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Abstract
The current study reports on the visualization methodology applied for the units which represent the 
media of fibre-reinforced materials under conditions of large deformations. The units are visualized 
by the numerical solutions of the boundary problem, which shows the load on the materials in 
the deformed media. 3-D images of the deformed materials configurations are given with their 
unidirectional, bidirectional and three-directional schemes of reinforcement. These configurations 
are calculated with two level Akhundov’s carcass theory employed for a piece of a homogeneous 
body.
Key words: fibre material, unidirectional reinforcement, two-way fibre 
reinforcement, tri-orthogonal fibre reinforcement

Introduction
Visualization for fibre-reinforced materials under 

deformation is becoming topical. The past years 
have seen the various solutions for the mechanics of 
fibre-reinforced medium under large deformations 

and they are grounded on the approach of inner fields 
determination. A numerical solution of the deforma-
tion problem for the fibre-reinforced structure is able 
to define the inner fields in this kind of material and 
does it in the discrete forms determing inner fields 
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as the amounts of nodal points displacements within 
the constituents of a considered structure, deforma-
tional nodal values and stresses. The inner fields data 
are quite challenging for analysis even within the unit of 
the particular material, and it becomes more challenging              
to analyze the material behaviour of deformation and 
that of strength under large deformation in case if the 
material structure is more complex.

This problem is significantly easier to solve by 
means of numerical visualizations of a material initial 
configuration and a deformed one, the both are sin-
gled out from the medium of a fibre-reinforced mate-
rial unit. Moreover, the external configuration of the 
deformed unit is its integral manifestation of the inner 
field. Therefore, applying visualizations of the mate-
rial initial and deformed configurations one can fore-
cast nodal points, in vicinity of which the material 
destruction can occur. Furthermore, the vicinity area 
belongs to a certain matrix, fibre, matrix-fibre boun- 
dary or interfacial layer and the information of its lo-
cal state can be extracted in the run-time mode from 
the numerical solution performed for the mechanical 
task. Eventually, this information can undergo the  
additional processing and give solid-state report data. 

However, the fibre-reinforced materials require 
more deep study from the standpoint of two-level 
analysis of its deformation. This is explained by the 
internal stability failure on both the material structure 
level (meso-level) and its constituents (micro-level). 
The internal stability failure of the meso-level is cha- 
racterized by local bending of the fibres within one or 
more than one reinforcement systems. It may show 
itself in certain medium areas. In the cases when 
defining the internal stability failure is beyond the                      
existing methodologies, the problem can be solved by 
developing the graphical picture of the phenomenon. 

Moreover, visualization seems to be the only 
means which is able to evidence the internal stability 
failure on the microlevel of fibre-reinforced material 
constituents, in particular within the matrix, which 
is softer. The fact is that this type of the failure is                   
expressed in the form of the matrix folds between the 
neighbouring reinforcing fibres which may belong to 
the same or to different systems.

Visualization Methodology for Fibre-Rein-
forced Materials under Large Deformation

The presented in this paper deformation visualiza-
tions of fibre-reinforced material units are developed 
with the numerical solution of the material bounda-
ry problem via two-level Akhundov’s carcass theory 
with input components of microscopic deformation 
[1, 2]. In its turn, the solution of micro or bounda-
ry problem is per the model of a homogeneous body 

piece. This allows the material inner fields and the 
material deformed configuration to be defined. They 
correspond to the macroscopic deformation compo-
nents, which values are set depending on the mono-
tonically changing parameter of st . The latter is re-
lated to the overall study of the material deforming 
and the medium. Their values are defined by the dis-
placement of the frame or salient points of the mate-
rial unit, in this case the material unit is regarded as 
a stiff unity. These salient points displacements are 
the very displacements which enable the specific ap-
proach to the boundary problem solution.  Moreover, 
spinning or turning of a deformed unit as a stiff unity 
is helpful for generating of a quite full deformation 
picture with 3D imaging. 

Furthermore, 3D image of a unit is built with the 
grit of the nodal points applied to calculate the de-
formed state. The nodal points on the unit sides act 
as the control points of the visualization. Their loca-
tions in the initial and deformed configurations are 
connected with interpolation lines. This practice is 
performed in the full agreement with the logistics 
of numerical method for a deformed unit and the di-                                                                              
gitization applied. In deforming the material unit, its 
flat and quasi-flat faces are locally distorted and frac-
tured on the matrix-fibre boundary due to the diffe- 
rence between the mechanical properties of the unit 
constituents. This is the reason why the grits of the 
frame lines intersections on the unit faces are built 
as two different experiences (one for the matrix area 
and the other one for the fibre area). The boundary 
lines between the material constituents are also built 
apart from the other frame lines, which are drawn 
being based on the interpolation of Cartesian co-
ordinates 1 2 3

j j jx , x , x (j=0,1,..., n)  for the control 
points located on the unit faces. These frame lines 
are applied for the line produced by cubic splines 

1 2 3s (t, x ), s (t, x ), s (t, x )  in a parametric form [3, 4, 
5]. The boundary conditions are set by equality of 
splines third derivatives on their ends to cubic curves 
coming through the four first and four last points sets.

