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Variation of resonant properties of the system liquid – structure caused by changes of
distribution of normal frequencies is under consideration. It was shown that different
types of mobility of carrying body (translational or rotational motion with different types
of constraints) causes growth of normal frequencies, which correspond to antisymmetric
oscillations of a liquid free surface, while the rest of frequencies do not change. General
arrangement of normal frequencies, which corresponds to the case of immovable reservoir,
is considerably violated. In this case some new types of internal resonances in liquid –
structure systems are manifested. Two basic problems with redistribution of sequence of
normal frequencies were investigated, namely, parametric resonance of movable in transla-
tional direction cylindrical reservoir in the Faraday generalized problem and forced motion
of liquid in cylindrical reservoir on pendulum with different lengths of suspension. Some
general regularities of development of dynamical processes in these systems are discussed.
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1. Introduction

Recent investigation of nonlinear problems of dynamics of structures with free surfaced liquid showed
considerable change of dynamical properties of system behavior in the case of combined motion of
the system [1, 2]. These investigations showed that even important part of linear properties of such
systems changes, because normal frequencies of the system in combined motion and in gives motion
of the carrying body are different. Majority of the present investigations are done for reservoirs,
which either immovable or perform given motion. Few investigations are performed for systems, when
carrying body performs rotational motion. However recent investigations showed [1, 2] that namely in
the case of rotational motion of the carrying body considerable difference between cases of specified
and combined motion of the carrying body occurs.

In the present article we explain main differences in manifestation of dynamical properties between
the cases of specified and combined motion of the carrying body. For confirmation of these ideas
we consider two examples of combined motions of free surfaced liquid and carrying body, namely,
the generalized Faraday problem about parametric resonance of oscillations of liquid free surface on
oscillating in vertical direction of cylindrical reservoir, which motion in horizontal direction is not fixed,
and angular motion of cylindrical reservoir on pendulum suspension with different lengths.

The main result of analysis of dynamical behavior of these systems make it possible to draw con-
clusion that in the case of combined motion of the system usual distribution of frequencies, peculiar

48 c© 2015 Lviv Polytechnic National University
CMM IAPMM NASU



Effect of combine motion 49

to the case of immovable or movable according to the specified law carrying body, is violated con-
siderable. If we arrange traditionally frequencies in ascending order, both magnitudes of frequencies
and arrangement of modes of motion of a liquid free surface are different in the case of specified and
combined motions.

2. General questions of effect of combined character of system motion on distribution
of frequencies

Let us make use of the system of equations for combined motion of free surfaced liquid and movable
carrying body [1]. However, we restrict ourselves only by linear system of equations, because now we
focus our attention only on resonant properties of the system. So, we write down the linear system
of ordinary differential equations relative to amplitude of the first normal mode a1, one parameter of
translational motion of the reservoir ε and one parameter α2 of rotational motion of the carrying body
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Here coefficients αv1, B
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11 are determined from normal modes of oscillations and the
Stokes-Zhukovskiy potential [1], ρ is liquid density, Mr and Ml are masses of reservoir and liquid
correspondingly, I11

res is the component of inertial tensor of reservoir, which corresponds to inclination
relative to angle α2, hr and hl are displacements of mass centers of reservoir and liquid relative to
position of undisturbed free surface of liquid. These equations include only antisymmetric normal
mode (with circumferential number m = 1) with amplitude a1, because virtual masses B1

1 and virtual
moments of inertia F 1

2 for all normal modes with m 6= 1 are vanish. Therefore. there interaction with
translational or rotational motion of the reservoir is absent.

If we analyze every equation of the system (1)–(3) separately, we can find three partial frequencies
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Let us note that it is useful to analyze these results from point of view of the presence of recov-
ering force in free oscillations of uncoupled system. Since gravity is present, liquid tries to pass into
equilibrium state. Under the presence of pendulum suspension again gravity promotes returning of the
inclined reservoir to equilibrium position. At the same time for translational motion of the reservoir
recovering force is absent, therefore, the corresponding partial frequency is zero. This considerably
changes situation of translational motion of carrying body and motion of carrying body on pendulum
suspension.

