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Abstract  
The mathematical model of process of pressing of seamless pipes is developed and influence of 
different forms is set formative matrices on character of forming of energy power parameters of 
hearth of deformation. In interpretation of base variation of Euler’s task for the case of the direct 
pressing of pipes on the cylindrical mandrel the rational form of type (calibration) of matrix is 
certain. 
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Introduction 

Manufacturing operations of seamless pipes 
with usage of hollow billet pressing methodology 
in various modifications are based on the variety 
of physical peculiarities and technological 
advantages as compared with other methods of 
metal treatment under pressure [1]. 

It is known that while pressing of hollow 
billet there takes place the scheme of strained 
uniform compression in deformation zone, which 
is most advantageous from the point of view of 
increasing the values of metal workability. This 
provides high level of metal ductility, allows to 
deform the billet of low-ductile materials during 
single cycle of processing.  The hypothesis is 
physical base for favourable conditions of hollow 
billet forming, especially from hard-to-deform 
alloys which are often subjected to crack 
formation (damage) during other deformation 
processes [2]. 

However, together with positive aspects, 
the processes of seamless pipes pressing have 
some disadvantages, which restrict the area of 
their usage. The most common among them are: 
low quality of service tool conditioned by its 
operation in bad conditions (high temperatures 
and critical contact voltages); relatively high 
metal consumption index, values of which, first 
of all, are determined by relatively high level of  
end pipe shearing [3,4].  

Removal of disadvantages of 
pipepressing machines is possible through choice 
of effective process conditions of pipepressing 
processes, including grooving of reasonable 
processing tool (for example, matrix design).  

Pressing process optimization of 
seamless pipes is based on the following groups 
of fundamental scientific researches and 
engineering developments: determining of the 
real deformation and speed parameters of pipe 
pressing; choice of effective geometrics of 
deforming instruments; selection of appropriate 
lubricants with optimal combination of 
antifriction properties; updating of press 
construction.  

The main criteria of technological 
process optimization are minimization of energy-
power parameters of hollow billet deformation 
process and increasing of single deformation of 
metals, that will lead to increase of presses 
productivity and accuracy increase of dimensions 
of pipes (hollow billet).  

A lot of works are devoted to theoretical 
study of pressing process and pipe pressing in 
particular [1-6]. Let us analyze some works and 
mathematical models, where there is 
simultaneous analysis of stressed and deformed 
condition while seamless pipes pressing. 
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For example, in work [3] there was a 

hypothesis, which stated that there is flat axial 
flow in the deformation zone. Such hypothesis 
obviously distorts true picture of hollow billet 
pressing process, as while realization of 
technological process there tales place critical 
velocity of metal flow gradient between points 
making contact with deforming tools and points, 
which are in the volume (central plies) of metal 
under press.  

 The most exact in basic view the task of 
pressing is represented in works [3,6], but while 
analysis of certain tasks there appear the range of 
difficulties, conditioned by the peculiarities of 
study of mathematical model of similar 
processes.  

It should be marked that until now in 
literature there is no identical generalizing 
recommendations concerning choice of effective 
technological parameters of the process of 
pipepressing.  

Below there is an attempt to get the 
refined mathematical model of seamless pipe 
pressing process, which is the closest to real 
processes, physical and boundary conditions of 
the task.  

The main purpose of the proposed 
researches is getting the real image of 
distribution of energy-power parameters, 
development of generalized practical 
recommendations concerning choice of effective 
parameters of pipepressing process, design of   
service tools range and effective technological 
process of pipe manufacturing with the help of 
specialized presses.  

Well-known methods of mathematical 
modeling of pressing processes, because of their 
peculiarities of deformable medium rheology, do 
not offer an opportunity for detailed analysis of 
dynamic peculiarities of technological processes 
of seamless pipes manufacturing.  