The length, which is reckoned along the polygonal 
line, is used as t  parameter of spline interpolation. 
The polygonal line itself is generated from straight 
intercepts which connect the control points. Such a 
practice is motivated by the absence of preliminary 
information about the curve to pass through control 
points and is the objective of the curve plotting. The 
interpolation procedure could be repeated on con-
dition that the length along the curve is regarded as 
the parameter for the next interpolation. In this case, 
however, the calculation algorithm for the interpo- 
lating curve, which we need to define, is becoming 
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more complex while its relocalization is not notice-
able at the same density of nodal points within the 
discrete skeleton to be applied for the unit inner fields 
calculations. Thus, quite reasonable is the paramete- 
rization of the cubic splines used for the above-men-
tioned polygonal line or, named in other words, linear 
splines, supported by nodal points of the computa-
tional scheme for the unit, and the nodal points are 
treated as the control points of visualization. 

The material unit visualization is, in fact, the vi- 
sualization of the frame lines on the unit sides, it is 
performed with isometric projections of skew-angle 
front and those of skew-angle side and diametric rec-
tangular projection [6,7]. The application of several 
axonometric types is explained by the fact that the 
linear and angular distortions in the unit 3D imaging 
are under influence of the unit shapes (both initial one 
and that after deformation) and its orientation with 
respect to the image plane. The unit imaging in some 
projections could be highly distorted and some local-
ly bent or distorted faces of the deformed unit can 
overlap the other unit parts. 

In this case, employment of the different projec-
tions is to be more reliable because it enables some 
parts of the unit boundary surface to be visible or be 
overlapped to the less extent and this practice does 
not require changing the distorted unit location with 
respect to the plane of visualization. 

Additionally, we would like to mention that for 

the work reported we have chosen a computer sys-
tem with a suitable graphical interface for this kind of 
work. MATLAB has proved to be such visualization 
medium. We input in this system the data on material 
nodal points positions with regard to the calculations 
for its deformed state [8].  

Visualization for Unidirectional  Fibre-Rein-
forced Material

This type of visualization is carried out by the 
positions of the material unit control points, which 
have been calculated with Akhundov’s carcass theo-
ry. The calculation method applied for unidirectional 
fibre-reinforced material under conditions of large 
deformations and the results achieved have been re-
ported [9].

Fig. 1 illustrates the configurations of unidi-
rectional fibre-reinforced material with quadran-
gular fibres in both the initial and deformed states. 
The configuration images of the unit are given in 
skew-angle front isometry. The unit is described 
by the values of the longer side of a rectangular                                                              
arrangement fa 1.2 mm= , those of the shorter side 

fb 1 mm=  and fibre diameter fd 0.7 mm= . The da-                                                                                                
ta given below are to show in details the simula-
tion practice. The material reinforcement ratio is 

( ) ( )2
f f f fk d / 4 / a b 0.3207= π = . Matrix deforma-

tion behavior in this case is simulated with Levinson 
and Burgess three-constant potential [10].

( ) ( ) ( )( ) ( )( ) ( )21m m
m m 1 m 2 3 m 3 m 3

m m

e 4 1w i 3 1 i i 3 2 1 2 i 1 2 i 1
4 1 1 2

−  ν −
= β − + −β − + − β − + β + −  + ν − ν  

(1)

whereEm= 4MPa , m 0.46ν = , m 1β =  ( 1 2 3I , I , I  
are tensor invariants of Cauchy and Lagrange strain 

( ) ( ) ( )f f
f 1 3 3

f f f

e 42w i 3 ln i i 1
4 1 1 2 1 2

 ν
= − − + − + ν − ν − ν 

measure). The reinforcing fibres are simulated with 
Blatz potential of two constants [11].

(2)

where we assume that Ef=1240MPa while f 0.40ν =  (stiff fibers).

                                       a)                                                                                            b)

Figure 1. Unidirectional Fibre-Reinforced material in its skew-angle front isometry. The configurations of the initial (a) 
and the deformed (b) states.
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For these images, we apply Cartesian rectangular 

reference system ( ix̂ ) with its axes directed along the 
unit ribs. The upper level of Akhundov’s carcass theo-
ry employs the mаcroscopic version of this reference 
system, which serves as a means of parameter setting 
for reinforced material mаcroscopic deformation, the 
lower level of the mentioned theory uses the materi-
al version of the coordinates for calculating the in-
ner fields. The unit boundary problem is solved with 
method of local variations [12, 13] and the deadlock 
conditions of the method are avoided in the appropri-
ate way [14]. The solution is implemented as the re-
sult of finite-element grid method with approximation 
means of isometric finite elements [15, 16].

