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Abstract
The assessment of transient stability level is important for the automation of production processes 
in electric power industry. The connotative relationships of steady-state operation data and general 
critical clearing time CCT  are explored in a large data set for power system. A novel online transient 
security assessment method is presented based on relationships exploration. Each relationship is 
given scores by the maximal information coefficient and Pearson correlation coefficient. Some 
highly ranked linear and nonlinear relationships are detected out and shown. Meanwhile, the 
generalized nonlinear relationships exploration coefficient is presented to discover connotative 
nonlinear relationships directly. Curve fitting is used for the explored linear relationships and 
functional nonlinear relationships to estimate CCT  of new operation states. Weibull distribution and 
generalized extreme value distribution are adopted for distribution fitting of CCT , and cumulative 
probability curve is used to determine the value range of CCT  for each transient security level. The 
method is tested on a 21-bus system and various test results indicate it is accurate and effective. It 
can give accurate estimation results of CCT , relative degree of transient stability and security level 
of transient stability. The applicability will not be influenced by the change of structure and scale 
since the selection of input features is based on data statistics and mining, and the way of selection 
is more intelligent than the current techniques. The automatic identification of transient stability 
level is meaningful for uninterrupted production in power industry.
Keywords: POWER SySTEM AUTOMATION, TRANSIENT SECURITy ASSESSMENT, 
AUTOMATIC IDENTIFICATION, SIGNIFICANT RELATIONSHIPS, LARGE DATA SETS
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Nomenclature
P-V            Active power-voltage amplitude.
PGi            Active power of generators at bus i .
QGi           Reactive power of generators at bus i .
Vi               Voltage amplitude of bus i .
θi               Voltage phase angle of bus i .
Pi_j            Active power from bus i  to bus j .
Qi_j           Reactive power from bus i  to bus j .
Si_j            Apparent power from bus i  to bus j .
Pi_X           Active power from bus i  to equipment X .
Qi_X          Reactive power from bus i  to equipment X .
Si_X            Apparent power from bus i  to equipment X .
I%i_X        Load rate percent of the equipment X  at bus i .
SSE            Sum of squares due to error.
RMSE        Root mean squared error.
R-square    Coefficient of determination.

1. Introduction
For the uninterrupted production in power industry, 

it is necessary to implement the automatic identify of 
the transient stability level. There has been a continually 
increasing interest and investigation into assessment 
of transient stability and operation security [1]-[4]. 
Transient stability or large disturbance rotor angle 
stability is concerned with the ability of maintaining 
synchronism when the system is subjected to a severe 
disturbance, such as a short circuit on a transmission 
line. At present security scanning and assessment for 
power system mainly rely on a large number of fault 
simulations. Considering the large scale of current 
power system, different types of equipment, the real-
time changing load and changing generator output, 
the enumerated probabilistic fault simulation analysis 
method is not able to provide real-time assessment 
results or effective control measures information 
of improving the security level. In general, a single 
simulation method cannot meet the demand of 
intelligent decision for the power system control. 
Therefore, there is a pressing need to develop a fast 
online transient security assessment method that 
could analyze security level [5], [6] and forewarn the 
system operators to take necessary preventive actions 
in case need arises.

Transient security assessment is a problem with 
inherent complexity, non-linearity, uncertainty 
and the need for online monitoring. Exploring the 
possible connotative relationships of operation 
data and transient security based on knowledge 
engineering technology and data mining [7]-[9] is a 
very attractive idea, which is based on a large number 
of accumulated samples. The samples rely on fault 
simulation scan of transient stability. It is designed 
to discover the connotative relationships in the fault 
scan results and power flow information, which may

