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A system of electrons in a metal slab, which is described by the jellium model, is considered.
The potential that forms a surface of the slab is modeled by the infinite square well
potential. By using some approximations, the analytical expressions for effective inter-
electron interaction inside the slab and outside it are obtained.
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1. Introduction

The development of nanotechnologies involving deposition of metals on substrates requires further
theoretical development and understanding of effects related to the electronic structure of nanoclusters
and nanofilms. If the size of nanostructure is comparable with the corresponding electron Fermi
wavelength, various physical properties are size dependence [1-3]. For metal nanofilms, many physical
quantities, such as thermodynamic stability, electrical resistivity, superconducting critical temperature,
the perpendicular upper critical field, surface adhesion, thermal-expansion coefficient, surface free
energy, surface diffusion barriers, surface adsorption energy, work function, etc., oscillate as a function
of film thickness [4].

The main problem of the statistical theory of such systems is the calculation of thermodynamic and
statistical distribution functions. Using the functional integration method for such calculations allows
us to get expansions for these characteristics, the basis for the construction of which is the effective
interaction potential [5,6]. This potential satisfies the integral equation of convolution, analytical
solving of which is a difficult problem [7].

In Refs. [8-10], the problem of determining screened potentials of electron interaction in such thin
films is considered. This problem is solved with neglecting of frequency dispersion [8] or spatial disper-
sion [9] of screened potential. In Ref.[10], analytical expressions for the screened potentials of classic
systems such as thin films are found within constant density approximation.

In this paper, the problem of determining the effective inter-electron interaction for metal slab in
the quantum case is considered. The analytical expressions for this interaction both in the slab and,
in contrast to Ref.[7], beyond it. In the case of increasing of the slab thickness, obtained results go
over to results of Ref. [12].

2. Model

We consider a metal slab with the thickness L, which is laid along the z axis, and two sides with the
area S (S — oo) are parallel to the xy plane. We consider that one side of slab coincides with the zy
plane, i.e., is specified by the equation z = 0, and the other parallel side is described by the equation
z=1L.
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VA This slab is considered within the jellium model. Then the elec-
tron motion in a plane that is parallel to the xy plane is free, and the
motion along the z axis is determined by the potential V'(z), which
depends on the normal to the slab sides coordinate of the electron
only. This potential is modelled by the infinite square well potential

(see Fig. 1):
0, 0<z<lL,
V(Z)_{ o0, 2<0, 2> L. (1)

The single-particle wave functions and the corresponding energies of

0 L ; the electron in the field of this potential can be written as
Fig. 1. 1 4 th‘ﬁ
\Pk“,a(r‘bz):ﬁe I H(')DOZ(Z)? (kH)_—m"i_ga, (2)

where r|| is the two-dimensional coordinate of the electron in the zy plane, k| is the wave vector of
the electron in the zy plane. The functions ¢, (z) satisfy the one-dimensional stationary Schrédinger
equation

o 4 V() ) = aralc)
and have the form

valz) = \/%Sin(az) 0(z)0(L — z), (3)

where m is the electron mass, 8(z) is the Heaviside step function, e, = h;mz, a="n=12...

3. Effective inter-electron interaction

3.1. Integral equation for effective inter-electron interaction

In the case of low temperatures, the two-dimensional Fourier transform of the effective inter-electron
interaction is a solution of the integral equation [11,12]

+oo  +o0o
olal=1,22) = vlaler = 22) + g1 / dz [dvlales — Ml )glal' 20), (@

where 3 is the reciprocal of the thermodynamic temperature, v(g|z; — 23) = %e_q‘zl_”‘ is the two-
dimensional Fourier transform of the Coulomb interaction, 9(q|z, 2’) is the two-particle correlator in
the case of low temperatures,

M(qlz, 2') Z Ao 02 ()i, (2)Pary (2)0h, (2 )P0y (21), (5)
aq,02
al,ag ZHal,ag kqu
]

e(ﬂ - Ea1 (kH)) - e(ﬂ - Eaz (kH - Q))
Eo, (k) — Eay (k) — q) ’

oy 0 (ki q) =
1 is the chemical potential.
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In the mirror electron scattering approximation [12] Ay, a,(¢) & Ay 0, (q), taking the summation
over ap we get