In this case the usage of theoretical basis 
of continuum mechanics in interpretation of 
known class tasks of fluid-flow analogy allows to 
broaden the range of questions under 
consideration and solve some tasks concerning 
optimization the manufacturing process of 
seamless pipes with the help of extrusion press.  
Considering that fact, that line-binding and 
viscoplastic medium models are proximal to real 
dynamic behavior of many metals, below is 
given the reason of fluid-flow analogy of 
deformation zone usage for study of pipe 

pressing process character. In this work adapted 
version of hydrodynamic model for fundamental 
research of dynamics of deformation zone and 
seamless pipe pressing process design is given. 
Further,  for a first approximation, there observed 
the most common scheme of direct extrusion of 
seamless pipes on the extrusion press [1,5]. This 
scheme is the scheme of direct extrusion of 
seamless pipes, which supposes extrusion of 
hollow billet through ring-shaped channel 
formed by cylindrical mandrel and standardized 
die orifice.    

Herewith pipe pressing process under 
this scheme is fulfilled as follows. Hollow billet 
heated to the necessary temperature (1200 – 
1250ºС) is put to the orifice, then it is pressed 
with the help of ram through annular slit, formed 
by die orifice and cylindrical mandrel, forming 
pipe of desired geometry [1,3]. 

Let us assume the model of binding 
noncontractible operating environment with 
given viscosity factor µ ( medium rheology), 
which essentially depends on mechanical 
properties and temperature of hollow billet, as 
one of the successive refined mathematical 
models of metal flow while seamless pipe 
extrusion.  

Suggestions about appliance of such 
dynamic model but in other interpretation was 
proposed in the work [3], and practical usage of 
this model for determination of frictional force in 
deformation zone is fulfilled in work [4].  

Let us consider the dynamic processes of 
seamless pipes extrusion on the pipe section 
press, design model of which is given in figure 1. 
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Figure 1 Design model of  the processes of 
seamless pipes extrusion: 1 – ram; 2 – extrudable 
metal (hollow billet); 3 - die orifice; 4 – orifice; 5 – 
mandrel; 9 – press run-out chute 

 
Viscoplastic medium dynamics, forming 

metal flow in deformation zone, let us consider 
axiosymmetrical. For research of dynamic 
processes in deformation zone let us use Navier-
Stokes’ system of equations in cylindrical 
coordinate system. This equations [7,8] take the 
following form:   
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where , ,x r θυ υ υ  - are corresponding components 
of the velocity in the cylindrical coordinate 
system; p - is pressure in deformation zone; 

, ,x rF F Fθ  - components of body force; 

ν µ ρ= ;µ  - viscosity of metal; ρ  - density of 
operating medium (of metal).  

Let us make some simplifying 
assumptions. We will consider that cross-section 
area of deformation zone, where monaxonic 
metal flow takes place, changes continuously, so 
we may ignore radial and tangential components 
of the speed rυ  and θυ ,  but not axial 
component xυ . 

Next, we will consider, that the pressing 
process runs rather slowly, so inertial component 

of the equation (1) (derivative x

t
υ∂
∂

) may be 

ignored. Besides, we will not take into account 
matching components of body force.  

Under suggestions abovementioned the 
Navier-Stokes equations (1) are simplified and 
take on the following form: 

                                    

2 2

2 2

0; 0;

1 .x x x

p p
r
p
x r r r x

θ
υ υ υµ

∂ ∂ = =∂ ∂
  ∂ ∂ ∂∂ = + + ∂ ∂ ∂ ∂ 

    (2) 

 
Whence it follows that the pressure of 

metal in deformation zone is determined - 
function of disposal variable x .  
 Equation of metal flow continuity we 
will depict as integrated equation of conservation 
of space velocity of operating environment in 
ring-shaped channel of deformation zone 

                                                      
( )

( )

2 ( , )
a x

x
b x

x r rdr Qπ υ =∫ . 

