УДК 544.72

А.В. Редькина, Н.Д. Коновалова, К.Н. Хоменко

СИНТЕЗ ВАНАДИЙСОДЕРЖАЩИХ ТІ-МСМ-41 СИЛИКАТОВ И ИХ КАТАЛИТИЧЕСКИЕ СВОЙСТВА В ПРОЦЕССАХ ДЕГИДРИРОВАНИЯ ПРОПАНА

Институт сорбции и проблем эндоэкологии Национальной академии наук Украины ул. Генерала Наумова, 13, Киев, 03164, Украина, E-mail: antonina.redkina@gmail.com

Методом гидротермального темплатного синтеза с участием VOSO4 и геля пирогенного титаноаэросила, содержащего 1.4 масс. % тетраэдрически координированного титана, получен Ti-MCM-41 внедренным в мезопористию стриктири силикат С ванадием. Методами рентгенофазового анализа, рентгенофлуоресцентной спектроскопии, УФ-спектроскопии диффузионного отражения и адсорбиии азота показано, что хотя при этом внедряется до 0.3 масс. % V, пространственный порядок и гидролитическая стабильность Ті-МСМ-41 повышается. Установлено, что дополнительное нанесение групп VO_x на поверхность синтезированного биметаллического силиката позволяет получить катализатор 5 %VO_x/V,Ti-MCM-41, который при дегидрировании пропана образует пропилен с большей селективностью и выходом, чем при нанесении *VO_x на МСМ-41 и Ті-МСМ-41.*

Ключевые слова: МСМ-41 мезопористые силикаты, гидротермальный синтез, ванадий, титан, дегидрирование, пропан, пропилен

[1, 7, 8],

ВВЕДЕНИЕ

Мезопористые силикаты семейства M41S, получаемые гидротермальным темплатным синтезом (ГТС), с четкой гексагональной упаковкой однородных пор – МСМ-41, благодаря развитой поверхности, унифицированному размеру пор, высокой плотности поверхностных силанольных групп наиболее часто используются как носители активной фазы катализаторов [1]. Нанесение оксида ванадия на МСМ-41 приводит к получению активного катализатора процесса окислительного дегидрирования пропана (ОДГ) [2], широко исследуемого в настоящее время в связи со значительным повышением спроса на чистый пропилен [3]. В недавно опубликованной работе [4] показано, что катализатор VO_x/MCM-41 проявляет повышенную стабильность в циклах работа-регенерация, по сравнению с промышленным $Pt-Sn/Al_2O_3$ катализатором неокислительного дегидрирования (ДГ) пропана в пропилен, используемом в процессе Oleflex [3]. Изменение структуры МСМ-41 частичной изоморфной заменой кремния тетраэдрически координированными ионами переходных металлов, особенно Ті [1, 5, 6] и V

активных центров и получению селективных катализаторов эпоксидирования и жидкофазного окисления органических молекул с помощью H₂O₂. В качестве источника Ті при синтезе Ті-МСМ-41 в большинстве случаев используют алкоксиды титана, скорость гидролиза которых необходимо тщательно контролировать [5]. Без разрушения структуры МСМ-41 может быть введено от 0.35 до 2.5 масс. % Ті, однако, при содержании Ті выше 1 % регулярность структуры искажается [6]. В отличие от Ті, атом V обладает структуроформирующими свойствами при синтезе пористых материалов и среди различных источников ванадия соединения, содержащие четырехвалентный V, обеспечивают большую степень внедрения V в мезопористую матрицу Si/V = 30-50при соотношении [7, 8]. Внедрение двух типов гетероатомов обеспечивает более точную настройку свойств образуемой биметаллической Ті, V-MCM-41 системы [9]. В процессе ОДГ пропана катализатор V-MCM-41 показывает большую селективность, по сравнению с нанесенным оксидом [10], а покрытие поверхности МСМ-41 монослоем TiO₂ увеличивает выход пропилена

способствует

более

созданию

на VO_x/MCM-41 [11]. Нами было показано [12], что при нанесении оксида ванадия на Ті-МСМ-41, синтезированный путем ГТС из пирогенного титаноаэросила (TAC), содержащего в структуре тетраэдрически координированные возрастает И ионы Ті, активность, И селективность катализаторов в процессе как ОДГ, так и ДГ пропана, по сравнению с данными, полученными для V_xO_v/MCM-41.