L2 2m S
M(q|z,2") = ZI%

B R or
k2 —a? ]{72 _ Oé2
x |1— 1—4Fq2 e<1—4 qu ) 0(kp — ) d(z — 2'), (6)
where kp is the magnitude of the Fermi wave vector, kg = —V2)L:n“

For further simplify the expression (6), we use the constant density approach [12]. Then the integral
equation (4) is greatly simplified,

L
9(qlz1, 22) = v(qlz1 — 22) 47Te /dz v(qlz1 — 2)9(qlz, 22), (7)
0

where

3.2. Analytical solution of integral equation for effective inter-electron interaction

The integral equation (7) can be solved analytically. For this purpose, we reduce this integral equation
to a boundary value problem. Let us differentiate twice this integral equation with respect to variable
z1. Taking into account that

dv(qlz1 — = )
% = —qv(qlz1 — 22) sign(z1 — 22),
Z1
d?v(qlz1 — 2
% = P v(qlz1 — z2) — 4me?8(21 — 22),
21
we get
dg(q|z1, 2 ]
w = —qv(qlz1 — 22) sign(z1 — 22)
Z1
g) |
% .
+ 47Teqz q/dz v(gler — 2)sign(z1 — 2) g(ql2, 22), 8)
0
d2
[@ — ¢ = *(q)6(21)0(L — z1)] gqlz1, 20) = —4me?d(z; — 23). (9)
1

For solving the differential equation (9), we divide the domain of normal coordinates of two electrons
21z into nine domains, as it is shown in Fig. 2, and consistently we find solution in the each domain.
In the domain I, the differential equations (9) takes the form
d2

<F — Q2> glqlz1, 20) = —4me®d(z1 — z3), 0< 2z < L, 0< 2 < L, (10)
2]
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where Q2 = ¢® + »%(q). From Eq. (8) we obtain two following boundary conditions

d

<d—zl - Q> Q(Q|Zlaz2)
d

<d—21 + Q> g(qlz1, 22)

A solution of the boundary value problem (10)—(12) is found analytically and it has the form

z1=0

z1=L

2 2
9(qlz1, 22) = ene ! 3 e @zl 4 (—Q — q> el
Q 4 _ (@) o—2QL Q+q
Q+q

Q= 4(Qrte) | ~QEL-21-2)
+ e Z1TZ2 +e Z1 22) .
Q+q(

In the domain II, the differential equation (9) has the form

d2
(@ B 2) glalz1, z2) = —4me?d(21 — 2), 21 <0, 22 <0
1

From Eq. (8) we get the boundary condition

d
<d—zl - Q> Q(Q|Zla Z2)

= —4me?e??, 2 0.
21=0

(11)

(12)

(13)

(14)

(15)

With this condition, the finiteness condition of solution, and the continuity condition of solution at

the origin, the solution of the boundary value problem (14), (15) is found analytically,

27e?

glalzr, ) = o (el - et )

Q—q,—2QL
dme® 1+ Qtq° ed(z1+22)

+
Q+q Q-q\? ._20L
1_(Q+q) e 20
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In the domain III, the differential equations (9) takes the form

d2
<@ - q2> glqlz1, ) = —4me*8(z1 — ), 21> L, 2 > L. (17)
1

From Eq. (8) we obtain the boundary condition

<i + Q> 9(qlz1, 22)

& = —dre?etim2) o > L (18)

z1=L

With this condition, the finiteness condition of solution, and the continuity condition of solution at
the point (L, L), the solution of the boundary value problem (17), (18) is found analytically,

2re?

<e—q\zl—zg\ _ e—q(zl—i-zg—ZL)) +

2 1+ %e_w’;

9(qlz1, 22) =

+47T€
Q+q Q-¢\% 201
1- (&) e

e—q(zl+zz—2L) (19)

In the domain IV, the differential equation (9) has the form

d2
<@_ 2) 9(qlz1,22) =0, 21 <0, 0< 22 < L. (20)
i

From Eq. (8) we get the boundary condition

(i - Q> 9(q|z1, 22)