 
 It follows from the last equation, that the 
axial component of metal flow velocity in the 
zone xυ , in general terms strictly depends on 
coordinates x  and r  respectively, but taking into 
account the suggestion about continuous 
changing of cress-section area of deformation 
zone, taken by the metal flow, we will ignore the 

derivative 
2

2
x

x
υ∂

∂
 as compared with other additive 

components in the on the right side of the 
equation (2). As the result we may form the 
modified equation of Navier-Stokes [8] 

                                          
2

2

( , ) ( , )1x xx r x rdp
dx r r r

υ υµ
 ∂ ∂

= + ∂ ∂ 
                                      

(3)  
This equation is the adapted variant of 

Poiseuille equation [7,8].  
So, the considered hydrodynamic model of 
deformation zone is charecrerized by the fact that 
monaxonic pressed metal flow in each cress-
section of deformation zone with sectional area 
( )S x  is the same as Poiseuille motion in ring-

shaped channel and the same fixed area.  
 Solution of the equation (3) for axial 
metal flow in deformation zone in accordance 
with [8] is as follows:  
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21( , ) ( ) ln ( ),
4x

dpx r r A x r B x
dx

υ
µ

= + +                                  

(4) 
where values ( )A x  and ( )B x  are not just 
arbitraty constants (as in case of Poiseuille 
motion), but they are some functions from x  
coordinate, values of which are determined from 
the conditions of pressed metal and tool (on the 
mandrel ( )r b x=  and orifice ( )r a x= ) 
cooperation on the corresponding  area boundary 
of metal flow in deformation zone.  
Therefore, the common solution of Poiseuille 
equation (4) contains two parameters  ( )A x  and 

( )B x , which is determined from boundary 
conditions of the matter. It is obvious that for 
viscid model of operating medium (of metal) 
boundary conditions of the matter are the 
conditions of cooperation of metal with 
processing tools, which are as follows 
        ( ( )) 0x r a xυ = =  and ( ( )) 0x r b xυ = =                                      
(5) 

Inserting the boundary conditions (5) 
into the expression (4) respectively, we will have 
two equations  
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where  the values of required parameters ( )A x  
and ( )B x  are determined 
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             (6) 
In result of (6) substitutions into (4) for 

axial component of metal flow velocity in 
deformation zone, we will have the following 
equation  

               
2 2

2 21 1 ( ) ( ) ( )( , ) ( ) ln( )4 4 ln
( )

x
dp dp a x b x a xx r r a x a xdx dx r
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             (7) 
where values ( )a x  and ( )b x  are the 
corresponding die and mandrel radiuses (external 
and inner boundaries of deformation zone), 
which are the functions of x  coordinate.  

In curvilinear ring-shaped channel with 
variable cross-sectional area limited by die 

( )r a x=  and mandrel ( )r b x=  generatrices, 
velocity of metal flow ( , )x x rυ is also taken the 
same as Poiseuille motion. In such a way, during 
solution of  this task we use “Poiseuille’s 
hypothesis of  local flow”.  

One may see that formula (7) contains 

the value 
dp
dx

 - pressure gradient, which is 

unknown in advance, but can be found out, if the 
value of metal outflow through the ring-shaped 
channel of deformation zone is defined or may be 
set experimentally.  

Judging from the hypothesis concerning 
incoercibility of pressing metal (of operating 
medium), output of operating medium in the 
ring-shaped channel of deformation zone equals 
to  
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2 2
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After integrating and some generations we will 
have  
                    

2 2 2
4 4( ( ) ( )) ( )ln ( ) ( ) .( )8 ln
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dp a x b x a xQ a x b xa xdx r
b x

π
µ

 
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 
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               (8)                           
 

On the other hand, it should be marked 
that the value of metal usage Q  is expressed 
through the speed of ram motion in container 0υ , 
which is strictly defined by moving hydraulic 

32 © Metallurgical and Mining Industry, 2014/1 



  PPiippee  aanndd  ttuubbee  pprroodduuccttiioonn  

power of the ram while pipe manufacturing 
process, and may vary in the course of pressing 
operation within some tolerance range of 
technical characteristics of press hydraulic 
system operating [2].  