Целью этой работы было исследование возможности модификации структуры Ti-MCM-41 внедрением ионов V в процессе прямого ГТС из VOSO₄ и геля ТАС и оценка каталитической активности полученной биметаллической системы V,Ti-MCM-41 в процессах дегидрирования пропана в сравнении с MCM-41, Ti-MCM-41 и нанесенными оксиднованадиевыми катализаторами.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез мезопористых силикатов проводили на основе пирогенных аэросилов, полученных на экспериментальном заводе Института химии поверхности им. А.А. Чуйко НАН Украины. V-Ті-МСМ-41 синтезировали из геля ТАС, имеющего удельную поверхность 173 м²/г и содержащего 1.4 масс. % Ті (или 2.5 масс. % ТіО₂ и 97.5 масс. % SiO₂) в щелочной среде NaOH, используя темплат цетилтриметиламмонийбромид (ЦТМА-Вг) – С₁₆Н₃₃(СН₃)₃NBr. Источником ванадия был водный раствор VOSO₄ (5·10⁻³ М). Необходимые количества NaOH и темплата растворяли в дистиллированной воде при осторожном нагревании и перемешивании с помощью магнитной мешалки. В полученный прозрачный раствор добавляли рассчитанные количества ТАС, по каплям раствор VOSO4 и гомогенизировали перемешиванием в ультразвуковом смесь диспергаторе. Мольное соотношение компонентов полученном геле в было: SiO_2 : $VOSO_4$: TiO_2 : NaOH: $\cup TMA-Br$: $H_2O =$ 1:0.024:0.019:0.34:0.5:30.

Гель переносили в тефлоновый стаканчик, помещали в стальной герметичный автоклав, оставляли его при комнатной температуре для протекания процесса старения геля на одни сутки и выдерживали под собственным давлением в сушильном шкафу при 140 °C в течение 24 ч. Осадок, полученный при ГТС, промывали до нейтральной реакции промывных вод, сушили при 110 °C и удаляли темплат прокаливанием на протяжении 6 ч при 560 °C. Для перевода образца в активную H-форму проводили реакцию ионного обмена Na⁺ на H⁺ путем обработки 2 M раствором NH₄Cl на протяжении 6 ч при 90 °C. Продукт отфильтровывали, промывали, сушили и прокаливали при 560 °C.

образом из ТАС Аналогичным была синтезирована система Ti-MCM-41 при мольном составе геля: SiO₂ : TiO₂ : NaOH : ЦТМА-Br : $H_2O = 1 : 0.019 : 0.2 : 0.2 : 30$. Образцы MCM-41 и V-MCM-41 были получены таким же способом, используя гели на основе пирогенного кремнезема А-200 (с поверхностью 220 M^2/Γ) состава SiO₂ : NaOH : ЦТМА-Br : $H_2O = 1: 0.2: 0.2: 30$ и SiO₂: VOSO₄: NaOH: $\text{LITMA-Br}: \text{H}_2\text{O} = 1: 0.0024: 0.34: 0.5: 30,$ соответственно.

Нанесенные оксиднованалиевые катализаторы получали путем пропитки Н-формы образцов раствором ацетилацетоната ванадила – $VO(C_5H_7O_2)_2$ в ацетонитриле с последующей сушкой и прокалкой на воздухе. Количество наносимой фазы брали из расчета 5 масс. % VO групп на 1 г носителя. Подробно методика изложена в работе [12].

Диффрактограммы рентгенофазового анализа (РФА) полученных структур регистрировали на диффрактометре ДРОН-4-07 в излучении Си*K*_α линии анода с Ni фильтром в отраженном пучке с геометрией съемки по Брэггу–Брентано. Доступ к малоугловой области осуществлялся с помощью дополнительно установленных коллимирующих щелей перед образцом и счетчиком.

Изотермы низкотемпературной адсорбции записывали с помошью аппарата азота ASAP 2405 N Micromeritics, по стандартной процедуре после вакуумной обработки при 623 К. Их традиционный анализ включал определение величин удельных поверхностей БЭТ (S_{вет}) в области $P/P_0 = 0.05 - 0.3$ и полных объемов порового пространства (У_{У)} из значений адсорбции при давлениии P/P₀ = 0.95. Распределение мезопор по размерам диаметров рассчитывалось методом теории нелокального функционала плотности NLDFT (D_{DFT}).

