УДК 544.725

doi: 10.15407/hftp10.02.135

I.С. Колесник, О.Я. Джоджик, В.В. Коновалова, Г.А. Сорокін, Т.Г. Мешкова, А.Ф. Бурбан, С.М. Царик

КАТАЛІТИЧНІ ВЛАСТИВОСТІ ПОЛІЕТЕРСУЛЬФОНОВИХ МЕМБРАН, МОДИФІКОВАНИХ НАНОЧАСТИНКАМИ SnO₂

Національний університет «Києво-Могилянська академія» вул. Сковороди, 2, Київ, 04070, Україна, E-mail: i.kolesnyk@ukma.edu.ua

Метою роботи було отримати мембрани з фотокаталітичними та антизабруднювальними властивостями. Для цього поліетерсульфонові мембрани модифікували поліелектролітними комплексами та наночастинками SnO₂ методом почергової адсорбції протилежно заряджених поліелектролітів. До поверхні мембран були прищеплені транс-корична і гідрокорична кислоти шляхом утворення амідного зв'язку між карбоксильною групою кислот та аміногрупами поліетиленіміну. Модифікування мембран наночастинками підтверджене методами сканувальної електронної мікроскопії, енергодисперсійної спектроскопії та електрокінетичним аналізом. Усі досліджені мембрани характеризуються наявністю ізоелектричної точки у діапазоні рН 4.5–5.0, позитивним ζ-потенціалом у кислому середовищі і негативним у нейтральному і лужному середовищах. Адсорбційні, фотокаталітичні та транспортні властивості мембран були досліджені з використанням родаміну Ж. Показано, що іммобілізація наночастинок станум(IV) оксиду знижує адсорбцію барвника на поверхні мембран у 2 рази. Підтверджено, що модифікування мембран призвело до появи у них фотокаталітичних властивостей. Так, мембрани з наночастинками станум(IV) оксиду характеризуються високим ступенем розкладання родаміну Ж (40-50 %) за 1.5 год за початкової концентрації барвника 1.2·10⁻³ %. Усі кінетичні криві розкладання родаміну Ж на мембранах описуються рівнянням псевдопершого порядку Ленгмюра-Хіншельвуда. Встановлено, що прищеплення транс- і гідрокоричної кислот впливає на рН-оптимум фотокаталітичної активності мембран. Так, мембрана, модифікована лише наночастинками станум(IV) оксиду, проявляє найвищу активність у кислому середовищі при рН 3.1. При додатковому модифікуванні мембран транскоричною кислотою рН-максимум фотокаталітичної активності зсувається у лужну область (рН 9.0), а гідрокоричною кислотою - у нейтральну область (рН 7.0). Показано, що модифіковані мембрани виявляють стабільну продуктивність у процесі нанофільтрації барвника і високі ступені його затримки (70–90 %).

Ключові слова: поліетерсульфонова мембрана, станум(IV) оксид, метод «layer-by-layer», родамін Ж, фотокаталіз

ВСТУП

Забруднення навколишнього середовища синтетичними барвниками є серйозною через проблемою їхню стійкість до біодеструкції. Традиційні методи очищення води від органічних забруднювачів мають певні недоліки. Зокрема, хімічне окиснення характеризується високою вартістю утворенням токсичних побічних продуктів. Адсорбція на активованому вугіллі потребує додаткового процесу вилучення сорбента та його відновлення. Метоли біологічного очищення обмежені низькою швилкістю розкладання барвників, а, отже, низькою продуктивністю. У той же час мембранні методи є ефективним рішенням щодо органічних забруднювачів, так як розділення відбувається фазових без переходів,

характеризується невеликим споживанням енергії і, відповідно, низькою вартістю [1].

Однак, забруднення мембран є суттєвою перешкодою для широкого використання ультра- і нанофільтрації для очищення води від органічних забруднювачів. Забруднення спричинює мембран зниження продуктивності і ефективності розділення, що, у свою чергу, скорочує тривалість використання мембран і збільшує витрати на їхню експлуатацію. Одним з підходів до зниження забруднення мембран € модифікування їхньої поверхні з метою збільшення гідрофільності, і як наслідок – адсорбції зменшення органічних забруднювачів на поверхні мембран. Серед методів гідрофілізації поверхні виділяють прищеплення до поверхні мембран полімерів наночастинок, введення гідрофільних та

© І.С. Колесник, О.Я. Джоджик,В.В. Коновалова, Г.А. Сорокін, Т.Г. Мешкова, А.Ф. Бурбан, С.М. Царик, 2019 органічних фрагментів у структуру полімерів, інкорпорування неорганічних частинок у матрицю мембран тощо [2, 3]. Отримання органо-неорганічних композитних мембран дозволяє поєднати переваги як органічної, так і неорганічної складової та надати мембранам додаткових властивостей – фотокаталітичних [4], магніточутливих [5], біокаталітичних [6, 7] тощо.

Використання мембран 3 фотокаталітичними властивостями набуває поширення у процесах очищення стічних вод у контексті сталого розвитку. Це пов'язане у першу чергу з тим, що за допомогою таких мембран можливо не тільки очистити стічні води, а й позбутися токсичних відходів. Функціоналізація мембран фотокаталізаторами дозволяє поєднувати процес розділення і концентрування із розкладанням забруднювачів або навіть їхньою мінералізацією. Так, за останні роки з цією були метою розроблені мембрани 3 іммобілізованими наночастинками TiO₂ [8], ZnO [9], C₃N₄ [10], оксидом графену [11] та їхніх композитів [12-15]. Такі мембрани не тільки видаляють токсичні забруднювачі, а й розкладають їх у процесі фільтрування.