be useful to assess security level. This security level 
assessment idea makes up for the deficiency of si- 
mulation scan: 1) once the security level assessment 
rules have been established by offline data mining in 
a large set, the computation speed of online securi-
ty assessment will be fast; 2) considering that power 
flow of power system is easy to observe, adjust and 
control, it will be convenient to improve the security 
level based on the explored relationships and it plays 
a role of aid decision making. However, it still faces 
many challenges to achieve direct security assessment 
based on operating information and data mining. It is 
needed to figure out how the steady-state operating 
information of the system affects the transient secu-
rity under a certain fault. Another challenge is: the 
WAMS of a large power system may collect a huge 
amount of operating data, which not only contains the 
features of high correlation for security level, but also 
the ones of weak correlation. How to effectively se-
lect the dimension of input features, extract the high 
correlation features, and eliminate redundant features 
is a key step in the security level assessment based on 
artificial intelligence theory [10]-[12]. The purpose of 
feature selection is to select and classify high correla-
tion features from a large number of original features, 
which requires reducing the dimension and minimum 
information loss of representing the research object. 
By selecting the features highly associating with the 
research object, the purpose that a d -dimensional set 
of features is extracted from a D -dimensional set of 
features ( d D<< ) can be achieved [13], [14]. 

Lots of methods have been applied to the transient 
stability assessment, such as artificial neural net-
works (ANN), pattern recognition techniques [15], 
decision trees [16], and fuzzy neural networks [17]. 
Some optimization algorithms such as simulated                                                                                                
annealing algorithm and ant colony algorithm are also 
applied to transient stability assessment [18], [19], 
and the purpose is to choose better input features. In 
[19], the number of variables in the optimal varia-
ble group given by optimization algorithms is small, 
which reduce the dimension well. However, the final 
accuracy is not particularly high, and the new addi-
tional variables cannot be directly given by optimiza-
tion algorithms when the assessment accuracy needs 
to be improved. In [23], [24], CCT in the case of an 
assumption fault is calculated precisely with a short 
time. In [16], [17], transient stability prediction accu-
racy for an occurred fault is relatively high. But Tran-
sient security assessment for a steady-state operation 
state is not given to the operators in [16], [17], [21], 
[22]. In [23], Numerical simulation is used for sto-
chastic transient stability assessment. The combined
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effect of multiple system faults and the load uncer-
tainty on transient stability is taken into account, and 
the transient stability is measured by a stability index 
from the statistical point of view. But the connotative 
association of steady-state operation data and tran-
sient stability security is not given.

The novel online assessment method for transient 
security presented in this paper is based on relation-
ships exploration in a large data set, which is created 
on offline power flow reports and fault simulations. 
General critical clearing time CCT  is defined based 
on the statistics of historical faults. A relationship 
between each operation variable and CCT  is gi- ven 
two scores by the maximal information coefficient 
(MIC) [24] and the Pearson correlation coefficient 
(PCC) [25]. The input features are selected based on 
the connotative relationships explored in the data set, 
which are the highly scored ones. The explored rela-
tionships of operation variables and transient securi-
ty are presented and explained, including linear and 
nonlinear ones. Generalized nonlinear relationships 
exploration coefficient and two kinds of models for 
it are presented in this paper since MIC cannot rank 
nonlinear relationships directly and 2MIC ρ−  provided 
by [24] does not do well .The linear and functional 
nonlinear relationships are applied to online assess-
ment method for transient security based on curve fit-
ting. The way to select features is based on the rank of 
relationships, which is different from the convention-
al optimization algorithms. The rank of relationships 
can explain why optimization algorithms give a better 
chance to some variables, and the number of input 
features needed is less than 2% of the total number 
of operating variables. Distribution fitting and cumu-
lative probability of CCT  are presented to determine 
the value range of CCT  for each level. The method 
can give accurate estimation results of CCT  and                                                                                                     
assess the transient security very well. It can over-
come the curse of dimensionality of large-scale                  
power systems. The applicability will not be influ-
enced by the change of the structure and scale since 
input features selected are based on data statistics and 
mining. The method has a certain requirement for the 
number of previous offline simulation samples. The 
automatic assessment processes for transient security 
are shown in Fig. (1). The data of input features can 
be obtained from phase measurement units (PMUs) 
in power industry. The method is economical since it 
requires a relatively small number of PMUs.

Figure 1. Automatic assessment processes for transient 
security

2. Problem Statement and Supporting Mathe-
matical Methods

2.1. General Critical Clearing Time (CCT )
For a power system, the transient stability is usu-

ally described with the critical clearing time (CCT) 
when a certain fault occurs. CCT can be used as the 
index for transient stability assessment. Compared 
with other indices, CCT is easier for operators to                                                                                         
understand how security a system is during the                   
operation. The system with a longer CCT is consi- 
dered to be operated at a higher transient security le- 
vel. The delay in fault clearing from the CCT means 
loss of synchronous operation of the generators in a 
power system. For an operation state, the CCT of a 
single fault position cannot represent the transient 
stability of the whole system well and a better index 
is ne- cessary. Therefore, fault tests of various posi-
tions are taken into consideration, which are based on 
the statistics data of historical faults. A general criti-
cal    clearing time (CCT ) of the whole system is pre-               
sented in this paper, which is given by Equation (1).