The unit macroscopic deformation is described 
with the values of iλ̂  and iω̂ , which are macroscopic 
elongation ratios along ( ix̂ ) coordinate lines and an-
gles between ( ix̂  and jx̂ ). ix̂  and jx̂  are coordinate 
lines in its macroscopically deformed configuration. 
We have defined the unit deformed configuration with 
the following parameter values:                ,

In the course of the visualization, the deformed 
unit is located with respect to the non-deformed one 
in a way to allow the plane of macroscopic axes 1x̂  
and 2x̂  to sustain its orientation when deformation. 
At this, axis 1x̂  has its initial direction. The directions 
of 31 x̂,...,x̂  axes in the material unit initial and de-
formed configurations are shown as 3̂,...,1̂  respective-
ly in figure 1 and in the following figures. The control 
points (15 15× ) are taken for the visualization, they 
belong to that unit face which is transverse to the fi-
bre directions and are among the nodal points of the 
numerical solution for the deformation problem. It is 
important to note that under deformation, all the fac-

1̂ 0.85λ = 2̂ 1.04λ =

3̂ 1.07λ = , 12ˆ 50oω = , 13ˆ 100oω = , 23ˆ 110oω = .

es of the material unit are subjected to the fractures 
on the matrix-fibre boundary due to the macroscopic 
shears. Their parts are distorted within the limits of 
the each material constituent, especially it is noticea-
ble on the matrix front face. 

Visualization for the Two-Way Fibre-Rein-
forced Material

For this visualization, we utilize the earlier de-
velopments of the numerical solution for two-way 
fibre-reinforced material under large deformations 
and the calculations for this solution [17]. Relying on 
mentioned paper results, we produce images of a two-
way fibre-reinforced material unit in its initial and de-
formed configurations which are shown as horizontal 
skew-angle front isometry (see fig. 2). The material 
specific character is described below. 

The matrix is reinforced with the fibres which 
can be classified as two families by their direction. 
When the material is in the initial state, the structu-                                                                   
ral macroelement of the unit is characterized by the 
angle (          ) between fibre directions or fibres 
belonging to the different families. The fibres of 
the both reinforced families have the same distan-                                   
ces between their centerlines: within one reinforce-
ment plane ( fa 1.3 mm= ) and between the parallel 
planes ( fb 2 mm= ). The fibre diameter of the both 
families is fd 0.7 mm= . In this reinforcement ge-
ometry, the material stuffed with the fibres, is illus-
trated by ( ) ( )2

f f f fk 2 d / 4 / a b 0.296= ⋅π = . The ma-
trix material is simulated with potential (1), where 
the constants values are Em = 4 MPa,νm = 0.46,                                                   
βm = 1, while the simulation of the fibres is performed 
with potential (2), where the constants values are Ef = 
=1240 MPa, νm = 0.40 (stiff fibres).

31fγ = °

                                       a)                                                                                            b)

Figure 2. The images of two-way fibre-reinforced material in horizontal skew-angle front isometry. Its initial (a) and 
deformed (b) configurations

The Cartesian rectangular reference system ix̂  
acts as the basic coordinates related to the material                             

units and is applied for macroscopic deformation 
setting. The axes of 1x̂  and 2x̂  are directed per the 
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rhombus diagonals of the two-way scheme for the 
non-deformed unit, axes 3x̂  – per its height. In the 
figure, you may see these axes marked as 3̂...,,1̂  re-
spectively. The calculations for the unit configuration 
with the given parameters of its macroscopic defor-
mation are carried out with the oblique axes of Carte-
sian reference system. The latter is determined by the 
directions of two-way fibres centerlines. The visua-                                                                                                 
lization employs 13 25, 13 25, 13 13× × ×  control points 
within the front, side and horizontal faces of the unit 
and the control points are taken from the scheme of 
the numerical solution for deforming.

The mаcroscopic deformation parameters to serve 
for the calculations of the unit configurations are as 
follows:  1̂ 1.18,λ =  2̂ 0.97,λ =  

                       We observe that the centerlines 
of one-family fibres are elongated significantly while 
those directed to the other way are shortened; the 
distances and angles between them within the rein-
forcement plane also show the changes. However, 
neither the parameters of the deformed geometry nor 
the deformation parameters ( 21

ˆ,ˆ λλ ,        ) are distort-
ed in the projection applied. Therefore, they can be 
measured within the image due to the orientation of 
the unit, which is assumed as a stiff entity, referred 
to the image plane. The other important condition is 
that the corresponding dimensions of the initial unit 
image are assumed as the scale values in linear defor-
mations.

