С и три экзоэффекта при 230, 300 и 350 °С с потерей массы на кривых ТГ и ДТГ.

На кривой ДТА механической смеси в-шл И п-АСК (рис. 3) присутствует Т_{макс} = 121 °С, который эндоэффект при отнести к удалению воды из можно внутренней полости β-ЦД. Потеря массы на кривой ТГ в интервале 20-140 °С составляет 11.46 % (или 13.01 % относительно содержания β-ЦД в механической смеси), что

превышает содержание воды в β -циклодекстрине (рис. 1). По-видимому, при нагревании эквимолярной механической смеси β -ЦД с *n*-АСК до 140 °С одновременно с удалением воды происходит и сублимация *n*-аминосалициловой кислоты.

Рис. 3. Полный термический анализ механической смеси *n*-аминосалициловой кислоты с β-циклодекстрином

Эндоэффект, относящийся к плавлению и декарбоксилированию п-АСК составе в механической смеси, немного сдвинут в сторону более высоких температур $(T_{\text{макс}} = 156 \text{ °C})$ по сравнению с индивидуальной п-аминосалициловой кислотой (Т_{макс} = 150 °С). Потеря массы в интервале 140-180 °С составляет 4.23 % (или 35.57 % относительно содержания *n*-АСК в исходной механической смеси). Рассчитанная максимально возможная потеря массы эквимолярной механической смеси В-ЦД с *п*-АСК в результате декарбоксилирования *n*-АСК составляет 3.40 % (или 28.76 %) соответственно. Очевидно, превышение потери массы в эксперименте по сравнению с рассчитанной может быть также следствием частичной сублимации п-АСК и начала окислительной термодеструкции м-АФ.

Следует отметить, что при 180–290 °С на кривой ДТА механической смеси (в отличие от индивидуальной *n*-АСК) не проявляется термический эффект деструкции *м*-АФ. Однако на кривой ТГ регистрируется потеря массы. По-видимому, отсутствие четкой картины окислительной термодеструкции *м*-АФ вызвано значительно меньшим

содержанием *n*-АСК в эквимолярной смеси. Таким образом, присутствие β-ЦД в механической смеси приводит к небольшому сдвигу температуры деструкции *м*-АФ в высокотемпературную область.

Экзотермический эффект с **ДВVМЯ** максимумами при 297 и 307 °С (рис. 3, кривая ДTA) можно отнести к окислительной термодеструкции м-аминофенола, образовавшегося в результате декарбоксилирования *п*-АСК (начало экзоэффекта при 200 °С), и β-циклодекстрина. Экзоэффекты окислительной деструкции обоих компонентов механической смеси находятся в области температурной плавления β-ЦД, поэтому его эндотермический эффект на кривой ДТА не проявляется.

На рис. 4 представлены результаты полного термического анализа комплекса включения "β-ЦД – *n*-АСК" состава 1:1. Эндотермический эффект при 125 °C. связанный с высвобождением воды ИЗ полости β-циклодекстрина, менее интенсивен, чем для эквимолярной механической смеси *n*-ACK с β-ЦД (рис. 4). На его фоне проявляются слабые эндотермические эффекты при 95 и 105 °C.

Потеря массы в интервале 20–140 °C составляет 6.19 % от общей массы, или 7.03 % от содержания β-ЦД в комплексе включения состава 1:1; для эквимолярной механической смеси и индивидуального β-циклодекстрина – вдвое больше. Таким образом, при образовании

комплекса включения молекула *n*-ACK вытесняет примерно половину молекул воды из внутренней полости β-ЦД и занимает их место; то же самое наблюдается и для других бензолкарбоновых кислот [13].

