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Introduction 

The rod systems and rods, structural elements are widely used in aircraft. 

During the exploitation they are exposed to vibration loads, therefore the 

researching of dynamic characteristics of the rods is an actual problem of 

vibration strength. 

In studying of the dissipation of the internal energy in the materials the 

one of the complicated problems is the problem when the material is acting by a 

variable load. If the frequency of the exciting loads has definite ratios with the 

eigenfrequency of oscillations, the level of dynamic loads is sharply increases. 

The dissipative properties are important in these materials. The 

appropriate models are created according on the dissipation mechanism of the 

mechanical energy. 

The problem’s statement and solving 

Let us consider the bending vibrations of the rod taking into account the 

energy dissipation, which are described by the equation  [1]: 
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where E is the modulus of elasticity, I - is the moment of inertia of the rod 

elatively central axis, m-is the mass per unit length, f  – is a function of the 
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dissipation energy, q  – is the intensity of the disturbing load, р is he frequency 

of the external excitation, ε – a small parameter. 

Z – axis is directed along the rod. We choosed the Navier condition as a 

boundary conditions. The solution of the differential equation (1), at ( ) 0q z  , 

which corresponds to free vibration can be written as 

( , ) ( ) cos ;W z t W z a   

0 ;t      
(2) 

where ( )W z  and ωо are the waveform and the corresponding frequency, which 

are defined by the equation (1) with ε = 0 (free oscillations of the rod 

considering energy dissipation), a  and τ – are the amplitude and the phase of 

the oscillations that are satisfying the conditions of the first approximation [1]: 
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The coefficients of the equations (3) are defined as 
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where 2

0

( )

l

M mW z dz  .  

   – is the function of energy dissipation. 

We define the relationship between the logarithmic decrement function 

and energy dissipation. 
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For weak damping we have 
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Taking the time increment Δt equal to the period the oscillations, we find 

the amplitude of the increment for the period 
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Taking into account (7), the expression (6) for the logarithmic decrement 

of the amplitude can be written as: 
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Let us examine the expression  
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Then, for weak damping 
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Since the change in frequency Δω during the period 
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then the expression (11) takes the form 

1 2

2
.

d

dt

 
 

  
(13) 

Let us differentiate the second equation (3) with respect to time and obtain 
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By substituting (14) into (15) we obtain 
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Or are considering (8) 
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whence 
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Thus the coefficients A1(α) … B1(α) of the first approximation equations 

(4) can be expressed in terms of the values ᴧ1 and ᴧ, which are depends on the 
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amplitude and frequency of the oscillations. These values can be obtained from 

an experiment on vibrogram of the damped oscillations. 

Let us consider the forced vibrations of the rod. A particular solution of 

the equation (1) with the right side (q≠0) has the form in a first approximation: 

( , ) ( ) cos , .W z t W z a pt       (18) 

Where the amplitude α and phase angle φ are determined from the 

equations 
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The coefficients A1(α) and B1(α) of the first approximation equations (19) 

are calculated by the formulas (9) and (17). With the stationary oscillations, 

equation (19) becomes 
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According to equation (20) it is easy to construct the resonance curve. If it 

possible to ignore the influence of the energy dissipation on the natural 

frequency (elliptical hysteresis loop), then in equations (18), (19) and (20) we 

must take В1=0; ω=ω0. 

When we solving problems for rod constructions the greatest interest has 

the spectrum of the natural frequencies and corresponding mode shapes. It is 

proposed to use a two-node finite element in the case of plane bending 

vibrations of the rod. In this case, the nodal unknowns are deflections and 

turning angles the nodes. For the approximation of displacements we use a third-

order polynomial: 
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To find the spectrum eigenfrequencies and mode shapes is suggested to 

use a method of increasing stiffness [2], which is based on the minimization of 

functionals of the Rayleigh type. The method coordinatewise descent is applied 

to solve the problem of minimizing the functional [3], which is one of the 

methods of nonlinear programming. It should be noted that the combination of 
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increased stiffness method and the method coordinatewise descent, has allowed 

to create efficient computer algorithm/ 

Conclusions 

We investigated the fluctuations rod structures based on energy 

dissipation on the basis of an expansion in the small parameter. The obtained 

solutions allow constructing the amplitude-frequency characteristics for 

oscillations. It was demonstrated the using of the logarithmic decrement for 

solving the problem of forced oscillations with the nonlinearity. A numerical 

calculation of the oscillation rod structures on the basis of a two-level finite 

element was represented.  
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