Количество Ті и V в полученных материалах определяли рентгенофлуоресцентным спектрометрическим анализом (РФСА) на энергодисперсном рентгенофлуоресцентном спектрометре ElvaX 2.7. Для калибровки прибора использовали навески чистых оксидов. Спектры диффузионного отражения (ДО) образцов в УФ- и видимой области света снимали на спектрофотометре Specord M-40 (Carl Zeiss, Jena, Germany) без предварительного прогрева и вакуумной обработки.

Каталитическую активность образцов определяли в проточном кварцевом реакторе длиной 30 см и внутренним диаметром 0.5 см, используя частицы размером 0.25-0.5 мм, их навеску 0.3 г, не заполняя инертным наполнителем пустой объем реактора до и после слоя катализатора. Реакционная смесь содержала 7 об. % С₃Н₈ и 3.5 об. % О₂ в Не или 7 об. % С₃Н₈ в Ar. Время контакта смеси с катализатором поддерживали на уровне 2.5 с. После проведения реакции при 300 °С в течение 2 ч температуру повышали на 25° каждые 30 мин до 675 °С. Продукты реакции анализировали на хроматографических колонках, наполненных силикагелем и молекулярными ситами NaX, с помощью пламенноионизационного детектора и катарометра. Каталитические характеристики рассчитывали в процентах (с точностью 0.5-1.0 %) в виде степени превращения пропана – X_{C3H8} , селективности образования пропилена – S_{C3H6} , продуктов крекинга – S_{CxHx} (CH₄, C₂H₆, C₂H₄), продуктов полного окисления – S_{COx} (CO и CO₂) и выхода пропилена – Y_{C3H6} .

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Данные РФА мезопористых силикатов и оксиднованадиевых нанесенных катализаторов в области малых углов рассеяния рентгеновских лучей приведены на рис. 1 а-г. Их структурно-адсорбционные характеристики, полученные при анализе этих диффрактограмм и изотерм адсорбции азота (не показаны) представлены в табл. 1. В области больших углов на диффрактограммах всех образцов на аморфном гало не было обнаружено рефлексов кристаллических фаз оксида ванадия ни в исходных системах, ни в нанесенных ванадиевых катализаторах. Результаты определения состояния V и Ti в H-формах образцов методом УФ-ДО спектроскопии приведены на рис.2 а, б.

Рис. 1. Малоугловые диффрактограммы мезопористых силикатов: *a* – MCM-41, *б* – V-MCM-41, *в* – Ti-MCM-41, *г* – V,Ti-MCM-41. *I* – исходные формы, *2* – Н-формы, *3* – образцы с нанесением 5 % VO_x на H-формы

Видно (рис. 1), что после удаления темплата диффрактограммы всех исходных, синтезированных систем характеризуются интенсивным пиком с индексом межплоскостных расстояний (*hkl*) – (100) и тремя слабыми пиками: (110), (200), (210), т.е. рефлексами,

типичными для мезоструктурированных материалов с двухмерной гексагональной упаковкой мезопор и для MCM-41 [1]. Известно, что мезопористые силикаты MCM-41 обладают высокой термической стабильностью [13]. Они могут выдерживать, не разрушаясь, повышение температуры выше 1000 °С, но их гидролитическая стабильность существенно ниже. Это видно по значитель-ному снижению четкости пиков на диффрактограммах у Н-форм

образцов и после нанесения на них оксида ванадия (рис. 1). Видно также, что такие изменения структуры в меньшей степени происходят у ванадийсодержащих образцов.