У наведеній статті запропонований метод надання поліетерсульфоновим мембранам фотокаталітичних властивостей за рахунок іммобілізації на їхню поверхню наночастинок Адсорбційні, фотокаталітичні SnO_2 . та транспортні властивості модифікованих мембран досліджені на модельному барвнику рН-оптимум родаміні Ж. Встановлений фотокаталітичної активності мембран 3 іммобілізованими наночастинками станум(IV) оксиду і прищепленими транс- і гідрокоричною кислотами.

ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА

Матеріали і методи. Для проведення досліджень використовували комерційні поліетерсульфонові мембрани RM-UP-020-Р з cutoff 20 кДа (MicrodynNadir, Німеччина). Для модифікування мембран застосовували такі реактиви: натрій полістиренсульфонат (ПСС) (Sigma-Aldrich, США), поліетиленімін 750 кДа (ПЕІ) (Fluka, Німеччина), натрій карбоксиметилцелюлозу (KMII) (Sigma-Aldrich, США), *транс*-коричну кислоту (ТКК) (Укроргсинтез, Україна), гідрокоричну кислоту (ГКК) (Укроргсинтез, Україна),

N-(3-диметиламінопропіл)-N'-етилкарбодіімід гідрохлорид (ЕДК) (Укроргсинтез, Україна). Для надання мембранам фотокаталітичних властивостей використовували наночастинки SnO₂ розміром менше 100 нм (Sigma-Aldrich, США).

Модифікування поліетерсульфонових *мембран наночастинками SnO*₂. Мембрани модифікували методом почергової адсорбції протилежно заряджених поліелектролітів [16]. Як перший шар наносили ПСС. Далі проводили адсорбцію ПЕІ та КМЦ. Як останній шар наносили наночастинки станум(IV) оксиду зануренням мембран у 0.01 % колоїдний розчин наночастинок SnO₂ у бідистильованій воді. Прищеплення ТКК і реакції ГКК здійснювали за допомогою між утворення амідного зв'язку карбоксильною групою кислот і аміногрупою ПЕІ за допомогою активатора ЕДК.

Дослідження адсорбційних, поверхневих ma фотокаталітичних властивостей модифікованих мембран. Кут змочування мембран водою вимірювали методом ζ-Потенціал «сидячої краплі». поверхні за допомогою мембран вимірювали електрокінетичного аналізатора **EKA** (AntonPaar, Austria), використовуючи розчин KCl з концентрацією $1 \cdot 10^{-3}$ моль/дм³ і pH 6.5 як фоновий електроліт. Поверхню мембран методом досліджували сканувальної електронної мікроскопії у поєднанні з енергодисперсійним аналізом (СЕМ-ЕДС) на (JEOL, приладі JSM-6700F Японія). Денситометричний аналіз густини забарвлення фотографій мембран після адсорбції барвника проводили у програмі ImageJ за допомогою функції Histogram.

Для дослідження кінетики адсорбції та деструкції барвника використовували водний розчин родаміну Ж концентрацією 1.25.10⁻³ %. Зразок мембрани площею 4 см² занурювали у розчин барвника об'ємом 4 см³. Вивчення адсорбції проводили темряві У для нівелювання фотокаталітичної активності вивчення мембран. Для деструкції родаміну Ж мембрани занурювали у розчин барвника і витримували у темряві протягом 24 год для досягнення рівноваги адсорбції. рН розчинів родаміну Ж змінювали до необхідних значень за допомогою розчинів HCl або NaOH концентрацією 0.1 моль/дм³. Після цього зразки розміщували під УФ-лампою DELUX EBT-01 26W E27 УФ на відстані 15 см. Оптичну густину розчинів вимірювали через кожні 10 хв протягом 1.5 год. Концентрацію барвника визначали спектрофотометричним методом при довжині хвилі 530 нм.

Фотокаталітичну ефективність оцінували кількісно за допомогою константи псевдопершого порядку, використовуючи рівняння Ленгмюра-Хіншельвуда [17]:

$$-kt = ln(C/C_0),$$

де k – константа швидкості, хв⁻¹; t – тривалість, хв.; C_0 – початкова концентрація барвника, %; C – концентрація барвника у момент часу t, %.

Період напіврозкладання барвника розраховували за формулою:

$$t_{1/2} = ln2/k.$$

Дослідження продуктивності і селективності мембран. Для визначення транспортних характеристик мембран використовували комірку непроточного типу Amicon 8050 (Millipore, США) об'ємом 50 см³. Робочий тиск задавали за допомогою стисненого азоту. Продуктивність мембран, J_v , $n/(m^2 \cdot rod)$ розраховували за формулою:

$$J_v = \frac{\Delta v}{S * \Delta \tau},$$

де ΔV – об'єм фільтрату, що пройшов крізь мембрану площею *S* за час $\Delta \tau$.

Коефіцієнт затримки родаміну Ж *R*_f, % розраховували за формулою:

$$R_{\rm f} = (C_0 - C_{\rm p})/C_0 \cdot 100,$$

де C_0 – початкова концентрація родаміну Ж, %; C_p – концентрація родаміну Ж у пермеаті, %.

