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1. Introduction

This year we have 100th anniversary of discovery of the first white dwarf. In 1914 american astronomer
W. Adams has found the spectrum of Sirius A to be similar to that of its faint companion, Sirius B [1].
Hence he concluded that the size of the last one is tiny. At that moment there was known an estimation
of mass of Sirius B [2] from orbital motion. Thus, it was discovered a new type of stars with masses
M∗ ∼ M⊙ and radii R∗ ∼ 10−2R⊙, where M⊙, R⊙ are solar ones. Average interparticle distances
in such objects are of the order of 0,1Å, it means the matter is under extreme conditions (metallic
state), electrons have no localized states. Such objects can be considered as metal with the simpliest
structure.

On the base of quantum theory R. Fowler [3] for the first time suggested degeneration of an extreme
dense nonrelativistic electron gas as crucial factor in the existence of white dwarfs. At such high
densities electron momentum on the Fermi surface is of the order m0c (m0 is the electron mass, c is
the speed of the light), therefore S. Chandrasekhar [4,5] developed two component model of a cold
dwarf consisting of an ideal degenerate relativistic electron gas at T = 0K (in paramagnetic state)
and nuclear subsystem as unstructured classical environment. The stability of white dwarf is provided
by equilibrium between electron pressure and gravity of nuclear subsystem. Energetic and structural
characteristics of a star can be obtained from the equilibrium equation. Chandrasekhar’s model is
chemical homogeneous and doesn’t take into account the Coulomb interaction, finite temperature
effects (partial degeneration of electron gas), stellar rotation, magnetic field, effects of general relativity
– which can affect internal stellar structure.

Chandrasekhar’s model has two parameters – central density ρc and average chemical composition
parameter µe =

〈
A
z

〉
, where A is the nucleon number, z is the nuclear charge. It is convenient to

overwrite ρc in terms of dimensionless relativistic parameter

x0 = pF (0)(m0c)
−1 = ~(3π2n0)

1/3(m0c)
−1, (1)
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here pF (0) is Fermi momentum, n0 is the electron number density in the centre of a star. In the
frame of this model well-known result was yielded – the existence of maximum mass of white dwarf
(Chandrasekhar limit)

M 6Mch = 2.01824 . . . M0µ
−2
e , (2)

M0 =

(
3

2

)1/2

(4π)−1

(
hc

G

)3/2

m−2
u ≈ 2.89 . . . M⊙,

here mu is the atomic mass unit. Another famous result obtained by Chandrasekhar is the “mass-
radius” relation; according to this all the white dwarfs have to form a line on the plane (µ2eM,µeR).
Dwarfs with masses M < Mch are stable in this model. The value Mch corresponds to the limit x0 → ∞
and have a sense of upper bound. But in the frame of this model it is impossible to obtain a reasonable
mass limit as well as to explain observed narrow distribution of white darfs by masses (radii). Only
cold dwarfs with effective temperatures Teff 6 104K are in good agreement with the theoretical line
on the “mass–radius” plane M − R. Recent observational data reveal dozens of very hot dwarfs with
small masses and surface temperatures reaching 105K. They form rather a sequence of lines on the
M−R plane, where every line corresponds to the fixed value of Teff (see Fig. 1). Generalization of the
Chandrasekhar’s theory is needed to describe the observed diversity of white dwarfs. There was shown
in [6–8] that for the case of hot degenerate dwarfs with small and moderate masses (extended radii)
taking into account the partial degeneracy of electron subsystem is necessary, as well as consideration
of non-uniform chemical composition due to gravitational settling. For the first time we have solved the
inverse problem of the theory of degenerate dwarfs – radial distributions of thermodynamic parameters
(temperature and density) were computed for given values of mass, radius and luminosity of observed
white dwarf.
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Fig. 1. Degenerate dwarfs on the mass–radius plane.

White dwarfs with masses approaching the
Chandrasekhar limit are believed to formed in
binary systems where the mass transfer is plau-
sible. In such stars finite temperature effects are
negligible because Fermi energy of the electron
gas is of the order m0c

2x0 and significantly ex-
ceeds kBT (kBT/m0c

2 ∼ 0.1, while x0 > 10).
They consist of fully degenerate matter, but de-
viation from the ideal approximation and gen-
eral relativity effects have to be considered here.
Both these factors reduce the white dwarf mass
limit. In the paper [9] was established that in-
teractions and neutrinization process decrease
mass and can cause an instability of massive
white dwarfs. In another work [10], authors in
the frame of Chandrasekhar’s model pointed out
on general relativity effects, which probably can
lead to instability of degenerate dwarfs. How-

ever, the pioneer work with the approximate estimation of general relativity effects on the maximum
mass of a degenerate dwarf belongs to S. Kaplan [11], where he used the Tollman-Oppenheimer-Volkoff
equation as well as equation of state of the ideal degenerate electron gas at the absolute zero of tem-
perature.

As can be seen, determination of the critical parameters (maximum mass and critical density at
wich the instability occured) by simultaneous consideration of interactions and general relativity effects
is a problem to be solved. It is believed that high mass white dwarfs are connected with such energetic
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processes as recurrent novae and Ia type supernovae, therefore more precise estimation of critical values
can help better to understand physics of phenomena mentioned above.

In this work we have considered model of chemical homogeneous massive white dwarf with fully
degenerate interacting electron system and crystal nuclear system. Model has three parameters –
x0, µe, z. Equation of state was obtained using reference system approach developed in the papers [12–
14] for the case of nonrelativistic metallic systems. For the determination of critical parameters we
have proposed self-consistent variational principle, which generalizes method of the paper [10].