Таблица 1. Структурно-адсорбционные характеристики V и Ті-содержащих систем МСМ-41

Образец	РФСА, %		S _{BET} ,	V _Σ ,	V _{DFT} ,	D _{DFT} ,	2θ ₁₀₀ ,	α ₀ ,	$h_{\mathrm{W}},$
	V	TiO ₂	м ² /г	см ³ /г	см ³ /г	НМ	град	НМ	НМ
MCM-41			755	0.82	0.67	3.54	2.35	4.34	0.80
H-MCM-41			670	0.79	0.65	3.41	2.3	4.43	1.02
5 % VO _x /H-MCM-41	3.5	0	550	0.57	0.53	3.18	2.25	4.53	1.35
V-MCM-41			830	0.93	0.84	3.64	2.15	4.74	1.10
H-V-MCM-41	1.5	0	785	0.92	0.84	3.54	2.15	4.74	1.20
Ti-MCM-41			714	0.75	0.62	3.64	2.15	4.74	1.10
H-Ti-MCM-41	0	2.5	564	0.74	0.61	3.41	2.1	4.86	1.45
5 %VO _x /H-Ti-MCM-41	3.5	2.3	393	0.43	0.38	2.58	2.15	4.74	2.16
Ti,V-MCM-41			765	0.69	0.59	3.41	2.1	4.86	1.45
H-Ti,V-MCM-41	0.3	2.4	714	0.64	0.58	3.28	2.05	4.98	1.70
5 %VO _x /H-Ti,V-MCM-41	3.8	2.2	554	0.58	0.48	2.58	2.1	4.86	2.28

Суммарный объем пор и мезопор: V_Σ и V_{DFT}. D_{DFT} – диаметр мезопор. Параметр элементарной ячейки: $\alpha_0 = 2 d_{100}/\sqrt{3}$; (n $\lambda = 2 d_{100} \sin \theta$). Толщина стенок мезопор: $h_W = \alpha_0 - D_{DFT}$

Интенсивность пика (100), характеризуюшего степень пространственного порядка, у исходного синтезированного V-MCM-41 выше, чем у МСМ-41 (рис. 1 а, б), что может быть объяснено как возможным промотирующим влиянием сульфат-аниона соли VOSO₄ на протекание ГТС [8, 14], так и структурноформирующим действием гетероатома V [15]. Согласно [8], в зависимости от условий ГТС гетероатомы ванадия могут быть внедрены в структуру мезопористого оксида кремния двумя путями. (1) часть V может распределиться по стенкам пор и при взаимодействии с гидроксильными группами образовать изолированные тетраэдрически координированные ионы V⁵⁺ или связанные с поверхностью пор оксиды ванадия, что может привести к уменьшению диаметра и объема пор. (2) другая часть V в тетраэдрической координации с О²⁻ может войти в структуру стенок силиката, а поскольку длина связи V-O (1.8 Å) больше длины Si-O (1.6 Å). это может вызвать увеличение диаметра и объема пор. Как видно из данных табл. 1, величины S_{BET} , V_{Σ} , V_{DFT} и D_{DFT} V-MCM-41 в сравнении с МСМ-41 увеличиваются, положение пика (100) немного перемещается к меньшему углу диффракции. соответственно возрастают α_0 и h_W , что может служить доказательством внедрения ванадия в структуру МСМ-41 [7, 8, 15].

Рис. 2. Спектры УФ-ДО мезопористых силикатов: *a* – *1* –H-MCM-41, *2* – H-V-MCM-41, *3* – 5 % VO_x/ H-MCM-41; *δ* – *1* - H-Ti-MCM-41; *2* – H-V,Ti-MCM-41; *3* – 5 % VO_x/ H-Ti-MCM-41; *4* – 5 % VO_x/ H-V,Ti-MCM-41

Ванадий вводили в гели силикатов при ГТС, выдерживая соотношение Si/V = 40, т.е. в количестве 2 масс. % V. Измерение содержания ванадия в Н-формах полученных продуктов и в нанесенных оксиднованадиевых катализаторах методом РФСА (табл. 1) показало, что в H-V-MCM-41 находится 1.5 масс. % V, а в VO_x/H-MCM-41 – 3.5 масс. % V, что примерно равно внесенному количеству (5 % VO_x). Таким образом, при ГТС в структуру V-MCM-41 вошло ограниченное количество V. Определение состояния ионов V в этих образцах методом УФ-ДО спектроскопии (рис. 2 а) показало, что в их спектрах присутствуют полосы поглощения в области 250-340 нм, которые обычно относят к изолированным ионам V⁵⁺, тетраэдрически координированным с кислородом решетки О²⁻. При этом острый пик при 250 нм, наблюдаемый у H-V-MCM-41, характерен для V^{5+} в структуре стенок пор, а нечеткие полосы поглощения при 370 нм могут свидетельствовать об адсорбционной связи изолированных центров V⁵⁺ на поверхности пор образцов с молекулами волы ИЗ окружающей среды [8, 10, 14, 15].