РЕЗУЛЬТАТИ І ОБГОВОРЕННЯ

ПЕС Модифікування мембран. Поліетерсульфонові мембрани модифікували методом почергової адсорбції протилежно поліелектролітів заряджених (рис. 1). Спочатку наносили натрій полістиренсульфонат. розчинений у 0.66 моль/дм³ розчині NaCl для пригнічення дисоціації сульфогруп. Шар ПСС утримується на поверхні помірно гідрофобної мембрани за рахунок гідрофобно-гідрофобних взаємодій між бензольними кільцями. Як другий шар наносили позитивно заряджений поліетиленімін, який утримується за рахунок електростатичних взаємодій з негативно зарядженим ПСС. Почергове нанесення поліелектролітів повторювали 2 рази, при цьому замість ПСС як поліаніоніт КМЦ. Наночастинки використовували станум(IV) оксиду, які мають негативний заряд поверхні при рН 7.0, сорбували як останній шар.

Рис. 1. Схема модифікування поверхні мембран методом почергової адсорбції протилежно заряджених поліелектролітів

У результаті такого модифікування поверхня мембрани набуває супергідровластивостей фільних рахунок за наночастинок SnO₂. Кут змочування після адсорбції наночастинок становив 0°, тоді як кут змочування немодифікованої мембрани -61°. Такі характеристики свідчать про наявність великої кількості зв'язаної води на поверхні мембрани нанесеними 3 наночастинками, що обмежує адсорбцію речовин у процесах фільтрації [18].

Методом сканувальної електронної мікроскопії підтверджено адсорбцію наночастинок SnO₂ на поверхні мембран

(рис. 2). Отримані зображення мембрани свідчать, що поверхня мембрани вкрита наночастинок. агломератами Елементний аналіз поверхні модифікованої мембрани, отриманий за допомогою методу ЕДС, підтверджує наявність Sn і О на поверхні мембран (рис. 3). Також на спектрі спостерігається пік при 2.3 кеВ, який свідчить про наявність S, яка входить до складу ПСС. поліетерсульфону та Шe можна пояснити особливістю методу ЕДС, при якому електрони проникають у зразок на глибину до 1 мкм.

Рис. 2. СЕМ зображення поверхні *а* – немодифікованої ПЕС мембрани та *б* – мембрани, модифікованої наночастинками SnO₂

Рис. 3. Спектр ЕДС поверхні ПЕС мембрани, модифікованої наночастинками SnO₂

Оскільки за забруднення мембран доволі часто відповідає електростатичний механізм взаємодії між поверхнею мембрани і зарядженим субстратом, після адсорбції SnO₂ мембрани додатково модифікували *транс*- і гідрокоричною кислотами, які містять у своїй структурі бензольні кільця. Для прищеплення кислот використовували реакцію утворення амідного зв'язку між аміногрупами ПЕІ і карбоксильними групами зазначених сполук (рис. 4).

Після модифікування *транс*-коричною і гідрокоричною кислотами кут змочування мембран зростає до 31 і 22°, відповідно, що свідчить про часткову гідрофобізацію поверхні за рахунок бензольних кілець, а отже, і успішне прищеплення модифікаторів.

Дослідження *ζ*-потенціалу поверхні модифікованих мембран (рис. 5) також свідчать про часткове екранування заряду поверхні за рахунок прищеплення гідро- і

транс-коричної кислот. Так, значення ζ -потенціалу мембрани, модифікованої наночастинками SnO₂, при pH 6.5 становить -11.0 ± 0.18 мB, а після прищеплення ТКК і ГКК зростає до -5.2 ± 0.64 і -5.3 ± 0.44 мB, відповідно.

Рис. 4. Схема модифікування мембран прищепленням *транс*-і гідрокоричної кислот

Рис. 5. ζ-Потенціал поверхні мембран: 1 – немодифікована ПЕС мембрана; 2 – ПЕС+ПЕІ+КМЦ+SnO₂; 3 – ПЕС+ПЕІ+КМЦ+SnO₂+ТКК; 4 – ПЕС+ПЕІ+КМЦ+SnO₂+ГКК

Дослідження сорбційних властивостей мембран. На першому етапі вивчали сорбційні властивості мембран щодо барвника родаміну Ж у водному розчині при рН 5.4 за кімнатної температури у темряві. Кінетичні криві адсорбції наведені на рис. 6.

З отриманих результатів можна зробити висновки, що найвищими сорбційними

властивостями щодо родаміну Ж характеризується немодифікована мембрана (9.1 мкг/см²), тоді як модифікування мембран поліелектролітними шарами та наночастинками SnO₂ знижує адсорбцію барвника у 2 рази. Найнижчою сорбційною здатністю щодо барвника характеризується мембрана, модифікована *транс*-коричною кислотою. Після адсорбції родаміну Ж мембрани висушували на повітрі і фотографували з метою дослідження інтенсивності їхнього забарвлення барвником. Отримані зображення характеризували за допомогою програми ImageJ, розподіли інтенсивності забарвлення та їхні характеристики наведені на рис. 7.