2. The equation of state of degenerated relativistic electron gas

The role of interactions in modern theory of degenerated dwarfs is poorly investigated on the contrary
to metallic systems theory in terrestial conditions. The main reason is that system of electrons is
significantly relativistic. This fact complicates an analytic calculation. In the same time this system
is weak nonideal – the coupling parameter of electron–electron interactions (Brückner’s parameter)

rs = α0
η

x
(3)

is of the same order that fine structure constant α0 = e2/~c (η = (9π/4)1/3) and zα0 for electron–
nuclear interactions. This fact simplifies the construction of the equation of state. In the paper [15],
for the first time in the frame of many-electrons (nonrelativistic) theory it was estimated the Coulomb
interaction contribution to the ground state energy and the pressure in the structureless electron-
nuclear model. That work is a compilation of Wigner–Seitz model, the Thomas-Fermi approximation,
the correlation energy in the random phase approximation from non-relativistic theory. It gives a
possibility for authors to obtain a simple equation of state. This equation describes the reduction of
pressure due to Coulomb interaction in the limit of large values of relativistic parameter. Also, in order
to investigate the cooling of white dwarfs, in work [16] it was considered the interactions based on the
Wigner-Seitz model.

The modern microscopic theory of non-relativistic many-electron systems allows a simple general-
ization to the case of relativistic model. We have adapted mathematical methods of reference system
approach developed for description of the strongly non-ideal nonrelativistic electron liquid model [12–
14].

The reference system approach is a case of perturbation theory formulated on the base of many
particles dynamic correlation functions of zero order approximation model (reference system). For the
homogeneous electron liquid the reference system is the model of ideal electrons, in the case of the
electron-nuclear model this is the model of a homogeneous electron liquid.

We consider electrically neutral macroscopically homogeneous electron-nuclear model. It consists
of Ne electrons and Nn = z−1Ne nuclei per volume V in the thermodynamic limit Ne, V → ∞,
Ne/V = const at low temperatures (much lower than temperature of degeneration) in the adiabatic
approximation assuming that the nuclear subsystem forms a lattice. In the second quantization repre-
sentation this model has the Hamiltonian

Ĥ = Ĥ0 + Ĥint + Vnn, (4)

where
Ĥ0 =

∑

k,s

Ek a
+
k,s ak,s (5)

corresponds to the Hamiltonian of free relativistic electrons,

Ĥint = V̂ee + V̂en (6)
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is the sum of interelectrons and electron–nuclear interaction operators,

V̂ee = (2V )−1
∑

q 6=0

Vq
∑

k1,k2

∑

s1,s2

a+k1+q,s1
a+k2−q,s2

ak2,s2 ak1,s1 , (7)

V̂en = −zV −1
∑

q 6=0

Vq Sq
∑

k,s

a+k+q,s ak,s.

The component

Vnn = z2(2V )−1
∑

q 6=0

Vq{SqS−q −Nn} (8)

describes the Coulomb nuclear interaction. Here Sq =
Nn∑
j=1

exp[i(q,Rj)] is the structural factor of

nuclear subsystem; Vq = 4πe2/q2 is frequency domain representation of the Coulomb potential; a+k,s,
ak,s are operators of creation and annihilation of electron in the quantum states of a given wave vector
k and spin projection s, they are described by Fermi statistics.

The calculations for the partition function for the electron variables in the grand canonical ensemble,
the thermodynamic potential and energy of the ground state of the model are performed according
to the general procedure described in the works [12,13], where the non-relativistic model of electron
liquid was considered.

Deviations of the results are caused only by the calculation of n–particles dynamic correlation
functions of type “density–density” for the model of non-interacting electrons with spectrum Ek =
= {(m0c

2)2 + ~
2k2c2}1/2 −m0c

2 instead of ~2k2/2m0.
Traditional representation of the ground state energy of electron–nuclear model was obtained by

using the electron liquid model as reference system.

E = Ee + Vnn −
∑

n>2

zn

n!
V −n

∑

q1,...,qn 6=0

Vq1
· · ·VqnS−q1

· · ·S−qnµ̃n(q1, . . . ,qn|0). (9)

Here Ee is the energy of reference system,

Ee = E0 + (2βV )−1
∑

q 6=0

Vq
∑

ν

1∫

0

dλ µ̃λ2 (y,−y), (10)

where E0 is the energy of ideal electrons system and µ̃λ2(y,−y) is two-particle dynamic correlation
function of the auxiliary model, which is the electron liquid model, where the frequency domain repre-
sentation of interactions potential is λVq. Here was used momentum–frequency representation, where
y ≡ (q, ν); ν = 2πnβ−1 is the Bose-Matsubara frequency. The function µ̃n(q1, . . . ,qn|0) represents
statical limit of n-particles dynamic correlation functions of reference system.

2.1. The reference systems correlation functions

The system of ideal electrons (without interaction) can be used as statistical basis in the calculation of
the correlation functions of the electron liquid model. The correlation functions of the ideal electron
gas can be rewritten in the form of convolution of Green’s functions of Matsubara,

µ̃02(y,−y) = −β−1
∑

k;s;ν∗

Gk,s(ν∗)Gk+q,s(ν∗ + ν);

µ̃03(y1, y2, y3) = 2β−1δq1+q2+q3,0 δν1+ν2+ν3,0
∑

k,s;ν∗

Gk,s(ν∗)Gk+q1,s(ν∗ + ν1)Gk−q2,s(ν∗ − ν2); (11)
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µ̃04(y1,−y1, y2,−y2) = β−1
∑

k,s;ν∗

Gk,s(ν∗)Gk−q1,s(ν∗ − ν1) ×

×
∑

σ=±1

Gk−σq2,s(ν∗−σν2){2Gk,s(ν∗)+Gk+q1+σq2,s(ν∗+ν1+σν2)},

where
Gks(ν∗) = {iν∗ − Ek + µ}, (12)

µ is the chemical potential of the model; ν∗ = (2n + 1)πβ−1 is the Bose-Matsubara frequency. The
static limit of functions (11) for non-relativistic model are well known for n = 2, 3, 4 [17,18]. The
dynamic function µ̃02(y,−y) at T = 0K was calculated in [19]. The functions µ̃03(y1, y2, y3) and
µ̃04(y1,−y1, y2,−y2) are represented via elementary functions in the paper [12]. For the model with
one-particle spectrum Ek = [(m0c

2)2 + ~
2k2c2]1/2 −m0c

2 it is unable to get exact analytical expres-
sions for µ̃0n(y1, . . . , yn) in terms of elementary functions. The approximate analytical representation
is possible [20], another way is numerical calculations.