Рис. 4. Полный термический анализ эквимолярного комплекса включения "β-ЦД – n-ACK"

Эндоэффект на кривой ДТА комплекса включения $(T_{\text{макс}} = 162 \text{ °C}),$ связанный с плавлением и декарбоксилированием *n*-АСК, сдвигается в высокотемпературную область по сравнению с *п*-аминосалициловой кислотой и ее механической смесью с β-ЦД. На кривой ДТГ (рис. 4) в интервале 140–180 °С ему соответствует экстремум при 160 °С. Следует отметить, что в этом температурном интервале имеется еще один эндоэффект в виде плеча к основному пику в области 165-195 °С с максимумом при 180 °С. Потеря массы в интервале 140-165 °C составляет 2.71 % (или 22.80 % относительно содержания *n*-АСК в комплексе включения), при 165-195 °С -1.16 % (или 9.77 %) соответственно. Для эквимолярного комплекса включения существует еще один интервал потери массы -195–237 °C с максимальной скоростью удаления летучих продуктов при 215 °C. Потеря массы в этом интервале температур равна 0.77 % (или 6.51 % относительно содержания *n*-АСК в составе комплекса). Для В-циклодекстрина и его механической смеси с *п*-АСК такого термоэффекта, сопровождающегося потерей массы, нет. Таким образом, декарбоксилирование *n*-АСК происходит в трех температурных интервалах: 140-165 °C (преимущественно) и менее интенсивно в интервалах 165–195 и 195–237 °С. Суммарная потеря массы для эквимолярного комплекса включения в интервале 140–237 °С равна 2.71+1.16+0.77=4.64 % (или 22.80+9.77+6.51=39.08 % по отношению к содержанию в нем *n*-ACK), что превышает рассчитанную максимальную величину потери массы для процесса декарбоксилирования *n*-ACK. Это связано, как и в случае механической смеси, с частичной сублимацией *n*-ACK и началом деструкции продукта разложения *n*-ACK – *м*-аминофенола.

При дальнейшем повышении температуры деструкция комплекса включения протекает, как и для механической смеси индивидуальных компонентов.

Масс-спектрометрическое исследование термолиза п-аминосалициловой кислоты в бинарных системах. На рис. 5 термодесорбции представлены кривые продуктов термолиза β-циклодекстрина, характеризующие зависимость интенсивности выделения газообразных продуктов от температуры нагрева. Процесс разложения β-ЦД протекает В одну стадию в температурном диапазоне 210-330 °С. Один ИЗ основных сигналов, интенсивность которого изменяется при нагревании В-ЦД, принадлежит иону воды с m/z = 17; на кривой температурно-программируемой десорбции фиксируется два пика при 40 и 270 °С.

В газообразных продуктах термолиза п-аминосалициловой кислоты обнаружено значительное содержание углекислого газа, выделение которого происходит в широком температурном интервале, начиная с 75 °С (рис. 7). Первый максимум выделения СО₂ с m/z = 44, связанный с декарбоксилированием *п*-АСК. регистрируется при 117 °C. термодесорбции Появление на кривой п-АСК продуктов термолиза двух высокотемпературных пиков с максимумами при 365 и 710 °C обусловлено термической деструкцией аминосодержащих фрагментов п-АСК выделением летучих И азотсодержащих соединений с m/z = 44.

Рис. 5. Кривые термодесорбции продуктов термолиза β-циклодекстрина

Рис. 6. Масс-спектр продуктов термолиза β-циклодекстрина при 275 °С

При температуре плавления *n*-ACK в массспектре регистрируются молекулярный и фрагментный ионы основного продукта декарбоксилирования *n*-ACK – *м*-аминофенола (*м*-AФ): m/z = 109 и 80 соответственно (рис. 8).

В спектрах десорбции продуктов термолиза механической смеси *n*-ACK с β -ЦД четко идентифицируются кривые десорбции газообразных продуктов термического разложения *n*-ACK с m/z = 109 и 80 (рис. 9). Декарбоксилирование *n*-ACK в механической смеси с выделением молекулярного и фрагментного ионов *м*-AФ начинается, как и

для индивидуальной *n*-ACK, при 100 °C, однако термолиз протекает в более широком температурном интервале (100–250 °C) с максимумом при 170 °C. В присутствии *n*-ACK изменяется термическая устойчивость β -ЦД.