В отличие от V⁵⁺, имеющего ионный радиус (0.49 Å), близкий к радиусу Si⁴⁺ (0.41 Å), замена Si⁴⁺ на Ti⁴⁺ (0.68 Å) при ГТС происходит сложнее и требует тщательного контроля процесса, чтобы предупредить образование неселективной фазы TiO₂ [5, 6]. Примененный способ синтеза Ті-МСМ-41 на основе ТАС, уже содержащего титан только в виде ионов Ti⁴⁺, изоструктурно замещающих Si⁴⁺ [12], упрощает метод. Как видно из рис. 1 в, упорядоченность (интенсивность максимума (100)) у Ті-МСМ-41 меньше, чем у МСМ-41, величины S_{BET} и V_Σ, также снижаются (табл. 1). Это может происходить из-за существенного различия ионных радиусов Ті⁴⁺ и Si⁴⁺, при котором замена Si на больший Ti неизбежно искажает геометрию вокруг Ті от идеального тетраэдра SiO₄ и приводит к некоторой деформации структуры Ті-МСМ-41, к формированию частично сломанных пор и, следовательно, к снижению площади их поверхности И структурной регулярности [6]. Но большая Ті–О (1.9 Å) способствует длина связи увеличению α_0 и h_W у Ti-MCM-41 по сравнению с МСМ-41 (табл. 1), указывая на присутствие Ті в структуре. УФ-ДО спектр Н-Ті-МСМ-41 (рис. 2 б), как И исходного TAC, характеризуются интенсивной узкой полосой

переноса заряда с максимумом при 215 нм, которая согласно многочисленным данным, приведенным в [5, 6, 14], свидетельствует об изолированном состоянии Ті⁴⁺ при тетраэдрическом координационном окружении ионами O²⁻ в аморфной силикатной структуре.

Прямой ГТС V, Ті-МСМ-41 из ТАС и VOSO₄, как это видно из рис. 1 г и табл. 1, приводит к получению более упорядоченной структуры в сравнении с МСМ-41 или Ті-МСМ-41 и с большими значениями α_0 и h_W , чем у всех исходных синтезированных силикатных систем. Однако в состав H-V, Ti-MCM-41 входит лишь малая часть от 2 масс. % V, вводимых в гель титаноаэросила при синтезе, так как анализ количества ванадия в конечном продукте методом РФСА (табл. 1) показывает наличие только 0.3 масс. % V. Интенсивность полосы поглощения при ~215 нм в спектре УФ-ДО, характеризующей состояние Ti⁴⁺в V, Ti-MCM-41, сохраняется (рис. 2 б) и ее максимум по сравнению с Ті-МСМ-41 немного смешается в сторону меньших длин волн, что может указывать на более изолированное положение ионов Ті. Состояние ионов V^{5+} по этому спектру можно определить по слабой полосе поглощения при 340 нм, которая согласно отнесениям [8, 10, 14, 15] характеризует высокоизолированные тетраэдрически координированные центры V⁵⁺ на поверхности стенок мезопор.

Из наблюдаемой большей интенсивности максимума (100)на диффрактограмме V, Ti-MCM-41 и меньшему ее снижению при переводе в Н-форму можно заметить, что небольшое количество ванадия, которое входит в структуру Ti-MCM-41 в процессе ГТС из ТАС, способствует ее стабилизации. По мнению авторов [5], низкая стабильность силикатных стенок мезопористых титаносиликатов, полученных по реакционному пути S⁺ I⁻ (примененному в этой работе), связана с образованием заряженных SiO⁻ групп, которые не могут участвовать в образовании прочных связей Si-O-Si или Ti-O-Si. Можно предположить, что стабилизация Ti-MCM-41 введением ионов ванадия в процессе ГТС происходит в результате их взаимодействия с SiO⁻ с образованием связей Si-O-V-O-Si или Ті-О-V-О-Si, что может также увеличить степень изолированности активных центров V⁵⁺ или Ті⁴⁺ на поверхности или в структуре стенок мезопор.