We consider two examples of system combined motion. In the first case we study general cases
of behavior of the system, when carrying body can perform translational motion. In this case only
equations (1) and (2) are sufficient and we can state α=0. In the second case we consider angular
motion of the carrying body on pendulum suspension. Only equations (1) and (3) are necessary, while
ε = 0.
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Combined motion of the system in translational motion will occurs with two normal frequencies
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1− ρ(B1
1)2

Mr +Ml

; ωNε = 0.

So, one frequency does not change, however another one, which corresponds to liquid sloshing,
increases. This variation of frequencies completely corresponds to theorem about distribution of normal
and partial frequencies, which states that normal frequencies should locate outside the segment, which
is bounded by partial frequencies [3]. Taking into account that frequency is always nonnegative the
frequency ωNε = 0 cannot decrease. Numerical and qualitative analysis of variation of normal frequency
for liquid shows that only for ratio of mass of reservoir to mass of liquid 50 or greater one can neglect
changes of frequencies caused by mobility of reservoir in its translation motion. However this ratio
of masses is too far from engineering practice, when usually mass of liquid exceeds mass of reservoir
Mr < Ml.

At the same time position of other normal frequencies for m 6= 1 will not change. So, potential
of new internal resonances appear and arrangement of frequencies, which corresponds to different
circumferential numbers, can change.

If we analyze the case of combined motion of reservoir on pendulum suspension with free surface
liquid on the basis of the system of motion equations (1)–(3) (in this case we can state ε = 0 and miss
the equation (2)), we again get two new frequencies, which correspond to normal oscillations. Their
distribution will be

ωNα 6 ωpα < ωpa 6 ωNa .

Since normal frequencies for other circumferential numbers (m 6= 1) will not change in this case new
internal resonances can take place and arrangement of normal frequencies, corresponding to different
values of m will be different for cases of combined motion of the system and for motion of the system
when motion of the carrying body is given in advance.

Remark. it is worth noting that at first sight these results contradict with well-known theorem
of analytical mechanics, which states that in the case when we remove constraint (provide potential
of motion to carrying body) normal frequency of liquid should decrease. However this is not so. If we
remove constraint ε = 0 or α2 = 0 the system performs motion without external loading. In this case
new constrains, which are equivalent to laws of conservation of linear (for α2 = 0) and angular (ε = 0)
momentums, are superimposed on the system. It is interesting to note also that degree on restriction
of motion of the constraint, connected with conservation of linear momentum is higher that in the case
of immovable reservoir. This is confirmed that normal frequency of this motion is greater than partial
frequency.

Let us confirm the above described results by numerical examples in the case of translational and
rotational motion of the carrying body.

3. Numerical example. Translational motion of the carrying body

Let us consider the generalized Faraday problem. Similar to the classical Faraday problem reservoir
performs vertical motion according to the given harmonic law εz = Hz cos(pt), but in contrast to the
classical case reservoir has supplementary degree of freedom and can perform motion in the horizon-
tal direction coupled with motion of a liquid free surface (Fig. 1). In contrast to previously studied
problems we consider the case when due to combined character of motion the normal frequency corre-
sponding to circumferential number m = 1 corresponds with the frequency of mode, which correspond
to the circumferential number m = 0 (which is impossible for immovable reservoir).
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Fig. 1. Scheme of the generalized
Faraday problem with potential of
horizontal motion of the reservoir.

Let us consider circular cylindrical reservoir of radius R = 1 m
vertical longitudinal axis. Reservoir is filled by liquid with filling
depth H = 0.5m̃. For this reservoir partial frequency for the first
antisymmetric mode (m = 1) is ωp1 = 3.6216 Hz and for the first
axisymmetric mode (m = 1) it is ωp0 = 5.9995 Hz. It was found
that for Mr = 0.038Ml the for combined motion system possesses
internal resonance, i.e., ωN1 = ωN0 . For comparison we consider the
case when Mr = 0.7Ml, in this case we have no internal resonance
and ωN1 = 0.77ωN0 . Initial state of liquid is specified in the following
way a1(0) = 0.01R. Motion in vertical direction is performed with
amplitude Hz = 0.01R, and frequency p = 2ωN1 . For comparison we
show amplitudes of oscillation of liquid on tank walls for resonant
(Fig. 2) and non-resonant (Fig. 3) cases.

