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Abstract.  In this paper three examples of processing uncertainties of a indirect multi-variable measurement system are 
considered. It was proposed to extend the vector method of estimating measurement uncertainties, given in Supplement 2 to GUM, 
on the statistical description of the accuracy of whole ranges of indirect multivariable measurement system. Formula for the 
covariance matrix of relative uncertainties of the vector measurand is given. The covariance matrixes of uncertainties of few DC 
electrical measurement circuits are presented, i.e.: for indirect measurement of three resistances with using them in three variants 
of balanced Wheatstone bridge or without disconnection this circuit but with apply unconventional current supplies; the 
measurement of three internal resistances of the star circuit from its terminals and estimation of uncertainty of powers of two 
currents  if two other currents are measured and their uncertainties are known. Formulas for absolute and relative uncertainties and 
their correlation coefficients are given. The general conclusion is that in the description accuracy of multivariable measurement 
systems the relative uncertainties are sometimes preferable than the absolute ones, and uncertainties of their main measurement 
functions have been also considered. 

Key words:  Uncertainty, Electrical circuit, Multiplicative measurement equations. 
 
Анотація. Висвітлено особливості опрацювання результатів вимірювання за допомогою непрямої 

багатопараметрової вимірювальної системи. Розглянуто три випадки вивчення непевностей вимірювання. Запропоновано  
поширити векторний метод оцінювання непевностей вимірювання, поданий у додатку 2 до GUM, на статистичне 
описання параметрів точності непрямої багатопараметрової вимірювальної системи. Подано формули для коваріантної 
матриці відносних непевностей векторного межеранда. Матриця непевностей для випадку декількох електричних систем 
вимірювання на постійному струмі підлягає аналізу. Інакше кажучи,  аналізують непрямі вимірювання електричного 
опору за допомогою моста Вінстона, причому вимірювання внутрішніх опорів зіркової конфігурації з оцінюванням 
непевності струму напруги живлення підлягають розгляду. Наведені формули для абсолютної та відносної непевностей, а 
також їх коефіцієнти кореляції. Основний висновок такий: описання параметрів точності багатопараметрової 
вимірювальної системи відносними непевностями іноді краще порівняно із подібним описанням на основі абсолютних 
непевностей, що й повинно враховуватись під час розгляду. 

Ключові слова:  непевність, електричне коло, багатопараметрові вимірювальні рівняння. 
 
Introduction 

In indirect methods of measurements, results the 
tested quantities (observables) and their accuracy is 
determined from direct measurements of the set of 
jointed other quantities, named the multivariate or vector 
measurand. In general case of multivariable 
measurements, the relation between values X of 
quantities measured in input and data of Y quantities 

obtained on output after processing is a functional  
F (X, Y) =0. Usually it can be formulated as the 
following multivariable function  

Y= F (X) .   (1) 

The multivariable vector dependence (1) can be 
linear or non-linear. The general flow chart of multi-
variable measurement system is shown in Fig. 1. 
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Fig. 1. Signal processing in multi-variable indirect measurement system 
 

In Fig. 1 and in the text below the next symbols 
are used: X, Y – vectors of values of input and output 
variables;  x=[x1, x2,…xn], =[y1, y2,… ym] – vectors of 
input xi and output yi signals; , ux, uδx, uy, uδy – vectors 
of estimators of values of input x and output y signals 
and their absolute and relative standard uncertainties; UX, 
UY, Uδx, Uδy – covariance matrixes; (x), uF, uδF, UF,  
UδF – function of processing signals x to y, their absolute 
and relative uncertainties and its covariance matrixes,  
– processing unit of y to obtain vectors of  , uy, uδy and 
covariance matrixes UY, UδY . 