На кривых десорбции ненасыщенного циклического продукта термолиза β -ЦД с m/z = 126 и его фрагментного иона с m/z = 60регистрируются дополнительные низкотемпературные максимумы при 250 °C. Кроме того, максимум интенсивности выделения фрагментов β -ЦД с m/z = 96 смещается в низкотемпературную область (250 °C вместо 270 °С для индивидуального β-ЦД), и на десорбционной кривой появляется плечо при 275 °С. На кривой термодесорбции СО₂ (m/z = 44) присутствуют пики при 117 и 280 °C, характерные для процесса разложения индивидуальных *п*-АСК И в-цд соответственно, а также регистрируется новый пик при 190 °С. Такие изменения в спектрах десорбции продуктов термолиза механической смеси β-ЦД и *n*-АСК по сравнению с индивидуальными соединениями могут быть обусловлены повышением термостабильности *п*-АСК в присутствии β-ЦД.

Рис. 7. Кривые термодесорбции продуктов термолиза *n*-аминосалициловой кислоты для ионов с *m/z* 109, 80, 44, 28

Рис. 8. Масс-спектр продуктов термолиза *n*-аминосалициловой кислоты при 147 °С

Рис. 9. Кривые термодесорбции продуктов термолиза механической смеси *п*-аминосалициловой кислоты с β-циклодекстрином

Процесс термолиза комплекса включения "β-ЦД – *n*-ACK" в значительной степени отличается от термолиза индивидуальных соединений и их механической смеси (рис. 10). Максимальное значение интенсивности СО2 (m/z = 44) на кривой десорбции продуктов термолиза, связанное с декарбоксилированием супрамолекулярного комплекса, наблюдается при более высокой температуре (134 °C). Кроме того, увеличивается температурный интервал первой стадии десорбции СО₂, существенно изменяется форма и положение второго максимума на кривой термодесорбции СО2. Десорбция м-АФ происходит при более высокой температуре, чем для индивидуальной *п*-АСК и ее механической смеси с В-ЦД: максимум десорбции молекулярного и фрагментного ионов *м*-АФ (m/z = 109 и 80) регистрируется при 190 °С (рис. 10). В области 210-280 °C наблюдается выделение газообразных продуктов термодеструкции макромолекул β-ЦД максимальной с интенсивностью при 255 °C. Эти результаты свидетельствуют о повышении термической устойчивости *n*-АСК в составе комплекса Термолиз включения с β-ЦД. β-ЦД в комплексе включения начинается после n-ACK. разложения И его характер не практически отличается от термодеструкции индивидуального соединения и β-ЦД в составе механической смеси с *n*-АСК.

Температура максимальной скорости реакции декарбоксилирования *n*-ACK в составе механической смеси остается прежней, а в составе комплекса включения повышается на 17 °C. Энергия активации реакции декарбоксилирования *n*-АСК для комплекса включения повышается на 4 кДж·моль⁻¹ по сравнению с индивидуальной кислотой (таблица). В то же время Т_{макс} десорбции продукта декарбоксилирования *n*-АСК – *м*аминофенола – возрастает более существенно и для комплекса включения ΔТ_{макс} составляет 58 °C, а энергия активации десорбции *м*-АФ из комплекса включения увеличивается на 12 кДж·моль⁻¹ (таблица).

Рис. 10. Кривые термодесорбции продуктов термолиза эквимолярного комплекса включения "β-циклодекстрин – *n*-аминосалициловая кислота"

Таблица. Энергии активации и температуры максимальной скорости декарбоксилирования *n*-аминосалициловой кислоты и десорбции *м*-аминофенола для термолиза *n*-ACK в различных системах

Система	m/z	Т _{макс} , °С	Т _{макс} , К	$\Delta \mathbf{T}_{Makc}$	Е _{акт} *, кДж∙моль ⁻¹
индивидуальная	44	117	390	0	81
n-ACK	109	132	405	0	84
	80	132	405	0	84
эквимолярная	44	117	390	0	81
механическая	109	170	443	38	92
смесь <i>n</i> -АСК и β-ЦД	80	170	443	38	92
комплекс	44	134	407	17	85
включения	109	190	463	58	96
"β-ЦД – <i>n</i> -АСК" состава 1:1	80	190	463	58	96

* рассчитана по приближенной формуле $E_{akm}=25RT_{Makc}$ [14, 15], которая предполагает протекание реакции по первому порядку и при значении предэкспоненциального множителя $v_o=10^{13}$ c⁻¹.