                         1

n

i i
i

CCT CCTµ
=

=∑
                  

 (1)

where n  is the total number of fault test position, 
iµ  is the percentage of historical statistics for fault i , 

and iCCT  is CCT of fault i .
It is should be noted that if the statistics data of 

historical faults is not provided, the transmission lines 
with heavy power flow or some other ones considered 
to be key can be selected as fault test positions.

2.2. Maximal Information Coefficient (MIC)
MIC is a measure of dependence for two-varia-

ble relationships and it can capture relationships both 
functional and not in large data sets [24]. In this pa-
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per, MIC is introduced into the field of power system 
transient stability and it is used to explore the conno-
tative relationships of CCT  and operation variables 
in power system. MIC is based on the idea if there is 
a relationship between two variables, a grid can be 
drawn on the scatter plot of the two variables that par-
titions the data to encapsulate the relationship. MIC 
gives a score to measure the relationship between two 
variables based on the data pairs of variables. 

Given a finite set D  of ordered pairs, the x-values 
of D  are partitioned into x  bins and the y-values of 
D  are partitioned into y  bins, allowing empty bins. 
Such a pair of partitions can be called an x -by- y grid. 
Given a grid G  , let GD  be the distribution induced 
by the points in D  on the cells of G . The distribution 
on the cells of G  is obtained by letting the probabi- 
lity mass in each cell be the fraction of points in D  
falling in that cell. For a fixed D , different grids G  
result in different distributions GD . For a data set D  
of two-variable, the MIC of their relationship is given 
by (2), (3).

For a finite set 2D R⊂ and positive integers x , y ,

                  
( ) ( )* , , max GI D x y I D=

  
               (2)

where the maximum is over all grids G  with x  co-
lumns and y  rows, and ( )GI D  denotes the mutual 
information of GD .
The MIC of two-variable data with sample size n  
and grid size less than ( )B n  is given by
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where ( ) ( ) ( )11 B n O n εω −< ≤ for some 0 1ε< < .
( ) 0.6B n n=  is used because it's found to work well 

in the research [24]. MIC falls between 0 and 1. Some 
properties of MIC are as follows. (1) MIC assigns 
scores that tend to 1 to all never-constant noiseless 
functional relationships; (2) MIC assigns scores that 
tend to 1 for a larger class of noiseless relationships; 
(3) MIC assigns scores that tend to 0 to statistically 
independent variables.

3. Creating a Large Data Set Of CCT and Sys-
tem Operation Variables

The accidents of transient stability failure are 
unusual in the practice of power system operation, 
which leads to the lack of instability data samples 
and cannot satisfy the requirements of data mining. 
Therefore, power system fault simulation is usually 
used to obtain samples. In this paper, software PEE/S 
and Python programming is used to obtain the origi-
nal operating data and analyze transient stability. The 
flow chart is illustrated in Fig. (2).

Fig. (2). Flow chart for creating a large data set of operation 
variables and CCT  based on PSS/E

The test case used in the paper is a 21-bus test 
system provided by PSS/E, which is shown in                                 
Fig. (3). Three-phase instantaneous short circuit faults 
are tested at the head of transmission line in the case. 
The position and percentage of historical statistics for 
each fault are shown in Table 1. In the power flow 
reports, 470 operation variables are finally selected 
after eliminating some constant ones. Then a large 
data set of operation variables and CCT  is created, 
which is a matrix with 471 rows (470 physical 
variables and CCT ) and 150 columns.