Expanding products of Green’s functions into prime factors and using relation

β−1
∑

ν∗

Gk,s = nk,s = {1 + exp[β(Ek − µ)]}−1, (13)

we obtain following representations:

µ̃2(y,−y) = γ2(y) = −2Re
∑

k,s

nk,s{iν + Ẽk − Ẽk+q}−1, (14)

µ̃03(y1, y2, y3) = δy1+y2+y3,0{γ3(y1,−y2) + γ3(y2,−y3) + γ3(y3,−y1)};

γ3(y1, y2) = 2Re
∑

k,s

nk,s{iν1 + Ẽk − Ẽk+q1
}−1{iν2 + Ẽk − Ẽk+q2

}−1, . . . ;

Ẽk = [(m0c
2)2 + ~

2k2c2]1/2.

As an example we consider the function µ̃02(y,−y), which is important for weakly nonideal systems.
The representation in the one-dimensional integral form of µ̃02(y,−y) can be obtained via replacing
the vector’s k sum by the integral and afterward integrating in the spherical coordinate system by the
angular variables of the vector k:

µ̃02(y,−y) =
3Ne

m0c2x2
J2(q∗, ν∗|x),

J2(q∗, ν∗|x) = (xq∗)
−1

∞∫

0

dk∗ k∗ n(k∗)A(k∗|q∗, ν∗), (15)

A(k∗|q∗, ν∗) =
∑

σ=±1

σ
{
[1 + (k∗ + σq∗)

2]1/2 − ν∗ arctg[ν
−1
∗ ησ(k∗, q∗)]

+
1

2
(1 + k2∗)

1/2 ln[ν2∗ + η2σ(k∗, q∗)]

}
,

ησ(k∗, q∗) = [1 + (k∗ + σq∗)
2]1/2 − [1 + k2∗ ]

1/2,

n(k∗) =
{
1 + exp

[
β∗
([

1 + k2∗
]1/2 − 1− µ∗

)]}−1
.
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Here were used dimensionless variables

k∗ =
|k|~
m0c

=
|k|
kF
x, q∗ =

|q|~
m0c

=
|q|
kF
x, ν∗ =

ν

m0c2
=

ν

2εF
x2, (16)

β∗ = βm0c
2; µ∗ =

µ

m0c2
=

µ

εF

x2

2
; εF ≡ ~

2k2F
2m0

.

At absolute zero of temperature n(k∗) = 1 in the range 0 6 k∗ 6 x and n(k∗) = 0 at k∗ > x. The
integration by variable k∗ is fulfilled from zero to x.

The dependence of the static function J2(q∗, 0|x) on wave vector and relativistic parameter is
shown in the Figure 2. The Figure 3 illustrates the function J2(q∗, ν∗|x) for the case of small frequency
(ν/2εF = 0,15).
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Fig. 2. The static function J2(q∗, 0|x) as function of
wave vector and relativistic parameter.

Fig. 3. The dynamic function J2(q∗, ν∗|x) as function
of wave vector and relativistic parameter.

The static correlation function µ02(q,−q|0) has the next asymptotic behavior:

µ̃02(q,−q|0) ⇒
{

3Ne(m0c
2x2)−1(1 + x2)1/2 for q → 0;

2Ne(m0c
2q)−1 = 2Ne(c~q) for q → ∞.

(17)

The well known correlation function of non-relativistic theory [19] can be obtained from µ̃02(y,−y) by
transformation to non-relativistic variables q̃ = |q|k−1

F , k̃ = |k|k−1
F , ν̃ = ν/2εF using (16) and formally

passing to limit x→ 0.
In the static case it can be obtained an approximate analytical representation via elementary

functions by following identity transformation in (14) and representing the function µ̃02(q,−q|0) in the
form

µ̃02(q,−q|0) = 2
∑

k,s

nk,s{Ẽk+q + Ẽk}{Ẽ2
k+q − Ẽ2

k}−1. (18)

In the case of variables (16) and at T = 0K

J2(q∗, 0|x) = (2xq∗)
−1

x∫

0

dk∗ k∗

1∫

−1

dt(t+ q∗/2k∗)
−1 {(1 + k2∗ + q2∗ + 2k∗q∗t)

1/2 + (1 + k2∗)
1/2}. (19)
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The convergent sum

J2(q∗, 0|x) =
∑

n>0

J2,n(q∗|x), (20)

was obtained by expanding into series [1 + k2∗ + q2∗ + 2q∗k∗t]1/2 via t. The terms are expressed in
elementary functions. The convergence of this series is illustrated in Figure 4.
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Fig. 4. The sequence of functions
∑

n>0
J2,n(q∗|x) (see eq. (20)). Curve 1 corresponds to n0 = 0; 2 – n0 = 1;

3 – n0 = 2.

The same series can be obtained for static limit of high-order correlation functions µ0n(q1, . . . ,qn|0)
at (n = 3; 4).