Fig. 2. Amplitudes on tank walls. Resonance.

As it is seen from Fig. 2 the presence of internal resonance results in considerable disturbance of high
frequency modes. This is connected with essential contribution of the first axisymmetric normal mode,
which defines intensity of energy exchange between normal modes in nonlinear range of excitation.
In this case amplitude of the mode m = 1 is excited considerably because of resonance effect. On
the absence of internal resonance (Fig. 3) antisymmetric harmonic is mainly excited and amplitude
of the mode for m = 0 remains to be small. Therefore, considerable energy is focused mainly in the
mode m = 1, which promote greater amplitudes of perturbations on tank walls and because of small
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Fig. 3. Amplitudes on tank walls. No resonance.

perturbations of the mode m = 0 amplitudes of high frequency modes are excited weakly in comparison
with the case of resonance conditions.

Graphs Fig. 4 and 5 show peculiarities of horizontal motion of reservoir, which according to con-
servation of momentum occurs in antiphase to antisymmetric oscillations of liquid with a free surface.
Under the absence of internal resonance effect of antiresonance is manifested (Fig. 5).

The described character of oscillations of liquid in reservoir is confirmed also by graphs of frequency
spectrum of liquid free surface, shown in Fig. 6 and 7. On the absence of internal resonance (Fig. 7)
main frequency dominates, however in the case of resonance process has multi-frequency character
(Fig. 6), because simultaneously both parametric and forced mode of oscillations is manifested.

It is necessary to note that internal resonant for translational motion of the carrying body is
manifested for great difference of masses of liquid and reservoir. So, practical significance of this effect
cannot be frequently met.

4. Numerical example. Rotational motion of the carrying body

In contrast to translational motion of reservoir internal resonance in the case when carrying body
performs rotational motion of pendulum suspension is occur for variation of parameters, which are
frequently met in practice.

Let us consider the problem of dynamics of cylindrical reservoir with liquid on pendulum suspension
under periodic harmonic loading. Initially the system is at rest state. Since suspension point is
immovable, only reservoir performs only rotational motion. We consider the case when Ml = 0.25Mr .
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Fig. 4. Horizontal motion of reservoir. Resonance.

We supplemented the dynamical model by the generalized damping according to the approach [4]. The
problem is solved in combined statement.

Initially let us study arrangement of partial and normal frequency in the case of system combined
motion of reservoir with suspension length l = R (Fig. 8).

We denote partial frequencies with upper index *, normal frequencies are given without upper
index. Lower index 0 corresponds to oscillations of the system like physical pendulum, index 1 and 2
correspond to normal modes with circumferential number m = 1 and m = 0. As it is seen from this
diagram normal frequencies considerably change in comparison with partial frequencies. Especially
this change is great in the case for m = 1. Otherwise for m = 0 partial and normal frequencies coin-
cide. Investigations showed that depending on suspension length normal frequency for circumferential
number will change from its partial value, which corresponds to l → ∞, to arbitrarily great value,

which corresponds to l → l∗ = −Mrhr +Mlhl

Mr +Ml
, where l∗ is position of the system mass center. On

this increase ω1 can coincide with frequencies, which correspond to m 6= 1, which can be considered as
sequence of internal resonances. For example for l = 3.08R we get that ω1 = ω2, so for the selected sus-
pension length we have internal resonance of the first antisymmetric and axisymmetric normal modes.
Let us analyze the case, shown in Fig. 8 for l = R. In this case normal oscillations with m = 1 loss role
of the first resonance and become the third resonant frequency (frequency for m = 2 becomes now the
lowest). It is evident to expect that resonance with the frequency of the first antisymmetric normal
mode will manifest not so sharply as in the case of considerably great lengths of suspension or in the
case of translational motion of the carrying body,
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Fig. 5. Horizontal motion of reservoir. No resonance.

Numerical results showed that resonance for ω0 is manifested sharply, however the resonance for
partial frequency ω∗

1 is absent at all. For ω1 for l = r is manifested weakly. because it is not the main
resonant frequency.