Figure 3. 21-bus test system provided by PSS/E
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Table 1. Statistics of Historical Faults

No. Transmission Line Percentage of Historical 
Statistics

1 Bus 205 to bus 203 40%
2 Bus 206 to bus 205 40%
3 Bus 3005 to bus 3003 5%
4 Bus 3008 to bus 154 5%

5 Bus 3018 to bus 
3008 10%

4. Exploring the Connotative Relationships of 
Operation Variables and CCT

4.1. Top Relationships Explored by MIC and 
PCC

MIC and PCC are applied to detect connotative 
relationships of operation variables and CCT  in the 
created data set. Table 2 shows the top 2% of relation-
ships by MIC and Table 3 shows the top 2% of rela-
tionships by PCC. Specially, the relationship ranked 
1st in Table 2 and the one ranked 1st in Table 3 are 
shown successively in Fig. (4A) and Fig. (4B). A rela-
tionship highly ranked by PCC is with high degree of 
linearity. A relationship highly ranked by MIC shows 
a certain relationship between the two variables, but 
maybe not linear.
Table 2. Top 2% of Relationships by MIC

Var. 1 Var. 2 MIC MIC 
Rank PCC PCC 

Rank

CCT S152_151_1 0.854 1 -0.834 118

CCT S152_151_2 0.854 2 -0.834 119

CCT Q3005_3006 0.832 3 -0.924 1

CCT S202_201 0.829 4 -0.872 49

CCT Q153_3006 0.828 5 0.912 8

CCT Q3004_152 0.825 6 -0.917 4

CCT Q151_102 0.824 7 0.844 92

CCT Q151_101 0.824 8 0.844 93

CCT V151 0.814 9 0.845 84

CCT QG102 0.814 10 -0.844 87

Table 3. Top 2% of Relationships by PCC

Var. 1 Var. 2 PCC PCC 
Rank MIC MIC 

Rank

CCT Q3005_3006 -0.924 1 0.894 3

CCT Q3006_3005  0.917 2 0.847 22

CCT Q3006_153 -0.917 3 0.847 23

CCT Q3004_152 -0.917 4 0.831 7

CCT Q3004_3002  0.916 5 0.877 35

CCT Q3005_3003_2  0.916 6 0.871 38

CCT Q3005_3003_1  0.916 7 0.871 39

CCT Q153_3006  0.912 8 0.874  5

CCT Q3002_3001  0.902 9 0.865 56

CCT Q3002_3004 -0.902 10 0.865 68

Figure 4. Scatter plots. (A) S152_151_1 and CCT . (B) 
Q3005_3006 and CCT

These relationships are not easy to be found di-
rectly since they are connotative in mass data. Ge- 
nerally reasonable explanation can be given for these 
relationships from the perspective of power system. 
The variable S152_151_1 is selected as an example 
in Fig. (4A), which represents the apparent power of 
the first line from bus 152 to bus 151. A scenario is 
given to explain the relationship conveniently: with 
the increase of power system load, the power on the 
transmission line will increase; when load rating of 
the system is low, the increasing load doesn't make 
CCT  decrease significantly; when load rating of the 
system is high, a slight increase of load will make 
CCT  decrease significantly. By the way, a conclu-
sion can be got: the sensitivity of CCT  to the variable 
S152_151_1 increases with the increase of load.

4.2. MIC versus PPMCC
Fig. (5A) shows that MIC versus PCC for all pair-

wise relationships in the data set. In different areas 
of Fig. (5A), different kinds of relationships can be 
found. Not every operation variable has a specific re-
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lationship with CCT . In the relationships, some are 
functional while some are not. In the functional rela-
tionships, some are linear while some are nonlinear. 
Some examples are as follows.

1. Fig. (5B): Unassociated variables are given low 
scores both by MIC and PCC. It indicates no speci- 
fic relationship exists between the variable θ3002 and 
CCT ;

2. Fig. (5C): Ordinary linear relationships get high 
score under both MIC and PCC tests. It indicates 
an obvious linear relationship between the variable 
Q153_3006 and CCT ;

3. Fig. (5D) and Fig. (5E): Relationships can be de-
tected by MIC but not by PCC if they are nonlinear. It 
indicates there exists a kind of nonlinear relationship 
between the variable and CCT . Fig. (5D) shows a func-
tional relationship between Q151_101 and CCT , while 
Fig. (5E) shows a kind of specific relationship between 
Q205_206 and CCT .