For the correlation functions of the electron liquid model we will use the local field approxima-
tion [14]:

µ2(y,−y) = µ02(y,−y)
{
1 + (1−G(y))

Vq
V
µ02(y,−y)

}−1

, (21)

µ3(y1, y2, y3) = µ03(y1, y2, y3)

3∏

i=1

{
1 + (1−G(yi))

Vqi
V
µ02(yi,−yi)

}−1

,

etc. As we consider the electron–nuclear model for weak coupling it is sufficient to use the local field
correction in the lowest approximation (Heldart-Taylor approximation) [14]:

Gid(y) ≡ −(2βVq)
−1{µ̃02(y,−y)}−2

∑

q1,ν1

Vq1µ̃
0
4(y,−y, y1,−y1). (22)

According to expressions (12) and (13)

Gid(y) = −(2Vq)
−1{µ̃02(y,−y)}−2Re

∑

s

∑

k1,k2

V (k1 − k2)× (23)

× {nk1,s − nk1+q,s} {nk2,s − nk2+q,s}{[iν + Ẽk1
− Ẽk1+q]

−1 − [iν + Ẽk2
− Ẽk2+q]

−1}2.

The expression (23) can be reduced to four-dimensional integrals with respect to the variables
z1, z2 and ρ1, ρ2. Then integrating by angles ϕ1 and ϕ2 in the cylindrical coordinate system with
k = (ρ, z, ϕ). The final expression can by calculated numerically. The results of calculations are
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presented in Figures 5. The local field correction function of the model of relativistic electron liquid is
similar to the case of nonrelativistic theory but is dependent on the relativistic parameter. The local
field correction function is independent of the coupling constant in the considered approach.
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Fig. 5. The dependence of the dynamical local field function on relativistic parameter and frequence.

2.2. The ground state energy of the model

Energy of the model can be overwritten with help of separating of Hartree-Fock component in the
formula (10) and from products of Sq1

. . . Sqn (see (9)) – unary, binary, ternary, . . . by the coordinate
of nuclei terms

E = E0 + EHF + Ec +Nnω +
1

2!

∑

j1 6=j2

V2(Rj1 −Rj2)

+
1

3!

∑

j1 6=j2 6=j3

V3(Rj1 ,Rj2 ,Rj3) + . . .+ Ecomp.
(24)

Here

E0 = 3Nem0c
2x−3

x∫

0

dt t2{(1 + t2)1/2 − 1} = (25)

= Nem0c
2{(1 + x2)1/2 − 1− (8x3)−1F(x)}

is the energy of non-interacting electrons, where

F (x) = x(2x2 − 3)(1 + x2)1/2 + 3 ln[x+ (1 + x2)1/2]. (26)

The term EHF determines the contribution of Hartree–Fock correlations (contribution of the first order
perturbation theory)

EHF = (2βV )−1
∑

q,ν

Vqµ̃
0
2(y,−y) = (27)

= −(2V )−1
∑

q;k,s

Vqnk+q/2,snk−q/2,s =

= − 3

4π
Neα0m0c

2x.
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Correlation energy is by definition

Ec = (2βV )−1
∑

q 6=0;ν

1∫

0

dλVq{µλ2 (y,−y)− µ02(y,−y)} = (28)

= −(2β)−1
∑

q,ν

(1−G(y))−1

{
µ02(y,−y)

V
Vq(1−G(y)) − ln

[
1 + (1−G(y))

µ02(y,−y)Vq
V

]}
.

In nonrelativistic limit expression (28) defines the correlation energy of non-relativistic model. It
was approximated in the [22] from results calculated by Monte–Carlo method [21]. We perform the
numerical calculations by representing the correlation energy (24) of relativistic models in the form

Ec = Ne m0 c
2 α2

0εc(x). (29)

The result of the calculations was approximated via next expressions:

εc(x) = −b0
x∫

0

dt
(b1a0 + t1/2)

t3/2 + b1a0t+ b2a20t
1/2 + b3a30

1 + a1t+ a2t
2

1 + d1t
,

a0 = (α0η)
1/2; a1 = 1.21954; a2 = 1.33205; d1 = 1.18934; (30)

b0 = 0.0621814; b1 = 9.81379; b2 = 2.82214; b3 = 0.69699;

The dependence of function (30) on relativistic parameter is shown in Fig. 6 (curve 2). The curve 1
represent non-relativistic limit of expression (28). The crosses correspond to approximation of Monte–
Carlo results [22].
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Fig. 6. The correlation energy as a function of relativistic parameter (for details see the text).

The component Neω represents the intercalation nuclear energy in homogenic electron liquid (the
energy of polarization)

ω = − z2

2!V 2

∑

q

V 2
q µ2(q,−q|0) − z3

3!V 3

∑

q1,q2

Vq1
Vq2

Vq1+q2
µ3(q1,q2,−q1 − q2|0) + . . . . (31)
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It was calculated in the approach of pair correlations and local field correction function and then
approximated in the following form

εω(x) = −
x∫

0

dt
c0 + c1t+ c2t

2 + c3t
3

1 + d1t+ d2t2 + d3t3
, (32)

c0 = 4.06151; c1 = 32.6118; c2 = −43.6587; c3 = 104.13;

d1 = 73.8252; d2 = −67.1028; d3 = 189.781;

The effective potential of nuclear interactions is determined by expressions:

V2(R1 −R2) =
1

V

∑

q

Φ
(2)
eff (q,−q) exp[i(q,R1 −R2)], (33)

V3(R1,R2,R3) =
1

V 3

∑

q1,q2,q3

δq1+q2+q3,0Φ
(3)
eff (q1,q2,q3) exp{i[(q1,R1) + (q2,R2) + (q3,R3)]},

where

Φ
(2)
eff (q,−q) = z2Vq

{
1− Vq

V
µ2(q,−q|0) − 1

V 2

∑

q1

Vq1
Vq+q1

µ3(q,q1,−q− q1|0) + ...