Visualization of Tri-Orthogonally Fibre-Rein-
forced Material

Figures 3 – 5 illustrate the material unit of tri-ortho- 
gonal fibre-reinforcement system in the initial state 
and in the state under deformation. The deformed 
configuration has been calculated per the model ear- 
lier developed and submitted in [18]. The material 

3̂ 1.06,λ = 12ˆ 64 ,oω =

13 23ˆ ˆ112 , 104o oω ω= =

12ω̂

unit is relevant to the coordinate system ix̂ , which 
axes are directed along the unit ribs. To show the in-
itial and deformed states of the material unit, we ap-
ply macroscopic locations of the axes as straight lines 
passing through the cube corners. 

In the initial state, the material unit is a cube. 
The reinforcement ratio for the each reinforce-
ment system is fik 0.1=  at total fibre embedment 
of f f1 f 2 f 3k k k k 0.3= + + = . Similarly, the fi-
bre diameters of the reinforcement system are 

fi fid 4 k / 0.3568 mm= ⋅ π = , the distance or step be-
tween the fibre center lines in the reinforcement sys-
tem is f f fa b c 1mm= = = . The material of the ma-
trix is simulated by means of potential (1) with con-
stants of me = 4mPa , νm = 0.40, and βm = 1, while the 
material of the fibres is described as potential (2) with 
constants of Ef = 68 MPa and νf = 0.40, (softer fibres).

According to the technique applied to this types of 
materials, the deformed unit in this case is also locat-
ed respectively to the same non-deformed material in 
a way to have the plane of macroscopic axes ( 1x̂  and 

2x̂ ) unchangeable under deformation in terms of its 
orientation. Axis 1x̂  remains in its initial direction. 

The unit macroscopic deformation, which de-
termines the material configuration, is set by the 
following parameters: 1 3

ˆ ˆ 1.22λ λ= = , 2̂ 1.49λ = , 
o o

12 13ˆ ˆ46 , 120ω ω= = ,               .The solution for 
the microboundary problem for the material unit 
as well as those of uni-directional and two-way fi-
bre-reinforced ones is generated with application of 
isoparametric finite element. The material configura-
tion visualization is performed with control points of 
19 25, 19 25, 19 19× × × , located at the unit faces and 
taken from the nodal points of the numerical solution 
for the deformation.

23ˆ 134oω =

                              a)                                                                                                  b)

Figure 3. The images of tri-orthogonally fibre-reinforced material in orthographic dimetric projection. The initial state 
(a) and the state under deformation (b), regarded as reference positions

The orthographic dimetric projection in figure 3 is 
defined by the location of those axes which are related 

with the non-deformed unit axes ( ix̂ ) with respect to 
the projections plane.



57Metallurgical and Mining IndustryNo.2— 2017

Materials science
Commenting on figure 4, we would like to specify 

that in order to watch the material unit from the back
side, we turned it 180 degrees round axis 3x̂  with 
respect to the reference position.

                                    a)                                                                                    b)

Figure 4. The same tri-orthogonally fibre-reinforced material when 180 degrees turn of the material unit round axis 3x̂

Moreover,  if we turn both the material unit in the 
initial form (3a) and that in the deformed configu-
ration (3b) as far as 270 degrees round axis 3x̂ , we 

obtain the another view (see fig. 5) of the material 
unit, in the initial form (a) and under deformation (b) 
respectively.

                                      a)                                                                                             b)

Figure 5. The same tri-orthogonally fibre-reinforced material when 270 degrees turn of the material unit round axis 3x̂

                                      a)                                                                                             b)

Figure 6. The images of tri-orthogonally fibre-reinforced material with the cut of its front quarter from the right in 
skew-angle front isometry.  The initial configuration (a) and the configuration under deformation (b)
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Let us concentrate our attention on the considerable 
spatial distortions of the fibre centerlines and other lon-
gitudinal material lines. The fibre in the very centre 
changes its orientation noticeably due to vast trans-
versal shears in the material.

Furthermore, figures 6a and 6b are produced to 
show the behaviour of the material unit, which has 
the cut of its front quarter from the right. These                         
images are made in skew-angle front isometry and are 
able to reveal the specific character of the deformed 
central fibre.

Conclusions
The methodology to visualize fibre-reinforced 

materials under large deformations is applicable 
for the units with unidirectional, bidirectional and 
three-directional schemes of reinforcement. This 
visualization reflects the quality of the material 
inner fields and to a certain extent describes them 
numerically therefore there are prerequisites to regard 
it as an effective means of material representations in 
the deformed state. With application of the developed 
practice, one can perform visualization of a reinforced 
material behaviour under deformation relying on the 
calculations of medium inner fields at the steps of the 
loading events.

Materials science
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