4.3. Generalized Nonlinear Relationships                    
Exploration Coefficient

The direct exploration method for nonlinear re-
lationships is specially discussed since linear and 
nonlinear relationships are all given highly scores by 
MIC. The generalized nonlinear relationships explo-
ration coefficient is presented to explore nonlinear 
relationships directly. Two kinds of models for it are 
recorded as 1

γβ  and 2
αβ  in the paper, which are given 

by Equations (4) and (5).

                        
 1 ( 0)MIC γγβ ρ γ= − >                      

 (4)

                     2 (0 1)MICαβ α ρ α= − < ≤                   
 (5) 

Figure 5. Application of MIC and PCC to the created data 
set. (A) MIC versus PCC for all pair-wise relationships in 
the data set. (B)-(E) Examples of relationships from (A)

1
γβ : each integer in ( ]0,  20  is tested for γ . (1) 

For 1γ = , the top 2% of 
1
γβ  rank doesn’t give 

obvious relationships. (2) For 2 8γ≤ ≤ , a few 
of the relationships in the top 2% of 1

γβ  rank are 
obvious. The increase of γ  nearly doesn’t affect the 
top 2% of 1

γβ  rank. (3) For 9 20γ≤ ≤ , the top 2% 
of 1

γβ  rank keeps almost the same with that of MIC 
when γ  increases, which still includes some linear 
relationships. Therefore, 2

1β  can be selected as an 
excellent one to present the ability of 1

γβ  in the direct 
exploration for nonlinear relationships. The top 2% 
of 2

1β  rank is in Table 4 and the scatter plots of the 
relationships are shown in Fig. (6).
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Figure 6. Scatter plots for top 2% relationships by 2MIC ρ− .

Table 4. Top 2% of Relationships by 2MIC ρ−

Var. 1 Var. 2 2MIC ρ− 2MIC ρ−
Rank

MIC PCC

CCT Q205_206 0.433 1 0.672 0.489

CCT QG206 0.386 2 0.701 -0.561

CCT Q206_205 0.386 3 0.701 -0.561

CCT Q205_201 0.341 4 0.619 0.527

CCT Q205_SHUNT 0.329 5 0.509 0.422

CCT S205_SHUNT 0.329 6 0.509 -0.422

CCT P202_152 0.286 7 0.326 -0.175

CCT P152_202 0.296 8 0.326 0.175

CCT S154_SHUNT 0.285 9 0.434 -0.387

CCT Q154_SHUNT 0.285 10 0.434 0.387

2
αβ : α  is tested from 0.1 to 1, and the step size 

is 0.1. (1) For 0.1 0.3α≤ ≤ , the top 2% of 2
αβ  rank 

is almost the same with that of MIC. (2) For 0.4α =
, many of the relationships in the top 2% of 2

αβ  rank 
are obvious. (3) For 0.5 1α≤ ≤ , most of the rela-
tionships in the top 2% of 2

αβ  rank are not obvious. 
Therefore, 0.4

2β  can be selected as an excellent one to 
represent 

2
αβ . The top 2% of 0.4

2β  rank is in Table 5 
and the scatter plots of the relationships are shown in 
Fig. (7).

Figure 7. Scatter plots for top 2% relationships by 0.4MIC ρ−

Table 5. Top 2% of Relationships by 0.4MIC ρ−

Var.1 Var. 2 0.4MIC ρ− 0.4MIC ρ−
Rank

MIC PCC

CCT S152_151_1 0.520 1 0.854 -0.834

CCT S152_151_2 0.520 2 0.854 -0.834

CCT Q151_102 0.486 3 0.824 0.844

CCT Q151_101 0.486 4 0.824 0.844

CCT S202_201 0.480 5 0.829 -0.872

CCT P151_152_1 0.478 6 0.803 -0.813

CCT P151_152_2 0.477 7 0.803 -0.813

CCT P152_151_2 0.477 8 0.803 0.812

CCT P152_151_1 0.477 9 0.803 0.812

CCT Q205_206 0.285 10 0.673 0.489

The explored nonlinear relationships in Fig. (7) 
are more clear and useful from the contrast of Fig. (6) 
and Fig. (7), which shows the model 0.4