Образование комплекса включения "β-ЦД – *n*-ACK" приводит к закономерному увеличению энергетических характеристик термолиза ароматической аминокислоты, что

ee молекулы вызвано вхождением BO внутреннюю полость молекулы циклического олигосахарида. С помощью рентгенофазового анализа нами было доказано, что при образовании комплекса включения типа уменьшение "хозяин – гость" наблюдается кристалличности степени *n*-ACK И ee "диспергирование" на молекулярном уровне [9, 16]. Незначительное изменение энергии декарбоксилирования активации процесса *п*-АСК в комплекса включения составе коррелирует с возникновением слабой водородной карбоксильной связи между группой аминокислоты И спиртовыми группами β-циклодекстрина, которое проявляется в небольшом слвиге в низкочастотную область (на 11 cm^{-1}) характеристической полосы поглощения связи С=О карбоксильной группы [16]. Более существенное повышение энергии активации термодесорбции м-АФ в составе комплекса включения свидетельствует об определяющем вкладе в образование супрамолекулярных структур неспецифических межмолекулярных взаимодействий гидрофобной полости β-ЦД и ароматического кольца п-АСК, а ее величина (12 кДж·моль⁻¹) характеризует энергию комплексообразования между **β-цикло**декстрином и *п*-аминосалициловой кислотой.

выводы

С помощью полного термического анализа температурно-программированной И массспектрометрии изучена термическая деструкция *п*-аминосалициловой кислоты в ee бинарных соединениях с β-циклодекстрином. Установлено, что термодеструкция ароматической аминокислоты в составе эквимолярной механической смеси и комплекса включения типа "хозяин – гость" состава 1:1 начинается с лекарбоксилирования. Лальнейшее повышение приводит температуры к окислительной термодеструкции сначала м-аминофенола (продукта разложения *n*-аминосалициловой кислоты), а затем β-циклодекстрина. Показано, что температура декарбоксилирования *n*аминосалициловой кислоты и окислительной деструкции м-аминофенола повышается при переходе от *n*-аминосалициловой кислоты и ее эквимолярной механической смеси с β-циклодекстрином к эквимолярному комплексу включения "В-циклодекстрин – *n*-аминосалициловая кислота". Доказано, что термостабильности увеличение капсулированной *п*-аминосалициловой кислоты является, главным образом, следствием образования супрамолекулярных структур за счет неспецифических межмолекулярных взаимодействий гидрофобной полости циклического олигосахарида И ароматического кольца аминокислоты.

ЛИТЕРАТУРА

- Scholar E.M., Pratt W.B. The antimicrobial drugs. – Oxford: University Press, 2000. – 607 p.
- Handbook of anti-tuberculosis agents. Paraaminosalicylic acid // Tuberculosis. – 2008. – V. 88. – P. 137–138.
- Eastlake C., Barach A.L. Use of paraaminosalicylic acid in chronic pulmonary tuberculosis // Chest. – 1949. – V. 16. – P. 1–14.
- Rengarajan J., Sassetti C.M., Naroditskaya V. et al. The folate pathway is a target for resistance to the drug para-aminosalicylic acid (PAS) in mycobacteria // Mol. Microbiol. – 2004. – V. 53, N 1. – P. 275–282.
- 5. *Lehn J.-M.* Supramolecular chemistry: concepts and perspectives. Weinheim: VCH Verlagsgesellschaft, 1995. 334 p.
- 6. *Стид Д.В., Этвуд Д.Л.* Супрамолекулярная химия. Москва: Академкнига, 2007. Т. 1. 480 с.
- Szejtli J. Introduction and general overview of cyclodextrin chemistry // Chem. Rev. – 1998. – V. 98. – P. 1743–1753.
- Штейнман А.А. Циклодекстрины // ЖВХО им. Д.И. Менделеева. – 1985. – Т. 30, № 5. – С. 514–518.
- Roik N.V., Belyakova L.A. Cyclodextrinbased drug stabilizing system // J. Molec. Struc. - 2011. - V. 987, N 1-3. -P. 225-231.
- Li S., Purdy W.C. Cyclodextrins and their applications in analytical chemistry // Chem. Rev. - 1992. - V. 92, N 6. - P. 1457–1470.
- Hergert L.A., Escandar G.M. Spectrofluorimetric study of the β-cyclodextrin– ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum // Talanta. – 2003. – V. 60, N 2–3. – P. 235–246.