ISSN 2079-1704. ΧΦΤΠ 2014. Τ. 5. № 1

Учитывая малое количество ванадия, вошедшее в состав V,Ti-MCM-41 при его ГТС на основе ТАС, на его поверхность было дополнительно нанесено 5 % VO_x. УФ-ДО спектр полученной 5 % VO_x/H-V,Ti-MCM-41 системы, как это видно на рис. 2 б, отличается от спектра 5 % VO_x/H-Ti-MCM-41 смещением максимума полосы поглощения при 250 нм, характеризующей состояние ионов V, в область меньших длин волн – к 225 нм. Такое положение полосы поглощения, согласно отнесению [10], указывает на присутствие изолированных VO²⁺ центров.

При измерении активности исходных мезопористых силикатов и систем с внедренным и нанесенным ванадием в процессах ОДГ и ДГ пропана больший выход пропилена достигался при температуре реакции в 650–675 °C. Каталитические характеристики полученных образцов сравнены в табл. 2.

Таблица 2. Каталитические характеристики синтезированных мезопористых силикатов в процессах ОДГ и ДГ пропана

		Процес	с ОДГ. 7	% C ₃ H ₈ , 3	Процесс ДГ. 7 % С ₃ Н ₈					
Катализатор	T, ⁰C		в Не. τ = 2.5 с.				в Аг. τ = 2.5 с.			
		S _{COx}	S _{C3H6}	Хсзня	Y _{С3Н6}	S _{C3H6}	Хсзня	Y _{С3Н6}		
без катализатора	650	7.3	56.6	10.4	5.9	78.5	7.4	5.8		
	675	8.8	53.3	23.4	12.5	77.6	12.9	10.0		
H-MCM-41	650	9.3	61.1	14.9	9.1	80.5	9.7	7.8		
	675	12.8	55.4	23.1	12.8	78.4	14.0	11.0		
H-V-MCM-41	650	17.3	78.1	38.4	30.0	96.7	53.4	51.6		
	675	17.0	77.4	41.7	32.3	95.6	64.5	61.49		
5 % VO _x /H-MCM-41	650	17.2	75.6	43.7	33.0	95.5	60.7	58.0		
	675	15.7	75.2	46.0	34.6	93.8	69.9	65.6		
H-Ti-MCM -41	650	9.4	60.6	34.9	21.1	87.8	17.1	15.0		
	675	12.0	53.0	40.7	21.6	84.9	21.4	18.2		
5 % VO _x /H-Ti-MCM-41	650	12.1	77.9	57.6	44.9	92.6	70.0	64.8		
	675	12.9	77.1	61.0	47.0	90.1	77.9	70.2		
H-V,Ti-MCM-41	650	10.9	63.0	37.6	23.7	88.5	18.5	16.4		
	675	13.4	60.5	41.5	25.1	85.8	25.9	22.2		
5 % VO _x /H-V,Ti-MCM-41	650	12.3	80.7	60.5	48.8	95.4	73.9	70.5		
	675	11.1	78.7	63.8	50.2	93.8	78.0	73.2		

Известно, что дегидрирование пропана при высоких температурах может протекать по радикально-цепному механизму, а в присутствии катализаторов процесс может состоять из гетерогенных, гомогенных и гетерогенно-гомогенных стадий с вероятным пропильных образованием радикалов на поверхности катализатора, так как выход пропилена растет при увеличении свободного объема незаполненного реактора [16]. Как видно из табл. 2, постепенное повышение температуры в реакторе без катализатора до 650 °С способствует развитию цепной фоновой реакции с относительно высокой селективностью по пропилену, которая значительно увеличивается в присутствии катализатора H-V-MCM-41, особенно в процессе бескислородного дегидрирования (ДГ). Этот ката-

1.5 масс. % V, внедренного в лизатор с силикатную структуру, показывает характеристики. близкие К 5 % VO_x/H-MCM-41, содержащим 3.5 масс. % нанесенного ванадия. Титаносиликат H-Ti-MCM-41 преимущественно способствует увеличению степени превращения пропана в процессе ОДГ, а нанесение на него 5 %VO_x создает катализатор, активный и селективный в обоих процессах дегидрирования. Внедрение 0.3 % V в структуру Н-Ті-МСМ-41 незначительно улучшает каталитические свойства силиката, но при дополнительном нанесении 5 масс. % групп VO_х на биметаллическую систему H-V, Ti-MCM-41 образуется катализатор, дающий наибольший выход пропилена как при ОДГ, так и при ДГ пропана, превышающий известные ИЗ литературы данные.