2β  is more ef-
fective than 2

1β  in the direct exploration for nonlinear 
relationships. In fact, 2MIC ρ−  recommended by [24] 
is a narrow expression of Equation (5). On the face of 
it, a narrow expression such as 2MIC ρ−  or MIC ρ−  
can be a measurement of nonlinearity. But it is con-
sidered in the paper that these expressions are not ef-
fective enough to explore nonlinear relationships in 
practice. As it is shown in Fig. (5) and
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The explored nonlinear relationships in Fig. (7) 
are more clear and useful from the contrast of Fig. (6) 
and Fig. (7), which shows the model 0.4

2β  is more ef-
fective than 2

1β  in the direct exploration for nonlinear 
relationships. In fact, 2MIC ρ−  recommended by [24] 
is a narrow expression of Equation (5). On the face of 
it, a narrow expression such as 2MIC ρ−  or MIC ρ−  
can be a measurement of nonlinearity. But it is con-
sidered in the paper that these expressions are not ef-
fective enough to explore nonlinear relationships in 
practice. As it is shown in Fig. (5) and
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Fig. (7), an important or useful relationship is usually 
based on the basic linear relationships in engineering. 
In other words, a nonlinear relationship usually con-
sists of two or more simple relationships. In fact, some 
nonlinear relationships such as Fig. (5D) are with lin-
earity to a certain extent and each of them has a not 
small ρ . If a nonlinear relationship is imagined as a 
superstructure, 2MIC ρ−  or MIC ρ−  will break the 
infrastructure if it is used as a direct exploration tool 
for nonlinear relationships. Naturally, nonlinear rela-
tionships such as Fig. (5D) cannot be highly ranked 
or explored by 2MIC ρ−  or MIC ρ− .Therefore, the 
generalized nonlinear relationships exploration coeffi-
cient is with higher practical value in engineering than 
the narrow expression 2MIC ρ− , and the model 2

αβ  is 
believed to be effective and convenient than 1

γβ  in the 
paper.

5. CCT  Estimation and Online Transient Secu-
rity Assessment

5.1. Input Features Selection
Since the connotative relationships are explored in 

a large data set of operation variables and CCT , which 
can be used to estimate CCT  and assess the transient 
security for a new operation state. Obviously, the                                  
accuracy of estimation is affected directly by the                                                                             
input features selection. The selected variables 
should be the ones who have obvious relationships 
with CCT . Moreover, functional relationships are 
specially selected since curve fitting of them can be 
used for estimation conveniently. The total number 
M  of the variables selected should be appropriate. 
Setting M  too low can lead to inaccurate estimation, 
while setting M  too low means the increase of econo-  
mic cost in engineering application because of more                                                                                                         
measuring points. An appropriate selection is given 
based on estimation tests: the top 1% of functional 
nonlinear relationships in MIC rank and the top 1% 
of linear relationships by PCC. Variables finally se-
lected from the ranking list by MIC are: S152_151_1, 
S202_201, Q3004_152, Q151_101, QG102, and 
Q3005_3006. Variables finally selected from the 
ranking list by PCC are: Q3005_3006, Q3006_153, 
Q3006_3005, Q3004_3002 and Q3005_3003_1.

5.2. Clustering
Samples of CCT  are clustered in 3-d space to 

test input selected variables. The value of CCT  is in 
( )0.235,  0.345  and 0.290s is regarded as a boundary. In 
Fig. (8), a sample is green if the CCT  is larger than 
0.290s and is blue if the CCT  is smaller than 0.290s. 
The variables of x , y , and z axis are S152_151_1, 
Q3005_300, andQ3006_153 respectively in Fig. (8A), 
which are the selected ones. The variables of x , y , 
and z axis are θ204, θ3018, and P3008_154 respec-

tively in Fig. (8B), which are the stochastic ones. As 
it is clearly shown, the clustering in Fig. (8A) is much 
better than that in Fig. (8B).

Figure 8. Clustering of CCT . (A) Clustering based on 3 
selected variables. (B) Clustering based on 3 stochastic 
variables

5.3. Curve Fitting
Polynomial fitting is better than other types of fit-

ting after tests for the explored functional nonlinear 
relationships, and cubic polynomial fitting can satisfy 
the need of accuracy. For example, cubic polynomi-
al fitting is used for the scatter plot of the variable 
S152_151_1 and CCT  and the value of each index 
is: 0.017SSE = , 0.011RMSE = , 0.828R square− = . The 
functional expression for nonlinear relationships is 
given by Equation (6) and the polynomial coefficients 
are shown in Table 6. The left 5 subfigures in Fig. (9) 
show the results of curve fitting for nonlinear rela-
tionships. The linear fitting is used for the explored 
relationships and the functional expression is given 
by Equation (7) and the coefficients are shown in Ta-
ble 6. The right 5 subfigures in Fig. (9) are for them.