2 2
1 0( ) .Q a b xπ υ = −                       (9) 

 
Than from (8) and (9) we will definitely get the 
expression for determining pressure gradient:  

                                              

[ ]8 ( ), ( ) ,dp Q F a x b x
dx

µ
π

=               (10) 

 
where        

[ ]
2 2 2
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( )

a x b x a xF a x b x b x a x a x r
b x

−
= − +

 
It is obvious that in the function of 

operating medium outgo in the expression (10) 
must be (9).  

Consequently, the value of pressure 

gradient 
dp
dx

 is proportional to expenditure Q  of 

ram velocity 0υ  and viscosity factor of pressing 
metal μ, which is constant throughout the height 
of each section of deformation zone under 
consideration. 

Herefrom follows that the pressure 
gradient (10) is the function of coordinate x  
only. Except that, metal pressure in deformation 
zone subsides from ran surface to field shapers 
(die and mandrel) because meridional radius of a 
die ( )a x  subsides in the coordinate x  (figure 1).  
Let us denote the pressure under ram in the 
beginning of coordinates with the help of 0p . 
Than the pressure ( )p x in some section x  of 
deformation zone is determined  
                            

[ ]0 0
0 0
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µ
π

= + = +∫ ∫                              

               (11) 

By virtue of the fact that in free cross-
section (while metal fall) the upacting pressure is 
equal to zero, from the formula (11) we will have 
the following pressure ratings under ram:  
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2

1
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8 , ( ) , ( ) ( ), ( ) .

l

l
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∫
                 (12) 

Knowing the pressure under the ram 0p , 
full pipe pressing power, which is necessary for 
providing predetermined rate of ram motion 0υ , 
we may determine as:  
        2 2

1 0( )P a b pπ= −                               (13) 
It is characteristic that this force is 

proportional to Q , μ and pressing characteristics.  
Experience of existing pipe pressing machines 
operation shows that in course of pipe pressing 
operations, both on the die and mandrel there 
appear great frictional forces [5].  

In usual task approximating, according to 
the Newton law of viscous friction [7,8], in the 
pressing layer of metal there appear typical 
transverse strains 

         
( , )x

xr
x rp
r

υτ µ ∂
= =

∂
                      (14) 

 
Consequently, frictional constraint on the 
working surface of the mandrel r b=  equals  

       ( ) xr b
r
υτ µ ∂

= =
∂

                               (15) 

 
Then on the matrix generator we have 

       ( ( )) xr a x
r
υτ µ ∂

= = −
∂

                       (16) 

Let us insert into (16) x

r
υ∂
∂

, deduced 

from the formula (7). Then  we will get the final 
expression for determining and distribution of 
shearing stress on the mandrel and matrix 
respectively as:  
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1
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where [ ]
2 2

1 2 2 2
4 4

1 ( ) ( )( ), ( ) ( ) ,( )( ( ) ( )) 2 ( ) ln( ) ( ) ( ) )ln
( )

a x b xG a x b x b x a xa x b x b xa x b x a x bx
b x

 
 −

= − 
−  − +   

           (19) 

[ ]
2 2

2 2 2
4 4

1 ( ) ( )( ), ( ) ( ) .( )( ( ) ( )) 2 ( ) ln( ) ( ) ( ) )ln
( )

a x b xH a x b x a x a xa x b x b xa x b x a x bx
b x

 
 −

= − 
−  − +   

                      (20) 

 
 

The expressions for determining 
transverse strains allow to calculate total 
frictional forces, affecting on mandrel and die in 
the deformation zone 
                

[ ] [ ], 1
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L L
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                   (22) 
Let us consider the most commonly used 
geometry of borders of deformation zone in 
respect with the form, forming the die: 
Die generator of conic shape. 
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Die generator of parabolic shape. 
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Die generator in the shape of cubical parabola. 
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Distribution of frictional forces along the 
length of working area of a die in respect with its 
generating form and mandrel are given on the 
figure 2 and 3. 