}
; (34)

Φ
(3)
eff (q1,q2,q3) = −z3µ3(q1,q2,q3|0)Vq1

Vq2
Vq3

+ ... .

The component Ecomp can be considered as energy of compensated field, because the components
qi = 0 are missing in formula (9) when summarising by qi in contrast to expression (32). Therefore

Ecomp = −z
2

2!
Nn(Nn − 1) lim

q→0
Φ
(2)
eff (q,−q)+

+
1

3!
Nn(Nn − 1)(Nn − 2) lim

q1,q2→0
Φ
(3)
eff (q1,q2,−q1,−q2) + ... . (35)

The sum of effective nuclear interactions energy and Ecomp is the energy of the lattice of nuclei. In
order to calculate that energy it was used the summing by the coordinational spheres of a simple cubic
lattice. The temrs of effective interactions potential and compensating field are on the same order but
they have opposite signs. In the approximation of two-particle correlations the lattice energy is

EL = Ne m0 c
2z0.589417 α0εL(x|z), (36)

εL(x|z) = −
x∫

0

dt t
a0(z) + ta1(z) + t2a2(z)

1 + ta3(z) + t2a4(z) + t3a5(z)
;

ai(z) =
ai0 + zai1 + z2ai2
ai3 + zai4 + z2ai5

. (37)

The coefficients aij are listed in the Table 1.
The dependence of components εω(x) and εL(x) are illustrated in the Figures 7, 8.
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Table 1. Coefficients of formula (37).

aij

i
j

0 1 2 3 4 5

0 −128.112 −138.098 −3.30915 0 3.74936 0.882489

1 −633.899 297.304 −19.5138 1 −0.707632 1.01638

2 −1691 216.967 −8.71667 0 1.48694 0.12998

3 2.37539 1.74513 0.0417739 0 0.0212583 0.0056168

4 913.016 −452.217 30.3618 1 −0.750844 0.702212

5 5.68901 −0.704184 0.0277872 0 0.00203554 0.000234399
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Fig. 7. The intercalation energy of nuclei as function
of relativistic parameter.

Fig. 8. The dependence of the lattice energy on rela-
tivistic parameter.

2.3. Equation of state of the model

The energy dependence of the ground state on the relativistic parameter obtained previous, allows us
to write down the equation of state

P (x) = −dE(x)

dV
=
x4

Ne

(m0c

~

)3 1

9π2
dE(x)

dx
. (38)

According to the expressions (25)–(35)

P (x) =
πm4

0c
5

3h3

{
F(x)− 2α0x

4

π

[
1− 4π

3

(
z0.589417

dεL
dx

+ z α
1/2
0

dεω
dx

+ α0
dεc
dx

)]}
, (39)

where F(x) is the contribution of noninteracting electron gas. As can be seen from the Figures 6–8,
all derivatives in the formula (39) are negative, i.e. they all cause the decrease of pressure of the ideal
electron system. Linear dependence on parameter x of each term, εc(x), εω(x), εL(x) at x≫ 1 provides
the difference between asymptotes of P (x) and ideal system by a constant value, therefore

P (x) −−−→
x≫1

2π
m4

0c
5

3h3
x4 {1− ϕ(z)} , (40)

ϕ(z) =
α0

π

{
1 +

4π

3

[
z0.589417|ε′L|+ α

1/2
0 z|ε′ω|+ α0|ε′c|

]}
; ε′L ≡ d

dx
εL etc.
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The relative decrease of the pressure due to Coulomb interaction

{P0(x)− P (x)}P−1
0 (x) (41)

is shown in Figure 9. When relativistic parameter is small, x ≪ 1, it is a large quantity, but with
increasing x (x > 2), the relation (41) is almost constant, which depends only on the charge of nuclei
and equals 1% at z = 2, 1.5% at z = 6, 2.5% at z = 12, 4% at z = 26.

 0
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 0.4

 0.5
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 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

x2
6
12

z=26

P0(x)−P (x)
P0(x)

Fig. 9. The relative decrease of the pressure (see (41)).

The approximation of two-electron correlations used here, yielded equation of state similar to results
of work [15]. Consideration of the contributions of three-electron correlations is an important issue to
be considered later.

3. Critical mass and stability of degenerate dwarfs

3.1. Generalization of Chandrasekhar’s model

The simplest improvement to the Chandrasekhar’s theory is taking into account the Coulomb interac-
tion in the equation of state, which defines inner stellar structure

dP (r)

dr
= −Gm(r)

r2
ρ(r),

dm

dr
= 4π

r∫

0

dr′(r′)2ρ(r′). (42)

Here P (r), ρ(r) are pressure and mass density, respectively, on the surface with radius r, m(r) is the
mass inside this sphere. We can use a homogeneous model to obtain equation of state P (r) substituting
x with its local value x(r) = {3π2n(r)}1/3~/m0c, where n(r) is the electron number density on the
sphere with radius r. According to this description

ρ(r) = muµe

(m0c

~

)3
(3π2)−1x3(r). (43)

Given the equation of state as

P (r) =
πm4

0c
5

3h3
F(x){1 − ϕ(x(r), z)} (44)
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and overwriting system (42) as second order differential equation we will obtain in dimensionless form

ξ = r/λ, y(ξ) = ε−1
0 {[1 + x2(r)]1/2 − 1} (45)

the next equilibrium equation

1

ξ2
d

dξ

{
[1− ϕ(ξ, z)]ξ2

dy

dξ
− ξ2F(ξ)(8ε0x

3(ξ))−1 dϕ(ξ, z)

dξ

}
= −

(
y2(ξ) +

2

ε0
y(ξ)

)3/2

. (46)

Here λ can be found from expression

32π2G

3(hc)3
(m0mHµec

2λ ε0)
2 = 1, (47)

where ε0 = (1 + x20)
1/2 − 1 and x0 ≡ x(r = 0) is the relativistic parameter in the stellar centre.