The method of estimation uncertainties in indirect 
multivariable measurements are given in GUM 
Supplement 2 [1]. A collection of n individual quantities 
Xi of the input vector measurand X are measured directly, 
and from their signals xi the output vector of m 
estimators  (named observables [2–3]) and covariance 
matrixes UX, UY of absolute standard uncertainties ux≡ 
σx, uy≡ σy are calculated. The vector depends on 
whether the functional (X) is linear (m ≤ n) or nonlinear 
(m ≤ sum of linear and nonlinear equations). The relation 
between output and input covariance matrixes is  

                           (2) 
where:  

 

 

    (2a, b, c) 

Covariance matrixes UX, UY are symmetric, i.e. 
correlation coefficients , and   

S is the sensitivity matrix obtained after 
linearization of function F for small changes of X 
elements. 

All, or some results of components of the 
measurand can be used further separately or jointly. In 
the latter case it is necessary to take also in 
considerations the correlation coefficients between the 
uncertainties of its components yi, which are in non-
diagonal elements of the covariance matrix UY.  

For calculations made of line, i.e. after collection 
all data, the uncertainties of function F can be obtained 
negligible. Recommendation for estimation uncertainties 
of this case is in the GUM Supplement 2. The realization 
of indirect measurements of m – components of the 
multivariate measurand   can be made also on line by 
automatic instrumental measurement systems. In this 
case the uncertainties of F should be also considered.  

The metrological description of the multivariable 
instrumental measurement system needs the accuracy for 
the whole values of measurement ranges of input and 
output signals. The accuracy of each range is up to now 
described by the maximal value (worth case) of limited 
absolute error .The absolute error of any output 

signal  may be presented in the similar two 
component form as for digital voltmeter, i.e. 

=  and the limited absolute error is
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+      for i =1, … m       (3) 
where:  – absolute error of initial value of the 

range, ( )/  – relative error of the 
difference (  of output signal or reading. 

If , then the relative limited 
error (worth case) of the component is 

          (3a) 

The probability of existence the maximal limited 
error in each range is very low. Then the randomized 
description as in GUM [1] by uncertainties type B can be 
more valuable. It may be made in the similar two 
component form as for limited errors in the equation (3). 
Then it should contain the expanded absolute uncertainty 
U0 of the initial value  of each range and expanded 
relative uncertainty Ur of its increase for all 
values of the range. Both these uncertainties should be 
given for defined P probability of the confidence level, 
e.g. for P=0.95 is U0≈ 0.95  and Ur ≈ 0.95ur (u, ur – 
standard uncertainties marked as in GUM). In the most 
cases these components of uncertainty are non- 
correlated, and very often relative uncertainty Ur is 
constant for the whole range or its function or maximal 
its value can be used. Moreover, the type B standard 
uncertainty is significantly smaller then maximal limited 
error because it is estimated as the square root of 
possible values of components, and not as their sum. The 
standard uncertainty of the single output value yi is  

    (4) 

If then the accuracy of  
is described only by the single value of relative 
uncertainty  unchanged in almost 
whole measuring range, or as   

Up to date there are no internationally accepted 
regulations how to describe statistically by the uncer-
tainties the accuracy of different kind of instrumental 
systems for indirect multivariable measurements. For the 
multiplicative type of measurement equations we found 
that is possible to use given below the new vector 
formula (5) between covariance matrixes UδX and UδY of 
relative standard uncertainties urxi ≡ , uryi ≡  . Their 
correlation coefficients are the same as in (2) 

                         (5) 
where:  

 

, 

     (5a-c) 

All that should be clearer on analysis of few 
examples of indirect multivariate measurements with the 
multiplicative and additive type of functional F given 
below, i.e. indirect measurements of three arm 
resistances of the Wheatstone bridge and measurement 
of star circuit internal resistances from its terminals. The 
description of the uncertainty of active power 
measurements will be also discussed. Some general 
conclusions are given in the end. 