Рис. 6. Кінетика адсорбції родаміну Ж на мембранах: *1* – немодифікована ПЕС мембрана; *2* – ПЕС+ПЕІ+КМЦ; *3* – ПЕС+ПЕІ+КМЦ+SnO₂; *4* – ПЕС+ПЕІ+КМЦ+SnO₂+ТКК; *5* – ПЕС+ПЕІ+КМЦ+SnO₂+ГКК

Рис. 7. Денситометричний аналіз поверхні мембран після адсорбції родаміну Ж: *а* – немодифікована ПЕС мембрана; *б* – ПЕС+ПЕІ+КМЦ; *в* – ПЕС+ПЕІ+КМЦ+SnO₂; *г* – ПЕС+ПЕІ+КМЦ+SnO₂+TKK; *∂* – ПЕС+ПЕІ+КМЦ+SnO₂+ГКК

Отримані розподіли інтенсивності забарвлення пікселів добре корелюють з даними адсорбції барвника. Так. для немодифікованої мембрани спостерігається найширший розподіл з правосторонньою асиметрією (рис. 7 а), тоді як після модифікування мембрани поліелектролітними шарами розподіл інтенсивності пікселів забарвлення наближається ЛО нормального (середн $\epsilon = 196.4$ та мода = 197) (рис. 7 б). Після нанесення наночастинок SnO₂ на поверхні мембран розподіли інтенсивності забарвлення пікселів суттєво звужуються, що підтверджує найменшу кількість барвника, адсорбованого на поверхні (рис. 7 *в*–*д*).

Дослідження фотокаталітичної активності мембран. Фотокаталітичну активність мембран, модифікованих наночастинками SnO₂ та кислотами, вивчали у процесі розкладання барвника при УФопроміненні при різних значеннях рН родаміну Ж. Кінетичні розчину криві деструкції барвника при УФ-опроміненні наведені на рис. 8.

Рис. 8. Кінетика розкладання родаміну Ж мембранами: *а* – ПЕС+ПЕІ+КМЦ+SnO₂; *б* – ПЕС+ПЕІ+КМЦ+SnO₂+ТКК; *в* – ПЕС+ПЕІ+КМЦ+SnO₂+ГКК

Мембрани з наночастинками станум(IV) оксиду характеризуються високим ступенем розкладання барвника 40–50 % за 1.5 год за початкової концентрації барвника $1.2 \cdot 10^{-3}$ %. Цікавим є той факт, що додаткове модифікування мембран кислотами впливає на рН-оптимум їхньої фотокаталітичної активності. Так, мембрана, модифікована лише наночастинками, проявляє найвищу

активність у кислому середовищі при рН 3.1, шо є характерним для таких фотокаталізаторів як SnO₂ і TiO₂ [19], тоді як у лужному середовищі ступінь розкладання родаміну Ж знижується у 1.6 разів у порівнянні з кислим середовищем (рис. 8 а). При подальшому модифікуванні мембран *транс-*коричною кислотою рН-максимум фотокаталітичної активності зсувається у лужну область (pH 9.0), у той час як ступінь розкладання барвника у кислому і слабко кислому середовищі знижується у 1.8 разів (рис. 8 δ). При прищепленні гідрокоричної кислоти мембрана виявляє найвищу активність у нейтральному середовищі при pH 7.0, а найнижчу – у кислому при pH 3.1 (рис. 8 ε).

Отже. отримані результати підтверджують, що рН є важливим фактором у фотокаталітичних процесах знебарвлення барвників, оскільки впливає на механізм їхньої деструкції [20]. Зокрема, рН розчинів барвника впливає на подвійний електричний шар мембрани і змінює їхній ζ-потенціал поверхні, що у результаті чинить вплив на взаємодію молекул барвника з поверхнею мембран [21]. Усі досліджені мембрани характеризувалися наявністю ізоелектричної точки у діапазоні рН 4.5-5.0, позитивним ζ-потенціалом у кислому середовищі і негативним – у нейтральному і лужному середовищі, тоді як молекули родаміну Ж набувають позитивного заряду у кислому сереловиші рахунок протонування за вторинної аміногрупи, а у нейтральному і лужному середовищах є нейтральними. Отже, рН середовища впливає на стадію адсорбції родаміну Ж тільки у кислому середовищі, де електростатичне відбувається відштовхування заряджених позитивно молекул

барвника від позитивно зарядженої поверхні мембран.

Разом з тим, значення рН можуть впливати на окиснення барвника •ОН, •ООН, О2 радикалами і дірками, а також на безпосередню взаємодію 3 фотозгенерованими [22, 23]. електронами Аналізуючи отримані кінетичні залежності фотокаталітичної активності від рН розчинів барвника, можна зробити висновок, що прищеплення транс- і гідрокоричної кислот мембран змінює механізм до поверхні фотодеструкції родаміну Ж. Так, можна зробити припущення, що на мембрані, модифікованій лише наночастинками SnO₂, розкладання барвника відбувається переважно рахунок взаємодії за електронами. Через це при збільшенні рН спостерігається зниження фотокаталітичної активності. тоді як на мембранах 3 прищепленими кислотами переважає окиснення родаміну Ж радикалами і дірками, дія яких при переході до кислого середовища пригнічується. Проте, для підтвердження зазначеної гіпотези про механізм потрібні фотодеструкції родаміну Ж подальші дослідження.

Усі кінетичні криві розкладання родаміну Ж на мембранах описуються рівнянням псевдопершого порядку Ленгмюра-Хіншельвуда. Розраховані константи швидкості наведені у таблиці.