Equation (46) satisfies boundary conditions: y(0) = 1, y′(0) = 0 and contains two dimensionless
parameters (x0, z). In the equation were used the next denotations:

x(ξ) = ε0(y
2(ξ) +

2

ε0
y(ξ))1/2;F(ξ) ≡ F(x(ξ)); (48)

ϕ(ξ, z) ≡ ϕ(x(ξ), z).

 0
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 0  1  2  3  4  5  6  7

y(ξ)

ξ0.5 1.5 2.5 5.0

15

x0=500

Fig. 10. The dependence of the solutions of equation (46) on parameter x0 at z = 6 (solid curve). Dashed
curve corresponds to Chandrasekhar’s model.

In the case ϕ(ξ, z) = 0 equation (46) corresponds to the Chandrasekhar’s theory. The solutions of the
equation (46) and their dependence on the parameter x0 are illustrated in the Figure 10. The case
ϕ(ξ, z) = 0 is depicted with dashed lines. At given x0, z the solution of equation will turn to zero in
point ξ = ξ1(x0, z), which is the dimensionless radius of the star. Then stellar mass can be defined as

M(x0, µe, z) = 4π

R∫

0

dr r2ρ(ξ) =
M0

µ2e
M̃(x0, z), (49)

M̃(x0, z) =

ξ1(x0,z)∫

0

dξ ξ2
(
y2(ξ) +

2

ε0
y(ξ)

)3/2

,
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here M0 is determined by (2). In the Chandrasekhar’s model

M̃(x0, µe) =

ξ1(x0)∫

0

dξ ξ2
(
y20(ξ) +

2

ε0
y0(ξ)

)3/2

, (50)

where y0(ξ) is the solution of equation (46) at ϕ(ξ, z) = 0 and ξ1(x0) is corresponding dimensionless
radius of the star.
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Fig. 11. Mass dependence of a dwarf on relativistic parameter: solid curve corresponds to formula (49), dashed
curve – (50).

As can be seen from Figure 11, in the limit x0 → ∞ functions M̃(x0, µe) tend the constant values
constraining maximum mass of a dwarf. Coulomb interaction causes the decrease of mass of a dwarf
for whole range of x0, especially maximum mass corresponding to the dwarf with zero radius, since

R(x0, µe) = R0
ξ1(x0)

µeε0(x0)
, (51)

R(x0, µe, z) = R0
ξ1(x0, z)

µeε0(x0)
, R0 =

(
3

2

)1/2 1

4π

(
h3

cG

)1/2
1

m0mH
.

Here R0 ≈ 10−2R⊙ gives an order of the typical white dwarf size.
It should be mentioned, that taking into account of Coulomb interaction decreases mass of a dwarf,

but does not change significantly the slope of the curves M̃(x0, z) and M̃(x0) at x ≫ 1, which are
almost parallel in this region.

3.2. Simultaneous consideration of general relativity effects and Coulomb interaction

Massive white dwarfs, for which x0 ≫ 1, must be considered in the frames of general relativity theory.
We have used the approach developed in [10] modificated by simultaneous consideration of the Coulomb
interaction. In general case full stellar energy is defined by relation

E = (M −muN) c2, (52)

where M and N are full mass and number of nucleons, respectively. Mass of a spherical object

M = 4π

R∫

0

ρ(r) r2dr (53)
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defines by its density distribution

ρ(r) = ρ0(r) +
εe(r)

c2
, (54)

here ρ0(r) = n(r)mu is the mass density of nuclear matter and εe(r) is the nongravitational energy
density, which includes kinetic energy of electrons and Coulomb interaction Full number of nucleons is

N =

R∫

0

n(r) dv, (55)

where

dv =

(
1− 2Gm(r)

rc2

)−1/2

4πr2dr (56)

is the elementary volume in the Schwarzschild metric, m(r) defines the mass of a sphere with radius r.
According to (52)–(56)

E = c2
R∫

0

dv

{(
1− 2Gm(r)

rc2

)1/2 [
ρ0(r) +

εe(r)

c2

]
− ρ0(r)

}
. (57)

Assuming 2Gm(r)/rc2 ≪ 1, within terms of second order of smallness energy can be overwritten in
the form

E =

R∫

0

dv

{
εe(r)− ρ0(r)

[
m(r)G

r
+

1

2

m2(r)G2

r2c2
+
εe(r)m(r)G

ρ0rc2
+ . . .

]}
. (58)

Zeldovich and Novikov [10] in their approach did not considered the Coulomb interaction, therefore
εe(r) is density only of electron kinetic energy. We will follow the prescription of the work [16] and
introduce a full energy of the model in the Newtonian metric

E = ENewt + EGTR,

ENewt = 4π

R∫

0

dr r2 εe(r)−G

M∫

0

dmm(r)

r
; (59)

EGTR = −G
c2

M∫

0

dm

r




εe(r)m(r)

ρ0(r)
+

m(r)∫

0

dm

ρ0(r)
εe(r)





−

− G2

c2

M∫

0

dm

r





1

2

m2(r)

r
−

m∫

0

dmm(r)

r
+
m(r)

r3

r∫

0

dr r m(r)



+ . . . .

Here components EGTR can be calculated in the Newtonian approximation, when dm = 4πr2ρ0(r) dr.
To represent full energy (59) in terms of “stellar mass”, “central relativistic parameter” we will

introduce dimensionless variables, let
r = λ′η, (60)

here λ
′

is determined from

M = 4π(λ′)3 muµe

(m0c

~

)3
(3π2)−1

η1(x0)∫

0

dη η2x3(η). (61)

Mathematical Modeling and Computing, Vol. 1, No. 2, pp. 264–283 (2014)



Interparticle interactions, general relativity effects, and critical parameters of white dwarfs 279

By defining the dimensionless mass M̃ =M M−1
0 µ2e and using the equation (60) we have

λ′

λ
= M̃1/3




ε−3
0

η1(x0)∫

0

dη η2x3(η)





−1/3

, (62)

where η1(x0) corresponds to the radius of a star in terms η and x3(η) is dimensionless mass density,
which can be considered as trial function. Therefore λ

′

depends on dimensionless mass and parameter
x0.