1. Case of multiplicative measurement 
equations 

The unknown values R2, R3, R4 of three resistors 
can be determined without use the high accuracy digital 
ohmmeter. Two cases of indirect measurements are 
possible. The first, when these resistors and the regulated 
multi-decade resistor R1 are connected as the Wheatstone 
bridge circuit but three times in three different orders in 
its loop, i.e. R2, R3, R4 (Fig. 2a), or R2, R4, R3 and R3, R2, 
R4. Three bridge’ balances UCD = 0 give three settings 
Rx1, Rx2, Rx3 of R1. The settings Rx2, Rx3 can be obtained 
also without disconnection this bridge, by 
unconventional supply by current sources J1=J3 

connected parallelly to opposite arms 1, 3 and balancing 
outputs AB or DC on diagonals (Fig. 2b).  
In both circuits the same settings Rx1, Rx2, Rx3 on multi 
decade resistor R1satisfied circuit balances, i.e.:  

3

4
21 R

RRRx = ,
4

3
22 R

RRRx = ,
2

4
33 R

RRRx =        (6a, b, c) 

From above relations the unknown resistances as 
elements of the output vector Y can be calculated  

= ,          = , 

=                          (7a, b, c)           
As solutions (26) are of the multiplicative type the 

equation (3) for direct calculating the relative 
uncertainties can be used. The measurement sensitivity 
function for relative uncertainties is  

 

               (8) 
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a      b 

Fig. 2. The structures of DC bridges for measurement three resistances R2, R3, R4: a) the first of arm resistances of three variants 
of the balanced Wheatstone bridge; b) two different the bridge loop circuit supplies: classic one as in a) from single source J (or 

U) and in balance UDC = 0 is Rx1R3 = R2R4; unconventional double current supply J1=J3  in parallel to opposite arms 1 and 3 
(or J3 = 0 and J1 switched between these arms) and then eq. of outputs DC and AB balances are used for measurement, i.e.  if 

UAB =0, R1R4 =R2R3 or if UD C = 0 R1R2 = R3R4  
 

For estimation uncertainty of measured 
resistances, we assumed firstly that input variables Rx1, 
Rx2, Rx3 are not correlated. and using formula (3) relative 
uncertainties, i.e.  is: 

    

     (9) 

So, the standard relative uncertainties of output 
quantities are defined: 

, , 

                 (10a, b, c) 

and correlations coefficients: 

                

 > 0 

 

> 0  (11a, b, c) 

 

> 0 

All above correlations coefficients are 
positive.  

If , 

 ;  , 

then the coverage region is ellipsoid of parameter 
  

In this case the ellipsoidal coverage region for 
relative uncertainties of Y with probability 0.95 
determines the ellipsoid with half axis a =2,8δ, b =1,4δ, 
c =1,4δ. In formulas it is used that the coverage 
factor/extension/coefficient for 95% of coverage region 
in 3D (three-dimensional) Gauss distribution is equal 
kp=2,8. This ellipsoid is contiguous in six points to the 

cube with edges d=2·2,8 . The relations 

between capacity of ellipsoid and cube is 4π abc/ (3d 3) = 
=37 %. 
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1.1. Example of the additive type of multi-
variate measurement equations 

In many practical situations the star circuit of resistances 
connection is applied and there is no possibility of 
disconnection them from the common point 0 and even 
this point is not available, or star structure is the 
equivalent circuit only. So, three values of star 
resistances must be determined indirectly from 
measurements of three input resistances between 
terminals A, B, C (Fig. 3). If changes of star resistances 
must be remote monitored from a distance, then the 
special measurement circuit E is used for these indirect 
measurements. Let us as the first step assume that the 
values of resistances of star are determined precisely 
without any disturbances and modifications by A/D 
converters and arithmetical modules located in E.  
 

 
 

Fig. 3. The diagram of the star circuits with module of 
performance measurements 

 
The main measurement equations are: 

RAB = R1+ R2,            RBC = R2+ R3, 
RAC = R1+ R3                     (12) 

or in the matrix form:            

                  (12a) 

To obtain solutions, the both sides of eq.(6a) are 
multiplicated by the inverse to above matrix and the 
main formula (1) has here the matrix form  

Y=F∙X                (13) 

Where:  ,    

      

                (13a, b, c) 

The star circuit resistances are  

; 

 

            (14a, b, c) 

Then corrections are implemented for known 
systematic errors. Unknown systematic errors are 
randomized and estimated as components of the type B 
uncertainty uB. Next the results of absolute standard 
uncertainties σAB, σBC, σAC are find as a square of 
quadratic values of uncertainties uA and uB (type A and 
B), and relative uncertainties δAB, δBC, δAC should be 
calculated.  