Таблиця. Розраховані фотокаталітичні константи псевдо-першого порядку за рівнянням Ленгмюра-Хіншельвуда

Мембрана	pН	$k, x B^{-1}$	R^2	$t_{1/2}, x_B$
ПЕС+ПЕІ+КМЦ+SnO ₂	3.1	0.0052	0.9609	133.3
	5.4	0.0049	0.9854	141.5
	7.0	0.0042	0.9634	165.0
	9.0	0.0040	0.9547	173.3
ПЕС+ПЕІ+КМЦ+SnO ₂ +ТКК	3.1	0.0035	0.9897	198.0
	5.4	0.0026	0.9631	266.6
	7.0	0.0039	0.9384	177.7
	9.0	0.0052	0.9472	133.3
ПЕС+ПЕІ+КМЦ+SnO ₂ +ГКК	3.1	0.0021	0.9897	330.1
	5.4	0.0044	0.9788	157.5
	7.0	0.0057	0.9706	121.6
	9.0	0.0052	0.9779	133.3

Як видно з одержаних значень констант швидкості і періоду напіврозкладання барвника, найвищою фотоактивністю характеризується мембрана, модифікована наночастинками SnO₂ і гідрокоричною кислотою при pH 7.0 ($k = 0.0057 \text{ xB}^{-1}$, $t_{1/2} = 121.6 \text{ xB}$).

Дослідження транспортних властивості мембран, модифікованих SnO₂, у нанофільтрації процесі барвника досліджували родаміну Ж. Надалі нанофільтрацію барвника родаміну Ж на різних мембранах діапазонах pH. y Немодифікована мембрана виявляє високу продуктивність у нейтральному середовищі

(pH 5.4–7.0), тоді як продуктивність суттєво знижується при кислому і лужному pH (рис. 9 *a*). Після модифікування мембрани поліелектролітними шарами ПЕІ-КМЦ спостерігається зниження об'ємного потоку у два рази, яке пов'язане з перекриванням пор мембрани (рис. 9 δ).

Рис. 9. Продуктивність мембран у процесі нанофільтрації родаміну Ж за прикладеного тиску 100 кПа, ступінь відбору пермеату – 70 %: *а* – немодифікована ПЕС мембрана; *б* – ПЕС+ПЕІ+КМЦ; *в* – ПЕС+ПЕІ+КМЦ+SnO₂; *г* – ПЕС+ПЕІ+КМЦ+SnO₂+ТКК; *д* – ПЕС+ПЕІ+КМЦ+SnO₂+ГКК

Також вплив рН на об'ємний потік стає незначним. Варто зазначити, що для обох

мембран спостерігається зниження продуктивності з часом зі збільшенням

ISSN 2079-1704. XΦTΠ 2019. T. 10. № 2

ступеня відбору пермеату, що пояснюється збільшенням впливу ефекту концентраційної поляризації та адсорбцією барвника на поверхні мембран. Після модифікування мембран наночастинками SnO₂ об'ємний потік залишається стабільним протягом усього експерименту (рис. 9 е-д). Це можна пояснити фотокаталітичною активністю станум(IV) оксиду, який розкладає барвник у примембранному шарі. Лля мембрани, модифікованої поліелектро-літними шарами SnO₂, найвища продуктивність та

спостерігається при рН 3.0, а найнижча – у лужному середовищі, що корелює з рНфотоактивності оптимумом зазначеної мембрани. Після прищеплення кислот продуктивність мембран знижується на 15-20 %, що, імовірно, пов'язане зi зменшенням гідрофільності поверхні мембран. Також, спостерігається нівелювання об'ємний впливу pН на потік. шо пояснюється перекриванням заряджених груп бензольними кільцями.

Рис. 10. Затримка родаміну Ж мембранами у процесі нанофільтрації родаміну Ж за прикладеного тиску 100 кПа, ступінь відбору пермеату – 70 %: *а* – немодифікована ПЕС мембрана; *б* – ПЕС+ПЕІ+КМЦ; *в* – ПЕС+ПЕІ+КМЦ+SnO₂; *г* – ПЕС+ПЕІ+КМЦ+SnO₂+ТКК; *д* – ПЕС+ПЕІ+КМЦ+SnO₂+ГКК

Коефіцієнт затримки барвника для немодифікованої мембрани за всіх значень рН невисокий (20-30 %), що є очікуваним для ультрафільтраційної мембрани (рис. 10 а). Результати залежності коефіцієнтів затримки від рН добре барвника корелюють 3 фотокаталітичною активністю мембран модифікована (рис. 10). Так, мембрана. транс-коричною кислотою, характеризується коефіцієнтами найвишими затримки. особливо при рН 9.0 (рис. 10 г). Відповідно, модифікована мембрана, гідрокоричною кислотою, найкраще затримує родамін при рН 7.0 (рис. 10 д). Для усіх модифікованих мембран коефіцієнт затримки барвника зростає у порівнянні з немодифікованою мембраною рахунок наявності за поліелектролітних шарів на поверхні, які перекривають пори.