Typical friction resistance forces on the 
die and mandrel are divided into two  additive 
components: the force .,1tX  corresponding to the 

area with the length  1l ( with constant container 
radius 1a ) and the force .,2tX , corresponding to 
the area of a die and deformation zone (with the 
length 2l  and changing radius).  

On the curvilinear area of working 
surface of the die and deformation zone, except 
transverse strains, values of which were 
determined previously, normal pressure forces 
are acting, which contribute to resistance of the 
mentioned area to flow of pressing metal.  
 Strain on the area with normal 
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0 0cos( , ) cos( , ) ,n n x x n r r= +
  

  
is equal to  
                                     

cos( , ) cos( , ),n x rp p n x p n r= +


 
and its X-component is equal to  

                                     
cos( , ) cos( , ).nx xx rxp p n x p n r= +  

Consequently, for strains xxp  and rxp  
respectively we have 

                                         

2 , .x x
xx xrp p p

x r
υ υµ µ∂ ∂

= − + =
∂ ∂

  

If ( )r a x=  is the equation of die meridian,   
then 
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1 ( ) 1 ( )
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a xn x n r
a x a x

ds a x dx

′
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Axial component of the force affecting 
the elementary area of carrier stream of pressing 
material is equal to  

                           
[ ]( ) 2 ( ) .xx xrdX p a x p a x dxπ′= − +                                          

(23) 
It is obvious that from the side of 

pressing metal on the area ds , the force is 
acting, which is opposite to (23) and is 
determined  

                              
[ ]( ) 2 ( ) .xx xrdX p a x p a x dxπ′= − +                                          

(24) 
 
 The expression (24) consists of two 
additive components, affecting the die: the first 
one acts by means of normal voltage xxp ; the 
second one - by means of transverse strain, 
which was determined above. Due to normal 
voltage xxp ( pressure forces) on the curved part 
of a die acts the force  

                                          

1

0
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d
l

d d
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∫                           
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where 
1
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L

d
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1
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L

x

l

X a x a x dx
x
υπµ ∂ ′∆ =  ∂ ∫ . 

 Inserting into (25) the pressure from (11) 
and expression xυ  from (7), we will find 
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∫

∫
               (26) 

                                

[ ]
1

216 ( ), ( ) ( ( )) ( ) .
L

l

X Q H a x b x a x a x dxµ ′∆ = ∫
   (27) 
Consequently, the total force while pipe 

pressing process consists from frictional force on 
the corresponding area of mandrel cooperation 
with metal in deformation zone 

                                 

[ ]
1

, 2 18 ( ), ( ) ,
L

t b
l

X Qb G a x b x dxµ= − ∫                                    

(28) 
 and frictional force at the die area 

                                

[ ]
1

, 2 8 ( ), ( ) ( ) ,
L

t a
l

X Qb H a x b x a x dxµ= − ∫
 (29) 

 pressure force (24) and  secondary force 
(25). 

Then total resistance force at this areas of 
deformation zone is equal to  
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l

X p a a Q a a F a x b x l Q a a x F a x b x dx

Q bG a x b x a x H a x b x H a x b x a x a x dx

π µ µ

µ

     = − − − + − + +     

′ + − + + 

∫

∫
(30) 

This force, as one may see from (30), 
depends on the form of generator of die working 
surface (equation ( )r a x= ). This allows to set 
up the equation and solve variational problem 
appropriately: to find such shape of generator 
form of die working surface ( )r a x= , when the 
total resistance of working area would be the 
smallest if the length of deformation zone 

2 1l L l= − , maximum 1a  and minimum radius 

2a  at the pipe output from deformation zone are 
defined. 
 In the expression (30) the composite 
function, which depends on the equation forming 
dies ( )r a x= , is the last integral, which after 
some transformations can be expressed as  
                    

( ) [ ] [ ]
1

2 2 2
2 ( ), ( ) 2 ( ), ( ) ( )( ( ))

L

l

J a b F a x b x H a x b x a x a x dx ′= − + ∫
             (31) 
 As subintegral function in (30) does not 
depend on the  x  coordinate, the first integral of 
Euler equation [9] for composite function (31) 
will be the expression  