To find the absolute uncertainties and correlation 
coefficients of star resistances as output quantities, the 
vector method given in Supplement 2 to GUM is used 
[1]. Covariance matrices are related by formula (2), i.e. 
UY =S· UX ·ST. In which: UY, UX – covariance matrixes 
of output vector Y and input vector X, S - the Jacobian 
matrix sensitivity coefficients of absolute uncertainties. 
For the resistances of stair circuit  

= 

=                   (15) 

 

Ø correlated variables in the input  
Let us consider the general case when absolute 
uncertainties of input quantities σAB, σBC, σAC are 
correlated.  Then in the covariance matrix UX of input 
quantities in such case the non-zero elements in non-
diagonal positions are appearing. They are defined with 
correlation coefficients ρAB, ρBC, ρAC  

       (16) 

If the relative uncertainties of measured 
resistances on stair circuit terminals are the same, i.e.: 

δAB = δBC =δAC = δ, 
then absolute uncertainties of input quantities are: 

,   and   Then 
output absolute uncertainties are:   

 

  (17a, b, c) 

 

The output relative uncertainties: 

 

  (18a, b, c) 
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where:  
 and  . 

The correlations coefficients of output quantities 
are defined as follows  

 

 

         (19a, b, c) 

If , the uncertainties are  

 

 

  (20a, b, c) 

                                      
Ø non-correlated variables in the input 

For non-correlated variables  
, and from (20) the absolute 

uncertainties are 

(21) 
And from (13) correlation coefficients 

 

 

     (22a, b, c) 
If σAB =σBC= σAC   

 σ 

 

 It can be show that determinant of matrix  by 
the sign of parameter w 

w = 1 – – –  + 

+2·     > 0                  (23) 

is always positive.  

Defining ,   we 

express correlation coefficients by 
 (24a, b, c) 

so, the parameter , what 

is always fulfilled. 

 That is why the characteristic equation of inverse matrix 
has three positive roots.  

The border of cover region for values of results 
with given probability P ≤ 0.95 is ellipsoid, closed in 
solid cubic, and contiguous in six points the wall of 
cubic with edge distance 

                 (25) 
kp=2,8 – cover factor/ extension coefficients. 

Summary of solutions of some cases / P ≤ 0,95 
Ø if ,   

; 

Ø =  ;    

Ø ;

 ≤  0 for ≤  ½. 

Ø if :   , 

;  half axes: 

1,4 ,  

Ø if min   ,  

= 0; radius 1,4   

Ø if  max = , 

 ; w < 0  

1.2. Influence of uncertainties uF of matrix 
F in stair circuit measurements 

In the instrumental system for measurements the 
stair circuit resistances processing of output values and 
their uncertainties is made in digital unit E. The main 
matrix equation Y =F ·X was given in (13) and  
(13a, b, c).  Solution of vector Y elements is in (14). Let 
us now consider uncertainties of amplification/ 
attenuation of signals in measurement channels. The 
realization of signals processing has linear disturbances 
in channels changing levels of signals e.g.: 

                                 (26) 

where  is amplifying coefficients. 
The analog/digital processing input signals has 

uncertainty uF. Therefore, the functional matrix F is 
must be modified, and a new matrix is defined as 
follows: 

    (27) 

 

where:  -– coefficients dedicated to the com-
ponents of output quantities. 
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The vector function of output quantities is additionally 
perturbed by uncertainties associated with zero set errors 
(  and results the output components 

now are: 
 

 

(28a, b, c) 

 
Using formulas which are derived for absolute 

uncertainties of star circuit and modifying it, the absolute 
uncertainties after modification with zero set errors are 
more complicated as: 

 

 
 

 
 

(29a, b, c) 
1.3. Power indirect measurements 

Now the considerations of the case of directly 
measurements, where two of values of currents and  
( and non-correlated values of its uncertainties 

 conducted from measurement are done. 
Assuming the linear dependence of estimated current 

  as a function of both measured currents in the 
form: 

,                  (30) 
where: 0 ≤ k ≤ 1.  