Let us show development of dynamical processes for internal resonance ω1 = ω2 (l = 3.08R). In
this case we get the following variation of amplitude of xisymmetric (Fig. 9) normal modes in time.

To analyze the reason of rather specific slow development of resonance we perform spectrum analysis
in the system, Fig. 10 corresponds to frequency close to resonance and Fig. 11 corresponds to resonance
free domain.

As it is seen from figures in the case of internal resonance in contrast to resonance free mode of
motion there are components of spectrum in aggregate interaction of axisymmetric mode with other
component of the system, which are close to resonant frequency. Finally we can state that there
is frequency excitation in resulting generalized force, which is created by nonlinear terms, therefore,
resonance is developed. However its development is very slow because for axisymmetric mode of motion
there is no means to cause its oscillations by either translational or rotational motion of carrying body.

5. Conclusions

We characterize differences in manifestation of dynamical properties between the cases of specified and
combined motion of the carrying body with free surfaced liquid.

The main result of analysis of dynamical behavior of these systems make it possible to draw con-
clusion that in the case of combined motion of the system usual distribution of frequencies, peculiar
to the case of immovable or movable according to the specified law carrying body, is violated con-
siderable. If we arrange traditionally frequencies in ascending order, both magnitudes of frequencies
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Fig. 6. Frequency spectrum. Resonance.

Fig. 7. Frequency spectrum. No resonance.
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Fig. 8. Arrangement of partial and normal frequencies for angular motion of the carrying body.

Fig. 9. Amplitude of the first axisymmetric normal mode.

Fig. 10. Frequency spectrum in the case of internal resonance.

Fig. 11. Frequency spectrum in the case of absence of internal resonance.

and arrangement of modes of motion of a liquid free surface are different in the case of specified and
combined motions. Frequencies of antisymmetric normal modes considerably depends on manner and
parameters of reservoir fixing and for different ration of masses of liquid and carrying body can change
in such that their changing can violate usual arrangement of frequencies and for some parameters
internal resonances can happen. It was shown that changes of frequencies is in good agreement with
theorems about changes of frequencies, known from analytical mechanics and theory of oscillations.

For confirmation of these ideas we consider two examples of combined motions of free surfaced
liquid and carrying body, namely, the generalized Faraday problem about parametric resonance of
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oscillations of liquid free surface on oscillating in vertical direction of cylindrical reservoir, which
motion in horizontal direction is not fixed, and angular motion of cylindrical reservoir on pendulum
suspension with different lengths. For these system we showed peculiarity of development of internal
resonance.

It was shown also that usual investigation of dynamics of liquid with a free surface in immovable or
movable according to the given law carrying body is rather narrow and incomplete class of manifestation
of nonlinear properties of fluid–structure interaction.
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Вплив сумiсностi руху на змiну резонансних властивостей
в задачi про коливання рiдини з вiльною поверхнею
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Вивчається змiна резонансних властивостей системи рiдина – конструкцiя, зумовлена
змiною розподiлу власних частот коливань. Показано, що рiзнi типи рухомостi тiла,
що несе рiдину, (поступальний або обертальний рух з рiзними в’язями) спричиняють
збiльшення величин власних частот, якi вiдповiдають антисиметричним коливанням
вiльної поверхнi рiдини, а iншi частоти залишаються незмiнними. Звичайний роз-
подiл власних частот, який вiдповiдає випадку нерухомого резервуару суттєво по-
рушується. В цьому випадку проявляються деякi новi типи внутрiшнiх резонансiв
в системах рiдина – конструкцiя. Були дослiдженi двi базовi задачi з перерозподi-
лом порядку власних частот: параметричний резонанс у рухомому в поперечному
напрямку цилiндричному резервуарi в узагальненiй задачi Фарадея i в вимушених
коливаннях рiдини в цилiндричному резервуарi на маятникову пiдвiсi з рiзними дов-
жинами пiдвiсу. Обговорюються деякi загальнi закономiрностi развитку динамiчних
процесiв у цих системах.

Ключовi слова: нелiнiйна динамiка рiдини, коливання вiльної поверхнi, сумiсний
рух, перерозподiл власних частот
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