ВИСНОВКИ

Поліетерсульфонові мембрани були модифіковані поліетиленіміном і карбоксиметилцелюлозою методом почергової адсорбції протилежно заряджених поліелектролітів. Наночастинки SnO₂ були іммобілізовані за рахунок електростатичної взаємодії з поліетиленіміном. До поверхні мембран були прищепленні транс-корична і гідрокорична кислоти шляхом утворення зв'язку. Адсорбційні, амідного фотокаталітичні та транспортні властивості мембран були досліджені з використанням родаміну Ж. Показано, барвника що іммобілізація наночастинок станум(IV) барвника на оксиду знижує адсорбцію поверхні мембран у 2 рази. Підтверджено, що модифікування мембран призвело до появи фотокаталітичних властивостей. Так. з наночастинками мембрани станум(IV) оксиду характеризувалися високим ступенем розкладання барвника 40-50 % за 1.5 год за початкової концентрації барвника 1.2.10-3 %. Показано. шо найвища фотокаталітична іммобілізованими мембран активність 3 станум(IV) наночастинками оксиду виявляються у кислому середовищі при рН 3.0, тоді як прищеплення *транс*-коричної і гідрокоричної кислот зміщує рН-оптимум у лужне і нейтральне середовище (рН 9.0 і 7.0), відповідно. Встановлено, що модифіковані мембрани характеризуються стабільною продуктивністю у процесі нанофільтрації барвника і високими ступенями його затримки (70-90 %).

Photocatalytic properties of polyethersulfonic membranes modified with SnO₂ nanoparticles

I.S. Kolesnyk, O.Ya. Dzhodzhyk, V.V. Konovalova, H.A. Sorokin, T.H. Meshkova, A.F. Burban, S.M. Tsaryk

National University of Kyiv-Mohyla Academy 2 Skovorody Str., Kyiv, 04070, Ukraine, i.kolesnyk@ukma.edu.ua

The present study aims to obtain membranes with photocatalytic properties by means of tin(IV) oxide immobilization on their surface to prevent fouling. Polyethersulfone membranes have been modified by polyelectrolyte complexes and SnO₂ nanoparticles by "layer-by-layer" method. Trans-cinnamic and hydrocinnamic acids have been grafted to the surface of the membranes by the amide bond formation. Modification of membranes by nanoparticles has been confirmed by methods of scanning electron microscopy, energy dispersion spectroscopy and electrokinetic analysis. All membranes have been characterized by isoelectic point in the range of pH 4.5–5.0, positive zeta-potential in acid medium and negative one in alkaline medium. The adsorption, photocatalytic and transport properties of the membranes have been investigated using Rhodamine G. It has been shown that the immobilization of the nanoparticles of the tin(IV) oxide reduces the adsorption of the dye on the surface of the membranes twofold. It has been confirmed that membrane modification leads to the appearance of photocatalytic properties. Thus, membranes with nanoparticles of tin(IV) oxide are characterized by a high degree of dye decomposition could be described by pseudo-first rate according to an Langmuir-Hinshelwood equation. It has been found that the grafting of trans- and hydrocinnamic acids affects the pH optimum of membranes photocatalytic

ISSN 2079-1704. XΦΤΠ 2019. T. 10. № 2

activity. Notably, the highest photocatalytic activity of membrane with immobilized SnO_2 nanoparticles is observed in an acidic media at pH 3.0, while after trans- and hydrocinnamic acids grafting the pH optimum is shifted to alkaline and neutral media (pH 9.0 and 7.0), respectively. It has been shown that modified membranes exhibit stable flux in the process of dye nanofiltration and high levels of its rejection (70–90 %).

Keywords: polyethersulfone membrane, tin(IV) oxide, "layer-by-layer" method, Rhodamine G, photocatalysis

Фотокаталитические свойства полиэтерсульфоновых мембран, модифицированных наночастицами SnO₂

И.С. Колесник, О.Я. Джоджик, В.В. Коновалова, Г.А. Сорокин, Т.Г. Мешкова, А.Ф. Бурбан, С.Н. Царик

Национальный университет «Киево-Могилянская академия» ул. Сковороды, 2, Киев, 04070, Украина, i.kolesnyk@ukma.edu.ua

Целью работы было получение мембран с фотокаталитическими и антизагрязняющими свойствами. Для этого полиэфирсульфоновые мембраны были модифицированы полиэлектролитными комплексами и наночастицами SnO₂ методом поочередной адсорбции противоположно заряженных полиэлектролитов. К поверхности мембран были привиты транс-коричная и гидрокоричная кислоты путем образования амидной связи. Модифицирование мембран наночастицами подтверждено методами сканирующей электронной микроскопии, энергодисперсионной спектроскопии и электрокинетическим анализом. Исследованные мембраны характеризируются наличием изоэлектрической точки в диапазоне pH 4.5-5.0, позитивным ζ-потенциалом в кислой среде и негативным — в нейтральной и щелочной средах. Адсорбционные, фотокаталитические и транспортные свойства мембран были исследованы с использованием родамина Ж. Показано, что иммобилизация наночастиц станум(IV) оксида снижает адсорбцию красителя на поверхности мембран в 2 раза. Подтверждено, что модифицирование мембран привело к появлению фотокаталитических свойств. Так, мембраны с наночастицами станум(IV) оксида характеризуются высокой степенью разложения красителя 40–50 % за 1.5 ч при начальной концентрации красителя $1.2 \cdot 10^{-3}$ %. Все кинетические кривые разложения родамина Ж на мембранах описываются уравнением псевдопервого порядка Ленгмюра-Хиншельвуда. Установлено, что прививка транс- и гидрокоричной кислот влияет на рН-оптимум фотокаталитической активности мембран. Мембрана, модифицированная только наночастицами станум(IV) оксида, проявляет высокую активность в кислой среде при рН 3.1. При дополнительном модифицировании мембран транс-коричной кислотой рН максимум фотокаталитической активности сдвигается в щелочную область (pH 9.0), а гидрокоричной кислотой - в нейтральную область (рН 7.0). Показано, что модифицированные мембраны проявляют стабильную производительность в процессе нанофильтрации красителя и высокие степени его задержки (70–90 %).

