
Metallurgical and Mining Industry56 No.5 — 2016

Engineering design

Wave formation on the free surface of near-wall liquid layer in 
horizontal rotating cylindrical chamber

Yuriy Naumenko

D.Sc. in engineering 
National University of Water and Environmental Engineering,

 Rivne, Ukraine
E-mail: informal9m@i.ua

Abstract
The effect of viscosity on the wave motions on free surface of the near-wall liquid layer in cylindrical 
chamber rotating around a horizontal axis at a constant speed is considered. Frequency equation of 
hydro system is analytically obtained.
It is shown that increase of viscosity have the damping impact on wave formation, stabilizes the 
established flow of near-wall layer and reduces the effect of regime hysteresis.
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The boundaries of the fluid flow modes transition 
in a cylindrical chamber rotating around a horizontal 
axis are defined by the near-wall layer stability, which 
can be broken with waves formation on free surface. 
Therefore, the task of determining the wave motion 
has a significant practical value and is of particular

interest for the dynamics of rotor systems [7].
Such a task, without taking into account the gravi-

tational forces and liquid viscosity, was considered in 
[14]. Stability conditions of wave motion in the same 
formulation of the problem were obtained in [15]. The 
wave motion of the ideal fluid near-wall layer in the
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rotating around horizontal axis cylindrical chamber, 
taking into account gravitational forces, was studied 
in [13].

Work [1] describes analytically azimuthal waves 
on the surface of liquid layer in cylindrical chamber 
with infinite radius and builds approximate solution 
for the rotating around horizontal axis chamber of the 
end radius, taking into account gravitational forces.

The loss of stability of viscous liquid free surface 
motion, substantially filling the cylindrical rotating 
chamber, in view of the gravitational forces, was ana-
lytically studied in [5].

Forced wave motions of a thick liquid layer,                
without taking into account gravitational forces, were 
experimentally investigated in [16].

The problem of determining the position of vis-
cous liquid free surface, the underlying definition 
of its wave motion with boundary-layer theory was 
solved analytically in [17], numerically and experi-
mentally in [3] and algorithmically numerically using 
the method of markers and cells in [6,8].

Wave formation on free surface for the circulation 
one and mode of near-wall layer of liquid motion was 
experimentally investigated in [2]. Various distur-
bances on free surface of liquid in the rotating around 
horizontal axis cylindrical chamber were experimen-
tally considered in work [4] and generalization and 
extrapolation of the known results was attempted for 
a wide range of the system parameters variations.

Stability of steady motion of the near-wall liquid 
layer depends greatly on the wave motions on free 
surface, which often cause layer fractures in slowly 
rotating cylindrical chamber.

Further analytical solution of the task of qualita-

Figure 1. Сomputational scheme of the near-wall layer 
motion

The fluid motion is seen in a plane perpendicular 
to the axis of chamber rotation. A polar coordinate 
system - r, ε is introduced. The components of the 
fluid velocity - Vr, Vε.

Then the equations of motion and continuity are 
of the form

tive and approximate quantitative evaluation of the 
liquid viscosity effect on its wave motions involves 
preservation of problem formulation [13], but the 
chamber filling is considered to be viscous.

The cylindrical chamber of radius R with smooth 
end walls, partially filled with liquid and uniformly 
rotating with an angular velocity ω around horizontal 
axis perpendicular to the gravitational acceleration g 
is considered. At a sufficiently high angular velocity 
the liquid in chamber takes the form of the near-wall 
layer with an outer radius R and free surface radius   
cR (0≤c≤1) (Fig. 1).
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where p - pressure, ρ - fluid density, ν - kinematic 
viscosity, t - time.

For the undisturbed fluid motion the uniform so- 
lid rotation in the form of near-wall layer of constant 
thickness in the absence of gravitational forces is             
accepted. At this velocity and pressure components 
take the values

,0=rV

,rV ωε =

In certain high-speed modes of camera rotation 
transient disturbances of the fluid velocity and pres-
sure occur as a result of wave motions on the free 
surface of near-wall layer. Velocity disturbances are 
considered to be small as compared with ωR, and 
displacements of free surface - small compared with 
cR. The solution will be found in the area near the 
free surface and away from a solid wall. Therefore, 
the shear stresses are not taken into account, and it 
is considered that the pressure is determined only 
by gravitational and inertial forces. After replacing 
η=r/R (c≤η≤1) can be written approximately

( ),0εε ηω VRV += (2)

where Vr0, Vε0, p0 - wave disturbances.
The boundary conditions at the solid wall are of 

the form

000 == εVVr         at        η=1. (3)

Suppose that on the free surface with constant 
pressure

η=c+δ0(φ),

where δ0 – dimensionless displacement which is 
small compared with c. With regard to (3) after trans-
formations and surface pressure equation to zero, the 
dynamic boundary condition on the free surface takes 
the form

02 00 =+ δcp         at       η=с.
Kinematic boundary condition on the free surface

ε
δ

τ
δ

∂
∂

+
∂
∂

= 00
0rV         at        η=с

where τ=ωt.
Permanently disturbed motion of the near-wall 

liquid layer was considered in [9,10,12]. Later the 
unsteady disturbed motion is considered.