In the new variables, the components of ENewt can be overwritten: kinetic energy of electron
subsystem

Ekin =
E0

µ3e

(
λ′

λ

)3
η1(x0)∫

0

dη η2
{
x3(r)[(1 + x2(η))1/2 − 1]− 1

8
F(x(η))

}
; (63)

energy of Coulomb interaction

Ecoul = −E0

µ3e

(
λ′

λ

)3

α0

η1(x0)∫

0

dη η2 x3(η)

{
3

4π
x(η)− z0.6εL(x(η)) − zα

1/2
0 εω(x(η)) − α0εc(x(η))

}
; (64)

gravitational energy

Egrav = −E0

µ3e

(
λ′

λ

)5
η1(x0)∫

0

dη η x3(η)

η∫

0

dη2 η
2
2 x

3(η2), (65)

where E0 = GM2
0 /R0. In the same way can be represented components of EGTR. From the equa-

tion (62) functional of energy is

E(M̃ , x0) =
E0

µ3e
ε(M̃ , x0), (66)

ε(M̃ , x0) = M̃{S1(M̃ , x0)− 1− α0S2(M̃ , x0)} − M̃5/3S3(M̃, x0)−
− m0

µemu
{M̃5/3P (M̃, x0) + M̃7/3D(M̃, x0)} + ... .

Here were used the following denotations:

S1(M̃ , x0) =
[
C(M̃, x0)

]−1
η1(x0)∫

0

dη η2 a(η);

S2(M̃ , x0) =
[
C(M̃, x0)

]−1
η1(x0)∫

0

dη η2x3(η) × (67)

×
{

3

4π
x(η) − z0.6εL(x(η)) − zα

1/2
0 εω(x(η)) − α0εc(x(η))

}
;
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S3(M̃, x0) =
[
C(M̃, x0)

]−5/3
η1(x0)∫

0

dη η x3(η)

η∫

0

dη2 η
2
2x

3(η2);

a(η) = x3(η)(1 + x2(η))1/2 − 1

8
F(x(η));

C(M̃, x0) =

η1(x0)∫

0

dη η2x3(η);

P (M̃ , x0) =
[
C(M̃, x0)

]−5/3





η1(x0)∫

0

dη η[a(η)−x3(η)]
η∫

0

dη2η
2
2x

3(η)+

+

η1(x0)∫

0

dη η x3(η)

η∫

0

dη2 η
2
2 [a(η2)− x3(η2)]





;

D(M̃ , x0) =
[
C(M̃, x0)

]−7/3




1

2

η1(x0)∫

0

dη x3(η)




η∫

0

dη2 η
2
2 x

3(η2)



2

−

−
η1(x0)∫

0

dη η x3(η)

η∫

0

dη2 η2 x
3(η2)

η2∫

0

dη3 η
2
3 x

3(η3) + (68)

+

η1(x0)∫

0

dη

η2
x3(η)

η∫

0

dη2 η
2
2 x

3(η2)




η∫

0

dη3 η3

η3∫

0

dη4 η
2
4 x

3(η4)







.

Energy of a dwarf is the negative monotonically decreasing function of x0. If the condition

d

dx0
ε(M̃, x0) = 0 (69)

is satisfied, then equilibrium determines such mass dependence on x0, which corresponds to minimal
energy. Let x∗0 is the value of relativistic parameter at which the curve M(x0) has a bend, i.e.

d2

dx20
ε(M̃ , x0) = 0, (70)

then at this point occures an instability and for all x0 > x∗0 star will turn to a neutron star. From the
conditions (69), (70) we obtain system of two equations defining critical (maximum) stellar mass and
value x∗0, at which instability due to general relativity effects occured:

d

dx0
S10−α0

dS20
dx0

−M̃2/3

[
dS30
dx0

+
m0

µemu

dP0

dx0

]
− m0

µemu
M̃4/3 dD0

dx0
= 0;

(71)

d2

dx20
S10−α0

d2S20
d2x0

−M̃2/3

[
d2S30
dx20

+
m0

µemu

d2P0

dx20

]
− m0

µemu
M̃4/3 d

2D0

dx20
= 0.
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As can be seen from Figures 12, 13, at large x0 functions Si0(x0) ∼ x0 and P0(x0),D0(x0) ∼ x20. It
means, there exists such value x∗0, when energy has a bend and mass reaches its maximum.
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Fig. 12. Dependence Si0(x0) on the relativistic pa-
rameter x0.

Fig. 13. Dependencies P0(x0) and D0(x0) on the re-
lativistic parameter.

4. Conclusions

We have calculated the critical values of cold massive white dwarfs – dimensionless maximum mass
and value of relativistic parameter x∗0, at which an instability of a star occured. They are shown in
the Table 2.

Table 2. Critical parameters of white dwarfs.

z 2 6 26

x∗0 23.035 23.096 23.688

M̃ (x∗0) 1.936492 1.913637 1.823887

Deviation of dimensionless maximum mass from the Chandrasekhar’s limit M̃(∞) = 2.01824 . . . reaches
4.1% at z = 2; 5.2% at z = 6; 9.6% at z = 26.

Coulomb interaction, as well as general relativity effects reduce the maximum mass of a dwarf.
The contribution of interaction and general relativity effects are of the same order. The former one
depends on the chemical composition of degenerate dwarf: at z = 2 the contribution of interaction
is twice smaller than one of general relativity effects; at z = 6 they are almost equal; at z = 26
contribution of the interaction is four times larger then contribution of general relativity effects.