Ключевые слова: полиэтерсульфоновая мембрана, станум(IV) оксид, метод «layer-by-layer», родамин Ж, фотокатализ

ЛІТЕРАТУРА

- 1. Geng Z., Yang X., Boo C. et al. Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide // J. Membr. Sci. 2017. V. 529. P. 1–10.
- 2. Zhang X., Ren P.F., Yang H. C. et al. Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes // Appl. Surf. Sci. 2016. V. 360. P. 291–297.
- Yang H.C., Wu M.B., Li Y.J. et al. Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine // J. Appl. Polym. Sci. – 2016. – V. 133, Is. 32. – P. 1–9.
- Leong S., Razmjou A., Wang K. et al. TiO₂ based photocatalytic membranes: A review // J. Membr. Sci. 2014. – V. 472. – P. 167–184.

- 5. *Konovalova V., Kolesnyk I., Ivanenko O. et al.* Fe²⁺ removal from water using PVDF membranes, modified with magnetite nanoparticles, by polyelectrolyte enhanced ultrafiltration // Environment Protection Engineering. 2018. V. 21, Iss. 1. P. 39–49.
- Kolesnyk I., Konovalova V., Kharchenko K. et al. Improved antifouling properties of polyethersulfone membranes modified with α-amylase entrapped in Tetronic[®] micelles // J. Membr. Sci. – 2019. – V. 570–571. – P. 436–444.
- 7. *Konovalova V., Guzikevich K., Burban A. et al.* Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane // Carbohydr. Polym. 2016. V. 152. P. 710–717.
- 8. Song H., Shao J., Wang J. et al. The removal of natural organic matter with LiCl-TiO₂-doped PVDF membranes by integration of ultrafiltration with photocatalysis // Desalination. 2014. V. 344. P. 412–421.
- Laohaprapanon S., Vanderlipe A.D., Doma B.T. et al. Self-cleaning and antifouling properties of plasmagrafted poly(vinylidene fluoride) membrane coated with ZnO for water treatment // J. Taiwan Inst. Chem. Eng. - 2017. - V. 70. - P. 15-22.
- 10. *Li R., Ren Y., Zhao P. et al.* Graphitic carbon nitride (g-C₃N₄) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance // J. Hazard. Mater. 2019. V. 365. P. 606–614.
- Pastrana-Martínez L.M., Morales-Torres S., Figueiredo J.L. et al. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water // Water Res. – 2015. – V. 77. – P. 179–190.
- 12. Xu Z., Wu T., Shi J. et al. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO₂ for water treatment // J. Membr. Sci. 2016. V. 520. P. 281–293.
- Zinadini S., Rostami S., Vatanpour V. et al. Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite // J. Membr. Sci. – 2017. – V. 529. – P. 133–141.
- 14. *Bai H., Zan X., ZhangL. et al.* Multi-functional CNT/ZnO/TiO₂ nanocomposite membrane for concurrent filtration and photocatalytic degradation // Sep. Purif. Technol. 2015. V. 156. P. 922–930.
- 15. *Yu S., Wang Y., Sun F. et al.* Novel mpg-C₃N₄/TiO₂ nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation // Chem. Eng. J. 2018. V. 337. P. 183–192.
- 16. *Dzhodzhyk O., Kolesnyk I., Konovalova V. et al.* Modified polyethersulfone membranes with photocatalytic properties // Chem. Chem. Technol. 2017. V. 11, Iss. 3. P. 377–288.
- 17. Coto M., Troughton S.C., Duan J. et al. Development and assessment of photo-catalytic membranes for water purification using solar radiation // Appl. Surf. Sci. 2018. V. 433. P. 101–107.
- Mansourpanah Y., Madaeni S.S., Rahimpour A. et al. Formation of appropriate sites on nanofiltration membrane surface for binding TiO₂ photo-catalyst: Performance, characterization and fouling-resistant capability // J. Membr. Sci. – 2009. – V. 330. – P. 297–306.
- 19. Zhang H., Quan X., Chen S. et al. Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water // Sep. Purif. Technol. 2006. V. 50, Iss. 2. P. 147–155.
- Alkaim A.F., Aljeboree A.M., Alrazaq N.A. et al. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue // Asian J. Chem. - 2014. - V. 26, Iss. 24. -P. 8445-8448.
- 21. *Reza K.M., Kurny A., Gulshan F.* Parameters affecting the photocatalytic degradation of dyes using TiO₂: a review // Appl. Water Sci. 2017. V. 7, N 4. P. 1569–1578.
- 22. Chen Y., Yang S., Wang K., Lou L. Role of primary active species and TiO₂ surface characteristic in UVilluminated photodegradation of Acid Orange 7 // J. Photochem. Photobiol. A. – 2005. – V. 172, N 1. – P. 47–54.
- 23. *Rehman S., Ullah R., Butt A.M., Gohar N.D.* Strategies of making TiO₂ and ZnO visible light active // J. Hazard. Mater. 2009. V. 170, N 2–3. P. 560–569.