ВЫВОДЫ

Прямой гидротермальный синтез мезопористого V-MCM-41 из аэросила и VOSO₄ позволил получить высокоупорядоченную структуру, содержащую ~ 1.5 масс. % V, внедренного в виде высокоизолированных тетраэдров VO₄ в состав аморфных стенок пор.

Структура V-MCM-41 гидролитически более стабильна, чем MCM-41, синтезированного из аэросила, и в процессах дегидрирования пропана проявляет каталитическую активность, близкую к образцу 5 % VO_x/H-MCM-41, содержащим более чем вдвое большее количество нанесенного V.

При одинаковых условиях синтеза с V-MCM-41, прямой ГТС биметаллической V- и Ті-содержащей системы МСМ-41 из VOSO₄ и титаноаэросила, имеющего в составе 1.4 масс. % ионов Ті, тетраэдрически координированных с кислородом, приводит к образованию V,Ti-MCM-41, содержащей только 0.3 масс. % ионов V, внедренных в структуру образца.

Внедрение V в структуру Ті-МСМ-41 в процессе ГТС из ТАС увеличивает пространственную упорядоченность и гидростабильность системы, и при дополнительном нанесении групп VO_x способствует созданию катализатора, который при дегидрировании пропана образует пропилен с большей селективностью и выходом, чем при нанесении VO_x на МСМ-41 и Ті-МСМ-41.

Синтез ванадійвмісних Ті-МСМ-41 силікатів та їх каталітичні властивості в процесах дегідрування пропану

А.В. Редькіна, Н.Д. Коновалова, К.М. Хоменко

Інститут сорбції та проблем ендоекології Національної академії наук України вул. Генерала Наумова, 13, Київ, 03164, Україна, antonina.redkina@gmail.com

Методом гідротермального темплатного синтезу за участю VOSO₄ і гелю пірогенного титаноаеросилу, що містить 1.4 мас. % тетраедрично координованого титану, отриманий Ti-MCM-41 силікат з впровадженим в мезопорувату структуру ванадієм. Методами рентгенофазового аналізу, рентгенофлуоресцентної спектроскопії, УФ-спектроскопії дифузійного відбиття та адсорбції азоту показано, що хоча при цьому впроваджується до 0.3 мас. % V, просторовий порядок і гідролітична стабільність Тi-MCM-41 підвищується. Встановлено, що додаткове нанесення груп VO_x на поверхню синтезованого біметалічного силікату дозволяє отримати каталізатор 5 % VO_x/V,Ti-MCM-41, який при дегідруванні пропану утворює пропілен з більшою селективністю і виходом, ніж при нанесенні VO_x на MCM-41 і Ti-MCM-41.

Ключові слова: МСМ-41 мезопористі силікати, гідротермальний синтез, ванадій, титан, дегідрування, пропан, пропілен

Synthesis of vanadium-containing Ti-MCM-41 silicates and their catalytic properties in propane dehydrogenation

A.V. Redkina, N.D. Konovalova, K.N. Khomenko

Institute for Sorption and Problems of Endoecology of National Academy of Sciences of Ukraine 13 General Naumov Str., Kyiv, 03164, Ukraine, antonina.redkina@gmail.com

Ti-MCM-41 silicate with vanadium introduced in mesoporous structure has been obtained by hydrothermal template synthesis with participation of $VOSO_4$ and pyrogenic titanoaerosil with 1.4 wt. %

tetrahedrally coordinated titanium. By the X-ray diffraction, X-ray fluorescent spectroscopy, DR UV-vis analysis and adsorption of nitrogen it has been shown that even 0.3 wt. % V causes raising spatial order and hydrolytic stability of Ti-MCM-41. It has been found that additional supporting of VO_x groups on a surface of the synthesized bimetallic silicate allowed to obtain the catalyst 5 %VO_x/V, Ti-MCM-41 which due to dehydrogenation of propane generated propylene with bigger selectivity and yield than those when VO_x was supported on MCM-41 and Ti-MCM-41.