The outside range of above defined values of k 
leads on the linear dependence too, however the limits of 
the interval of k for extrapolation of values of current in 
the range    must be explicit evaluated 

e.g.  . 

Active power  in the case of flow of current  
 through resistance R is as follow as: 

 
     (31) 

The goal of this part is estimation of power 
uncertainties of    both of current I (k1), I (k2) and 
its correlation coefficient.   

The covariance matrix of non-correlated input 
quantities e.g. measured currents and   has 
following form: 

                                 (32) 

The matrix of linearized functional of both active 
powers P (  i P (  emitted on the resistor R as the 
output quantities is the following: 

 
(33a,b) 

The covariance matrix of output quantities is 
described by formulae: 

=     (34) 

After simply transformations the variance of both 
uncertainties of active powers is given: 

 
       (35) 

and its correlation coefficient: 

 (36) 
Above formulae is identical as correlation 

coefficient for intensity currents of I (  and I ( . 

Conclusion  

Few examples of determining the uncertainties in 
case of multi-parameter linear and nonlinear formulas 
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have been presented, for example indirect 
measurements of resistance by Wheatstone bridge, a star 
circuit and module of difference of magnetic field induction 
vector. Covariance matrix of relative uncertainties is also 
applied. We proposed of using the covariance matrix for 
relative uncertainties and corresponding measured function 
dedicated for relative uncertainties as well as relative errors 
were applied in the classical approach.  

It is shown that in the case when two or more 
parameters /for example element of electronic circuits/ 
are measured together, the uncertainties of above 
parameters are correlated. So, if the above correlated 
elements will be used without disconnection in the next 
circuits of device then in the determination of 
uncertainties of such new device we should consider the 
corresponding correlations coefficients obtained from 
first measurements.  

Information about uncertainty calculations of 
multivariable AC measurements is in [3]. Supplement 2 
of GUM [1] does not cover situations existing in 
instrumental systems, when realization of functional 
F(x) is not accurate. Such inaccuracy can be due to 
approximation of transfer functions and limited their 
frequency ranges, using in signal processing an A/D 
converters, analogue multipliers, and other functional 

elements, necessary in indirect measurements. Therefore 
F(x) is also saddled with own uncertainties uF.1 Even in 
the most precise measurements the rounding of results 
also becomes essential, including one resulting from the 
precision of digital circuits [2–3]. 

In the last days authors have developed the vector 
method for the description of the accuracy of 
multivariate measurements systems with considering 
uncertainties uF, uδF of the functional F parameters. This 
method is wider then recommendations given in GUM 
Supplement 2 [1], which do not consider inaccuracy of 
F. Details and new formulas will be provided in the next 
authors’ work. 

References 
[1] JCGM 102:2011, Evaluation of measurement data – 

Supplement 2 to the Guide to the expression of uncertainty in 
measurement”– Extension to any number of output quantities. 

[2] M. Dorozhovets, Processing the measurement results. 
Lviv, Ukraine: Publ. House of Lviv Pol. Nat. Univ., 2007. 

 [3]  Warsza, Z. L., Puchalski, J.: Estimation of vector 
uncertainties of multivariable indirect instrumental measurement 
systems on the star circuit example. Congress IMEKO 2018 CD 
Proceedings PO-062 

[4] L. Finkelstein, “Fundamental concepts of 
measurement”, ACTA IMEKO, vol. 3, no. 1, p. 10–15 May 2014.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
__________________________________ 

1Such problems of measurement technology are included in the measurement science, discipline wider then metrology. The 
concept and term of this discipline were proposed by prof. L. Finkelstein from the City University of London in 1970-s years 
during his IMEKO activity [4].  