                                                 
( ) ( )( ), ( ) ( ) a xa x a x a x C′′ ′Φ − Φ =    ,                            

(32) 
where C  is arbitrary constant. 
It is obvious that the equation (30), considering 
the composite function (29) is as follows 

                              

[ ] ( ) [ ]
[ ]

2 2
2 2 ( ), ( )

( ) .
2 ( ), ( ) ( )

C b a F a x b x
a x

H a x b x a x
− + −

′ =

 (33) 
Proceeding from the position that there is fluent 
reduction in area of deformation zone 
( ( ) 0)a x′  , then from (33) we may state  

                           

( ) [ ]
[ ]

2 2
2( ) ( ), ( )

( )
2 ( ), ( ) ( )

C b x a F a x b x
a x

H a x b x a x
− + −

′ =                              

(34) 
For determining the equation of effective 

cross section of die working area (gage), constant  
C  should be picked out in such way, that the 
gage element passed always through two places 
of its working surface known in advance 
( )1 1 1, ( )x l a l a= =  and ( )2 1, ( )x L a L a a= = <  

The results of solution of variational 
problem and differential equation (33), trough 
determination of effective cross section of die 
generator (gage) of 50MN pipe section press on 
the basis of original problem ( billet: material 
Х18Н10Т, 204х9 in diameter; diameter of a 
mandrel 186 mm; bloom: 196х9 in diameter) are 
given on the figure 2 and 3.  

 
 

 
 
 
 
 
 
 

                                 а) Cone 
 
 
 

 
 
 
 
 
 
 
                              b) Torus 
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                       c) Parabola 
 
 
 
 
 
 
 
 
       
                      d) Cubic parabola 
 

 

 

 

 

                             e) Effective 
  

Figure 2 Distribution of standard pressures 
p , transverse strains on the die aτ and transverse 

strains on the mandrel bτ in deformation zone in 
respect with the shape of die generator and velocity of 
pipe pressing process. 

  
                       а) Effective V0=0.2 m/s 

 
           b) Effective V0=0.25 m/s 

 
            c) Effective V0=0.3 m/s  

 
            d) Effective V0=0.35 m/s 

 
              e) Effective V0=0.4 m/s 
 
Figure 3 Distribution of standard pressures p , 

transverse strains on the die aτ and transverse strains 

on the mandrel bτ  along the length of deformation 
zone in respect with the shape of die generator. 

Conclusions 
1. With the help of refining the 

mathematical model of deformation zone 
dynamics and strain-stress state of metal 
(operating medium), the possibilities for design 
and realization of augmented high speed 
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manufacturing processes of seamless pipes 
pressing are determined.  

2. The influence of various shapes of die 
generators and methods of pipe pressing on the 
formation of energy-power characteristics of 
deformation zone was discovered.  Dependences, 
characterizing energy-power parameters of 
deformation zone and parameters of 
manufacturing process, for different shapes of 
die generators and methods of pipe pressing were 
formed.  

3. With the help of mathematical 
modeling of pipe pressing process it was 
determined, that along the whole length of 
deformation zone with increase of metal flow 
velocity on the die and mandrel generator, that is 
of conic, torus, parabolic and cubic parabola 
shape, there is  notable increase of transverse and 
normal strains. It should be marked, that for die 
generator that is in the shape of cubic parabola, 
these values lower than for others.  With the 
increase of pressing velocity, energy-power 
parameters of deformation zone become of 
dynamic character.  

4. The task concerning determination of 
effective cross-section (gage) of a die in the 
interpretation of Euler’s base variational problem 
for certain composite function of pipe pressing 
on the cylindrical mandrel is solved.  

5. With the help of analysis of stressed 
state and pressing conditions of hollow billet, the 
ways for process optimization and upgrading of 

pressing pipes are nominated. Notable increase 
of working tools strength (dies and mandrels) is 
achieved.  
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