It is worth mentioning, that the influence of Coulomb interaction on the critical value of relativistic
parameter is negligible. The reason is a fact, that mass dependences on x0 in the Chandrasekhar’s
theory and in one with Coulomb interaction at large x0 are almost parallel. The instability is caused
mainly due to general relativity effects.

The parameter of chemical composition for pure helium dwarf is 2 and as we can see from the
Table 2, mass of such dwarf can not exceed the value 1.41 . . . M⊙. This value decreases for another
chemical compositions (z > 2). It means, there is an alternative:

1. Either white dwarfs in the binary systems with masses close to 1.45 . . . M⊙ are helium dwarfs with
substantial fraction of hydrogen (average µe < 2);
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2. Or these dwarfs have to show strong evidence of magnetic field and effects of latter one exceed the
effects of general relativity theory and Coulomb interaction.

We think the first case is more probable and the large mass is a result of accretion of matter (hydrogen-
rich) from the star-companion on the degenerate dwarf.

[1] Adams W. S. The Spectrum of the Companion of Sirius. PASP. 27, 236–237 (1915).

[2] Boss L. Preliminary General Catalogue of 6188 stars for the eopoch 1900. Washington, D.C.: Carnegie
Institution (1910).

[3] Fowler R. H. On dense matter. MNRAS. 87, 114 (1926).

[4] Chandrasekhar S. The Maximum Mass of Ideal White Dwarfs. Astrophys. J. 74, 81 (1931).

[5] Chandrasekhar S. Stellar configurations with degenerate cores. MNRAS. 95, 676 (1935).

[6] Vavrukh M. V., Smerechinskii S. V. A Finite Temperature Chandrasekhar Model: Determining the Param-
eters and Computing the Characteristics of Degenerate Dwarfs. Astronomy Reports. 56, n.5, 363 (2012).

[7] Vavrukh M. V., Smerechinskii S. V. Hot Degenerate Dwarfs in a Two-Phase Model. Astronomy Reports.
57, n.2, 913 (2013).

[8] Vavrukh M. V. Three-phase model in the theory of degenerate dwarfs. Bulletin of the Lviv University.
Series Physics. 48 (2013).

[9] Hamada T. Salpeter E. E. Models for Zero-Temperature Stars. Astrophys. J. 134, 683 (1961).

[10] Zeldovich Ya. B., Novikov I. D. Relativistic astrophysics. Moskva: Nauka(1967).

[11] Kaplan S. A. Superdense stars. Scientific notes of the Lviv State Ivan Franko University. Series Mathe-
matics. 4, 109 (1949).

[12] Vavrukh M., Krohmalskii T. Reference System Approach in the Electron Theory. 1. General Relations.
Phys. stat. sol. (b). 168, 519 (1991).

[13] Vavrukh M., Krohmalskii T. Reference System Approach in the Electron Theory. 2. Ground state charac-
teristic in the Medium Density Region. Phys. stat. sol. (b). 169, 451 (1992).

[14] Vavrukh M. V. A generalization of the concept of the local field in the theory of fermi-liquids. FNT. 22, 9
(1996).

[15] Salpeter E. E. Energy and pressure of a zero-temperature plasma. Astrophys. J. 134, 669 (1961).

[16] Shapiro S. L. Teukolsky S. A. Black Holes, White Dwarfs and Neutron Stars. Cornell University, Ithaca,
New York (1983).

[17] Lloyd P., Sholl C. A structural expansion of the cohesive energy of simple metals in the effective Hamiltonian
appoximation. J. Phys. C. 1, 1620 (1969).

[18] Brovman E., Kagan Yu. On the peculiarities to many-ring diagrams for fermi-systems. Zh. Exp. Teor.
Fiz. 63, 1937 (1972).

[19] Gell-Mann M., Brueckner K. Correction energy of an electron gas at high density. Phys. Rev. 106, 364
(1957).

[20] Vavrukh M. V., Tyshko N. L. Correlation functions of relativistic degenerate ideal fermi-systems in the long-
wave approximation. Bulletin of the Lviv University. 34, 3 (2001).

[21] Ceperley D., Alder B. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566
(1980).

[22] Vosko S. H., Wilk L., Nusair N. Accurate spin-depent electron-liquid correlation energies for local spin den-
sity calculations. A critical analisis. Can. J. Phys. 58, 1200 (1980).

Mathematical Modeling and Computing, Vol. 1, No. 2, pp. 264–283 (2014)



Interparticle interactions, general relativity effects, and critical parameters of white dwarfs 283

Мiжчастинковi взаємодiї, ефекти ЗТВ i критичнi параметри
вироджених карликiв

Ваврух М., ТишкоН., СмеречинськийС.

Кафедра астрофiзики
Львiвський нацiональний унiверситет iменi Iвана Франка

вул. Кирила i Мефодiя, 8, Львiв, 79005, Україна

Розглянуто способи розрахунку маси вироджених карликiв як на основi рiвняння
механiчної рiвноваги, так i варiацiйного пiдходу. Для конкретних розрахункiв ви-
користано модель з iдеальною електронною пiдсистемою та модель з кулонiвськими
взаємодiями. Дослiджено область стiйкостi масивних вироджених карликiв. Вперше
при врахуваннi мiжчастинкових взаємодiй визначено критичне значення маси зорi
i значення параметра релятивiзму у її центрi, при якому порушується стiйкiсть за
рахунок ефектiв загальної теорiї вiдносностi.

Ключовi слова: виродженi карлики, кулонiвськi взаємодiї, ефекти загальної те-
орiї вiдносностi, стiйкiсть карликiв, максимальна маса, критичне значення пара-
метра релятивiзму.
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