Keywords: *MCM-41* mesoporous silicates, hydrothermal synthesis, vanadium, titanium, dehydrogenation, propane, propylene

ЛИТЕРАТУРА

- Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis // Chem. Rev. – 1997. – V. 97. – P. 2373–2419.
- Karakoulia S.A., Triantafyllidis K.S., Tsilomelekis G. et al. Propane oxidative dehydrogenation over vanadia catalysts supported on mesoporous silicas with varying pore structure and size // Catal. Today. – 2009. – V. 141. – P. 245–253.
- 3. Макарян И.А., Рудакова М.И., Савченко В.И. Промышленные процессы целевого каталитического дегидрирования пропана в пропилен // Альтернативная энергетика и экология. 2010. Т. 86, № 6. С. 67–81.
- Sokolov S., Stoyanova M., Rodemerck U. et al. Comparative study of propane dehydrogenation over V-, Cr-, and Pt-based catalysts: Time on-stream behavior and origins of deactivation // J. Catal. – 2012. – V. 293. – P. 67–75.
- 5. Халдеева О.А., Трухан Н.Н. Мезопористые титан-силикаты как катализаторы процессов жидкофазного селективного окисления органических соединений // Успехи химии. 2005. Т. 75, № 5. С. 460–483.
- Eimer G.A., Chanquia C.M., Sapag K., Herrero E.R. The role of different parameters of synthesis in the final structure of Ti-containing mesoporous materials // Micropor. Mesopor. Mater. – 2008. – V. 116. – P. 670–676.
- Selvam P., Dapurkar S.E. The effect of vanadium sources on the synthesis and catalytic activity of VMCM-41 // J. Catal. – 2005. – V. 229. – P. 64–71.
- 8. *Shylesh S., Singh A.P.* Vanadium-containing ordered mesoporous silicates: Does the silica source really affect the catalytic activity,

structural stability, and nature of vanadium sites in V-MCM-41? // J. Catal. -2005. - V.233. - P.359-371.

- Parvulescu V., Anastasescu C., Constantin C., Su B.L. Mono (V, Nb) or bimetallic (V–Ti, Nb–Ti) ions modified MCM-41 catalysts: synthesis, characterization and catalysis in oxidation of hydrocarbons (aromatics and alcohols) // Catal. Today. – 2003. – V. 78. – P. 477–485.
- Pena M.L, Dejoz A., Fornes V. et al. V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase // Appl. Catal. A. – 2001. – V. 209. – P. 155–164.
- Ovsitser O., Cherian M., Brückner A., Kondratenko E.V. Dynamics of redox behavior of nano-sized VO_x species over Ti–Si-MCM-41 from time-resolved in situ UV/Vis analysis // J. Catal. – 2009. – V. 265. – P. 8–18.
- Редькина А.В., Коновалова Н.Д., Хоменко К.Н., Оранская Е.И. Синтез из титанаэросила мезопористых систем TiO₂-SiO₂ с нанесенным V₂O₅, их физико-химические и каталитические свойства. II. Получение катализатора V_xO_y/H-Ti-MCM-41 и его свойства в процессе дегидрирования пропана в пропилен // Катализ и нефтехимия. – 2012. – № 21. – С. 11–22.
- Galacho C., Ribeiro Carrott M.M.L., Carrott P.J.M. Evaluation of the thermal and mechanical stability of Si-MCM-41 and Ti-MCM-41 synthesised at room temperature // Micropor. Mesopor. Mater. – 2008. – V. 108. – P. 283–293.
- 14. *Laha S.C., Kumar R.* Promoter-induced synthesis of MCM-41 type mesoporous materials including Ti- and V-MCM-41 and their catalytic properties in oxidation reactions

// Micropor. Mesopor. Mater. – 2002. – V. 53. – P. 163–177.

- Ferdov S., Lin Z., Sa Ferreira R.A. Incorporation of mixed valence vanadium in the microporous titanosilicate AM-2 // Micropor. Mesopor. Mater. 2006. V. 96. P. 363–368.
- Bettahar M.M., Costentin G., Savary L., Lavalley J.C. On the partial oxidation of propane and propylene on mixed metal oxide catalysts // Appl. Catal. A. – 1996. – V. 145. – P. 1–48.

Поступила 18.07.2013, принята 15.01.2014