- Rotich M.K., Glass B.D., Brown M.E. Thermal studies on some substituted aminobenzoic acids // J. Therm. Anal. Calorim. – 2001. – V. 64, N 2. – P. 681–688.
- Белякова Л.А., Ляшенко Д.Ю., Гребенюк А.Г., Дзюбенко Л.С. Комплексы включения "β-циклодекстрин – бензолкарбоновая кислота": стехиометрия, термодинамика комплексообразования, устойчивость, термостабильность // Сб. Поверхность. – 2009. – Вып. 1. – С. 58–69.
- 14. *Redhead P.A.* Thermal desorption of gases // Vacuum. 1962. V. 12. P. 203–211.
- 15. Кислюк М.У., Розанов В.В. Термопрограммированная десорбция и термопрограммированная реакция – методы изучения кинетики и механизма гетерогенных каталитических процессов // Кинетика и катализ. – 1995. – Т. 36, № 1. – С. 89–98.
- 16. Белякова Л.А., Роик Н.В. Нанокапсулы ароматических лекарственных соединений / Наноматериалы и нанокомпозиты в медицине, биологии, экологии // Под ред. А.П. Шпака и В.Ф. Чехуна. – Киев: Наукова думка, 2011, С. 67–89.

Поступила 15.10.2012, принята 18.01.2013

Особливості термічної деструкції *n*-аміносаліцилової кислоти в бінарних системах з β-циклодекстрином

Л.О. Бєлякова, Н.В. Роїк, Л.С. Дзюбенко, Т.В. Кулик, Б.Б. Паляниця

Інститут хімії поверхні ім. О.О. Чуйка Національної академії наук України вул. Генерала Наумова, 17, Київ, 03164, Україна, roik_nadya@ukr.net

Вивчено термічну деструкцію п-аміносаліцилової кислоти в бінарних системах з β-циклодекстрином. Встановлено, що розклад ароматичної амінокислоти у складі еквімолярної механічної суміші і комплексу включення "β-циклодекстрин – п-аміносаліцилова кислота" 1:1 починається з декарбоксилювання, потім відбувається окислювальна термодеструкція м-амінофенолу та β-циклодекстрину. Температури декарбоксилювання п-аміносаліцилової кислоти та окислювальної деструкції м-амінофенолу підвищуються при переході від п-аміносаліцилової кислоти та її механічної суміші з β-циклодекстрином до еквімолярного комплексу включення "β-циклодекстрин – п-аміносаліцилова кислота". Доведено, що збільшення термостабільності капсульованої п-аміносаліцилової кислоти є, головним чином, наслідком неспецифічних міжмолекулярних взаємодій гідрофобної порожнини циклічного олігосахариду та ароматичного кільця амінокислоти.

Peculiarities of thermal destruction of *para*-aminosalicylic acid in binary systems with β-cyclodextrin

L.A. Belyakova, N.V. Roik, L.S. Dzyubenko, T.V. Kulik, B.B. Palyanytsya

Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine 17 General Naumov Str., Kyiv, 03164, Ukraine, roik_nadya@ukr.net

Thermal degradation of para-aminosalicylic acid in binary systems with β -cyclodextrin has been studied. It was found that destruction of aromatic amino acid in equimolar physical mixture (or " β -cyclodextrin – paraaminosalicylic acid" inclusion complex of 1:1) begins with decarboxylation reaction. Then the oxidative degradation of m-aminophenol and β -cyclodextrin takes place. Temperatures of para-aminosalicylic acid decarboxylation and oxidative degradation of meta-aminophenol rise from para-aminosalicylic acid and its physical mixture with β -cyclodextrin to equimolar " β -cyclodextrin – para-aminosalicylic acid" inclusion complex. It was proved that the increase in thermal stability of the encapsulated para-aminosalicylic acid is mainly due to nonspecific interactions between hydrophobic cavity of cyclic oligosaccharide and aromatic ring of amino acid.