 ( ) 3 2
1 1 2 3 4f x Px P x P x P= + + +                

( )2 3 4f x P x P= +       

(6)
(7)
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No. Var. P1 (10-9) P2 (10-6) P3 (10-3) P4

1 S152_151_1 -42.97 49.96 -19.41 2.848
2 S202_201 3.982 -8.843 5.654 -0.7917
3 Q3004_152 -373.1 -161.6 -24.53 -0.9625
4 Q151_101 9.013 -4.319 -0.872 0.2988
5 QG102 -4.775 -1.790 -0.1388 0.3211
6 Q3005_3006 - - -3.605 0.3157
7 Q3006_153 - - -3.949 0.3397
8 Q3006_3005 - - 3.949 0.3397
9 Q3004_3002 - - 1.381 0.3140
10 Q3005_3003_1 - - 1.417 0.3490

Table 6. Polynomial Coefficients

Figure 9. Curve fitting for selected relationships

Figure 10. Curve fitting for selected relationships

It is should be noted, although the non-func-                    
tional relationships cannot be used for estimation direc- 
tly, they can check the estimation results to a certain                                                                                                          
extent. An example of using a non-functional rela-
tionship to check the estimation results is shown in 
Fig. (10). Usually some previous samples can be

found in a small neighborhood of an accurate estima-
tion result in the scatter plot (A and B), while not for 
an inaccurate one (C). Naturally, the using of multi-
ple non-function relationships can give a more strict 
check for estimation.

5.4. Distribution Fitting of CCT , Relative De-
gree of Transient Stability and Security Level Di-
vision

The distribution fitting for samples of CCT  is 
shown in Fig. (11A). Weibull distribution (WD) and 
generalized extreme value distribution (GEVD) both 
are better than other types of fitting after tests. Some 
distribution characteristics of CCT  can be explored 
by distribution fitting: 1) CCT  has a great probability 
to be around 0.31s. 2) CCT  is hardly to be larger than 
0.35s or smaller than 0.22s. The cumulative proba-
bility curves of WD and GEVD fitting can be used 
to assess the relative degree of transient stability for 
new operation states, and the one of GEVD is shown 
in Fig. (11B). Usually, CCT  is not visual enough to 
describe security of transient stability for the power 
system operators when the system is steady, so the 
concepts relative degree of transient stability and se-
curity levels of transient stability are needed. In the 
paper, 5 security levels of transient stability are di- 
vided by the points with the y  axis 0%, 20%, 40%, 
60%, 80% and 100% respectively. The coordinates of 
the points are shown in Fig. (11B), and the 5 levels 
are as follows. Level 1: 0.323s-0.345s, level 2: 0.309-
0.322, level 3: 0.296-0.308, level 4: 0.279-0.295, le- 
vel 5: 0.245-0.278.

Figure 11. Statistical property of CCT . (A) WD and GEVD 
for CCT . (B) Cumulative probability of GEVD for CCT
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5.5. CCT  Estimation and Transient Security 
Assessment Results

Each input variable can give an estimation result 
of CCT , while multiple variables can make a more 
accurate result than a single one. For a group of func-
tional nonlinear relationships, the estimation result 
is given by Equation (8). For a group of linear rela-
tionships, the estimation result is given by Equation 
(9). The final comprehensive estimation is given by 
Equation (10).
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where 
1N  is the total number of selected functional 

nonlinear relationships, 2N  is the total number of se-
lected linear relationships, iMIC  is the MIC score of 
relationship i , jρ  is the PCC score of relationship 
j , iCCT  (or jCCT ) is the single estimation result of 

CCT  by relationship i (or j ).