REFERENCES

- 1. Geng Z., Yang X., Boo C., Zhu S., Lu Y., Fan W., Huo M., Elimelech M., Yang X. Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. *J. Membr. Sci.* 2017. **529**: 1.
- 2. Zhang X., Ren P.F., Yang H.C., Wan L.S., Xu Z.K. Co-deposition of tannic acid and diethlyenetriamine for surface hydrophilization of hydrophobic polymer membranes. *Appl. Surf. Sci.* 2016. **360**: 291.

- Yang H.C., Wu M.B., Li Y.J., Chen Y.F., Wan L.S., Xu Z.K. Effects of polyethyleneimine molecular weight and proportion on the membrane hydrophilization by codepositing with dopamine. J. Appl. Polym. Sci. 2016. 133(32): 1.
- 4. Leong S., Razmjou A., Wang K., Hapgood K., Zhang X., Wang H. TiO₂ based photocatalytic membranes: A review. *J. Membr. Sci.* 2014. **472**: 167.
- 5. Konovalova V., Kolesnyk I., Ivanenko O., Burban A. Fe²⁺ removal from water using PVDF membranes, modified with magnetite nanoparticles, by polyelectrolyte enhanced ultrafiltration. *Environment Protection Engineering*. 2018. **21**(1): 39.
- Kolesnyk I., Konovalova V., Kharchenko K., Burban A., Knozowska K., Kujawski W., Kujawa J. Improved antifouling properties of polyethersulfone membranes modified with α-amylase entrapped in Tetronic[®] micelles. J. Membr. Sci. 2019. 570-571: 436.
- 7. Konovalova V., Guzikevich K., Burban A., Kujawski W., Jarzynka K., Kujawa J. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity membrane. *Carbohydr. Polym.* 2016. **152**: 710.
- 8. Song H., Shao J., Wang J., Zhong X. The removal of natural organic matter with LiCl-TiO₂-doped PVDF membranes by integration of ultrafiltration with photocatalysis. *Desalination*. 2014. **344**: 412.
- 9. Laohaprapanon S., Vanderlipe A.D., Doma B.T., You S.J. Self-cleaning and antifouling properties of plasmagrafted poly(vinylidene fluoride) membrane coated with ZnO for water treatment. *J. Taiwan Inst. Chem. Eng.* 2017. **70**: 15.
- Li R., Ren Y., Zhao P., Wang J., Liu J., Zhang Y. Graphitic carbon nitride (g-C₃N₄) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. *J. Hazard. Mater.* 2019. 365: 606.
- Pastrana-Martínez L.M., Morales-Torres S., Figueiredo J.L., Faria J.L., Silva A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. *Water Res.* 2015. 77: 179.
- Xu Z., Wu T., Shi J., Teng K., Wang W., Ma M., Li J., Qian X., Li C., Fan J. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO₂ for water treatment. *J. Membr. Sci.* 2016. **520**: 281.
- 13. Zinadini S., Rostami S., Vatanpour V., Jalilian E. Preparation of antibiofouling polyethersulfone mixed matrix NF membrane using photocatalytic activity of ZnO/MWCNTs nanocomposite. *J. Membr. Sci.* 2017. **529**: 133.
- 14. Bai H., Zan X., Zhang L., Sun D.D. Multi-functional CNT/ZnO/TiO₂ nanocomposite membrane for concurrent filtration and photocatalytic degradation. *Sep. Purif. Technol.* 2015. **156**: 922.
- 15. Yu S., Wang Y., Sun F., Wang R., Zhou Y. Novel mpg-C₃N₄/TiO₂ nanocomposite photocatalytic membrane reactor for sulfamethoxazole photodegradation. *Chem. Eng. J.* 2018. **337**: 183.
- 16. Dzhodzhyk O., Kolesnyk I., Konovalova V., Burban A. Modified polyethersulfone membranes with photocatalytic properties. *Chem. Technol.* 2017. **11**(3): 377.
- 17. Coto M., Troughton S.C., Duan J., Kumar R.V., Clyne T.W. Development and assessment of photo-catalytic membranes for water purification using solar radiation. *Appl. Surf. Sci.* 2018. **433**: 101.
- Mansourpanah Y., Madaeni S.S., Rahimpour A., Farhadian A., Taheri A.H. Formation of appropriate sites on nanofiltration membrane surface for binding TiO₂ photo-catalyst: Performance, characterization and foulingresistant capability. J. Membr. Sci. 2009. 330: 297.
- 19. Zhang H., Quan X., Chen S., Zhao H., Zhao Y. Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water. *Sep. Purif. Technol.* 2006. **50**(2): 147.
- Alkaim A.F., Aljeboree A.M., Alrazaq N.A., Baqir S.J., Hussein F.H., Lilo A.J. Effect of pH on adsorption and photocatalytic degradation efficiency of different catalysts on removal of methylene blue. *Asian J. Chem.* 2014. 26(24): 8445.
- 21. Reza K.M., Kurny A., Gulshan F. Parameters affecting the photocatalytic degradation of dyes using TiO₂: a review. *Appl. Water Sci.* 2017. 7(4): 1569.
- 22. Chen Y., Yang S., Wang K., Lou L. Role of primary active species and TiO₂ surface characteristic in UVilluminated photodegradation of Acid Orange 7. J. Photochem. Photobiol. A. 2005. **172**(1): 47.
- Rehman S., Ullah R., Butt A.M., Gohar N.D. Strategies of making TiO₂ and ZnO visible light active. J. Hazard. Mater. 2009. 170(2–3): 560.

Надійшла 05.02.2019, прийнята 21.05.2019