Disturbances Vr0 and Vε0 are considered to be small.
To assess the effect of viscosity on wave forma-

tion, in the terms associated with viscous diffusion 
ε∂∂ rV , εε ∂∂V  и 2rVr are taken into account. 

Then the equations of disturbed motion on the basis 
of (1) with (2) take the form

               

( ) 011 0
0 =

∂
∂

+
∂
∂

εη
η

ηη
εVVr

,

(4)

where Reс=ωη2R2/ν – Reynolds number at the free 
surface of near-wall layer.

The solution will be sought in the form

( ) ( ),exp0 ετηχ mniVr +=

( ) ( ),exp0 ετηξε mniV +=

( ) ( ),exp0 ετη mniPp +=

( ),exp0 ετδ mni +∆=

(5)

where n and m – constants.
After substitution (5) the equation (4) can be writ-

ten as

(6)
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and boundary conditions in the form 

,0=χ          0=ξ         at       η=1,
,02 =∆+ cP    ( )∆+= mniχ    at    η=с. (7)

From the first two equations (6) after the exclusion of ξ

(8)

After the transformation (6) and exclusion of ξ 
and χ

,02 =+
′

+′′
ηη
PbPaP (9)

where ,1=a  

The solution (9) has the form

 
(10)

where  ;1 a−=+ λγ   in 
which case
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Considering Rec>>m (8) is simplified
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From the first condition (7), (10) and (11) it follows

( )( )
( )( ) .

2
2

2

1

mqSmn
mqSmn

A
A

+++
+−+
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Then, on the basis of (10), (11), (4) and (12) after 
transformations the frequency equation can be writ-
ten as

( ) ( ) ( ) ( ) ( )[ ]{ }+−−++−−++ qcqSBqSBqSqSmn 24

( ) ( )( )−−−++ qcBmmn 23 112

( ) ( )[ ] ( )[ ]{ }+−−−−+−−+− qcBqSBqSmmn 222224
( )( ) ,0114 22 =−−+ qcBm

(13)

where .
According to (11), the equation (13) has radicals 

at ( ) 42 ≠+ mn .
At ν→0 (Rec→∞) the equation (13) takes the form 

obtained in [13]

( ) ( ) ( )[ ]+−−+++ mm cmmncn 222 1121

( ) ( )[ ] .011 2 =−−++ mcmmm  
(14)
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In Fig. 2 in axes с and n the solutions (13) are 

shown at R=0,075 m, m=1 and at ν=10-6-101 m2/s the 
solution (13) is almost the same as (14).

Figure 2. The solution of equation (13) at m=1

With the increase in viscosity or decrease in the 
Reynolds number Rec, the frequency of low-fre-
quency waves, which accompany the destruction of 
near-wall layer is reduced in the limit of zero, and the 
frequency of high-frequency, relatively rarely imple-
mented [13], is greatly increased in the limit to infi- 
nity, and the process of wave formation fades. In this 
case, the disruption of liquid layer, while reducing the 
chamber rotation speed is not due to wave formation, 
but due to significant deformation of free surface in a 
steady motion, caused by the development of secon- 

Figure 3. The scheme of the secondary circulation flow 
development in the form of roller at the free surface of 
near-wall layer

Wave formation on the free surface of near-wall liq-
uid layer affects the display of registered effect of the 
steady flow regime hysteresis in the cylindrical cham-
ber rotating around a horizontal axis [11]. This effect is 
in the excess of the rotation speed ω1 chamber magni-
tude (Fig. 4), at the transition of flow circulation mode 
in the near-wall layer mode during rotation accelera-
tion, with the velocity magnitude ω2, at the reverse 
transition of modes, during rotation deceleration.

dary circulation currents in the form of roller ab on 
the free surface (Fig. 3) [5].

Figure 4. Universal diagram (in axes the Reynolds number Re=ωR2/ν and Froude number Fr=ω2R/g on the cylindrical 
surface of chamber) of fluid flow modes transition when the degree of chamber filling κ=0.1, 0.3, 0.5, 0.7 and 0.9:
1 - border of the circulation mode transition into the near-wall layer one during rotation acceleration; 2 - border of the 
reverse transition of modes during rotation deceleration
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The effect of regime hysteresis appears at high 

Reynolds numbers Re, when the flow regimes tran-
sition is pronounced, and the destruction of near-wall 
layer, at the slowing of camber rotation - abrupt in 
nature and caused by wave formation at free surface. 
At the same time, this effect does not occur at low Re, 
when flow modes transitions are implicitly marked, 
- smooth in nature and caused by secondary flows at 
the absence of wave formation.

Conclusions
Thus, the increase in viscosity has a significant 

damping effect on the wave formation on free sur-
face, and stabilizing effect on the steady flow of near-
wall liquid layer, which reduces the effect of mode 
hysteresis.
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