Table 7. CCT  Estimation and Transient Security 
Assessment for New Operation States

No. R (s) R1 (s) R2 (s) Rr Rl S (s)
1 0.329 0.326 0.332 88.1% 1 0.330
2 0.321 0.321 0.320 77.9% 2 0.323
3 0.305 0.309 0.302 53.6% 3 0.310
4 0.286 0.288 0.283 27.7% 4 0.285
5 0.258 0.255 0.260 6.7% 5 0.255
6 0.328 0.324 0.333 87.0% 1 0.330
7 0.311 0.318 0.304 62.9% 2 0.314
8 0.289 0.294 0.285 31.1% 4 0.290
9 0.337 0.333 0.342 95.6% 1 0.340
10 0.335 0.330 0.339 94.1% 1 0.333
11 0.330 0.328 0.331 89.2% 1 0.329
12 0.321 0.324 0.317 77.9% 2 0.322
13 0.289 0.295 0.288 31.2% 4 0.292
14 0.260 0.256 0.264 7.5% 5 0.257
15 0.301 0.307 0.295 47.6% 3 0.309
16 0.292 0.298 0.285 34.9% 4 0.300
17 0.284 0.289 0.277 25.4% 4 0.285
18 0.274 0.279 0.269 16.0% 5 0.275
19 0.263 0.267 0.260 8.9% 5 0.266
20 0.251 0.252 0.251 4.3% 5 0.250

In the paper, 1 5N = , 2 5N = . The above method is 
applied to estimate the CCT  for each new operation 
state. In the tests, 20 possible new operation states

are set stochastically. The results are shown in                        
Table 7. Some explanatory annotations for Table 7 
are as follows.

1. R is the final estimation result, which is given 
by the program with the 10 selected variables as input 
features;

2. R1 is given by the program with 5 variables as 
input features, which are corresponding to the se-   
lected top 1% of functional nonlinear relationships by 
MIC;

3. R2 is given by the program with 5 variables as 
input features, which are corresponding to the se- 
lected top 1% of linear relationships by PCC;

4. Rr is the relative degree of transient stability;
5. Rl is the security level of transient stability;
6. S is the simulation value given by PSS/E, which 

is used to verify the accuracy of estimation results.
5. Conclusion
Transient security level has an effect on the con-

tinuous secure operation in electric power industry, 
which is essential for the automation of production. 
This paper has explored the connotative relationships 
of operation data and the general critical clearing time 
CCT  in a large data set for power system, and then a 
novel online transient security assessment method is 
presented based on the explored relationships. CCT  is 
defined based on the statistics data of historical faults. 
Power flow simulation for steady states and short cir-
cuit fault simulations of different positions are used 
to create a large data set of operation variables and 
CCT . Each relationship of operation variable and 
CCT  is given scores by MIC and PCC. The general-
ized nonlinear relationships exploration coefficient is 
presented to explore nonlinear relationships directly, 
including two kinds of models ( 0)MIC γρ γ− >  and 

(0 1)MIC α ρ α− < ≤ . In the paper, 0.4MIC ρ−  
is found to be more effective than other models and 

(0 1)MIC α ρ α− < ≤  is recommended in engi-                                                                                        
neering since it can control the detracted linearity by 
parameter α . Some highly ranked linear and func-
tional nonlinear relationships are detected out, shown 
and explained from the perspective of power system 
operation. Curve fitting is used for them to estimate 
CCT  of new operation states. WD and GEVD are 
adopted for distribution fitting of CCT . Transient 
security levels are divided based on the cumulative 
probability curve of GEVD. The CCT  estimation re-
sults of new operation states are verified to be accu-
rate, which can be used to assess the relative degree 
of transient stability and transient security level. 

Different from conventional feature selection 
methods, the input features are selected from a great 
number of variables based on connotative relation-
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ships exploration and data mining in this paper. It will 
be more intelligent and efficient than conventional 
optimization algorithms since each relationship is 
given a score and ranked clearly. The applicability of 
CCT  estimation method will not be influenced by the 
change of the structure and scale because it is based 
on data statistics and mining. The estimation results 
are with high precision, which relies on the total num-
ber of previous operation samples to a certain extent. 
CCT  estimation, relative degree of transient stability 
and transient security level assessment will be impor-
tant bases for system operators of changing operation 
state to improve the security level in practice.

The online automatic identification of transient 
stability level can be implemented with the proposed 
automatic assessment processes and PMUs data, 
which is of great significance for the uninterrupted 
power production and supply in power industry. The 
proposed method is meaningful for power system op-
eration and automation.
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