=0, 0< <L, 21

21=0

which is satisfied automatically for all solutions of the differential equations (20). With the finiteness
condition of solution, and the continuity condition of solution at z; = 0, the solution of Eq.(20) is
found analytically,

g(qlz1,22) =

2
_ 47]'6 1 . eqzl—sz+@eqzl_Q(2L—22) . (22)
Q+q (Q—q) -2
1— (L) e 20t
Q+q

Q+q
In the domain V| the differential equations (9) takes the form

d2
<@ B q2> glalz1,2) =0, 21>L, 0< =< L. (23)
1

From Eq. (8) we obtain the boundary condition

i—i— (qlz1, z2)
4z, q | glqjz1, 22

which is satisfied automatically for all solutions of the differential equations (23). With the finiteness
condition of solution, and the continuity condition of solution at z; = L, the solution of Eq.(23) is
found analytically,

=0, 0<2<L, (24)
z1=L

g(qlz1,22) =

2
_ Sﬂ.—fq < 1)2 |:e—q(21—L)—Q(L—Z2) + Q — qe—q(z1—L)—Q(L+zz) . (25)
1 — @ e_2QL
Q+q

Q+q
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In the domain VI, the differential equation (9) has the form

d2
<@_Q2> g(q|z1722):0, 0<Zl <L, 29 >L
1

From Eq. (8) we get two following boundary conditions

d
(d—zl - Q> Q(Q|217 22)

L) sl )
dzl q ) g\g|z1, 22

A solution of the boundary value problem (26)—(28) is found analytically and it has the form

21=0

=2qv(q|L — z3), 22> L.

z1=L

2
dme 1 [e—Q@—zn—q(zQ—L) I Rl JC (AR )

(Q|Z1722) )
Q+q Q-4\? . —20L Q+q

and it is continuous at the point z; = L.
In the domain VII, the differential equations (9) takes the form

d2
(@ - q2> 9(qlz1,22) =0, 2 <0, 22> L.
1

From Eq. (8) we obtain the boundary condition

<£ - q> 9(qlz1, 22)

z1=0

(26)

(29)

(30)

(31)

which is satisfied automatically for all solutions of the differential equations (30). With the finiteness
condition of solution, and the continuity condition of solution at z; = 0, the solution of Eq.(30) is

found analytically,

2Q QL

dme Q+q etz1—a(22—L)

T Q+t4 Q o—2QL '
1 (&) e

) h

2

(Q|Z17 252

In the domain VIII, the differential equation (9) has the form

d2
< Q2> 9(qlz1,22) =0, 0<2z <L, 22<0.

From Eq. (8) we get the boundary condition

(% - q> 9(qlz1, 22)

i—k (q|z1, 22)
dz q | glq|z1, 22

A solution of the boundary value problem (33)—(35) is found analytically and it has the form

=—2q V(Q’ - 22)7 29 <0,

21=0

= O, 29 < 0.
z1=L

2
dme 1 . |:e_Qzl+qz2 + x4 Q q Q(zl 2L)4qz2
Q+q1_<%) 0—2QL Q+a

9(qlz1, 22) =

)
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and it is continuous at the point z; = 0.
In the domain IX, the differential equations (9) takes the form

d2
(@ - q2> glglzr,22) =0, 21> L, 2 <0. (37)
1

From Eq. (8) we obtain the boundary condition

) sl =)
dzl q ) g\gqiz1, 22

which is satisfied automatically for all solutions of the differential equations (37). With the finiteness
condition of solution, and the continuity condition of solution at z; = L, the solution of Eq. (37) is
found analytically,

=0, 2,<0, (38)
z1=L

2Q —QL
dmre? e
9(dlz1, 22) = G et (39)
Q+qq_ (Q—q) o—2QL
Q+q

It should be noted that increasing the thickness of the slab to infinity leads to disappearance of the
domains III, V, VI, VII, and IX, and the effective inter-electron interaction in the domains I, II, IV,
and VIII are transformed to the well-known expressions [12],

WV

g(qlz1 > 0,29

)

2me? Q—q
0) = —Qlz1—22] _Q(Zl+22):|
=7k o+

2
g(q|zl < 07z2 < 0) — 2me |:e_Q|21—22| _ MeQ(21+Z2):| ,
q Q+q
B 47re?
Q+q

Q(Q|z1 <0,20 2 0) eqzl_QZQ

9

47re?
g(qlz1 = 0,22 <0) = me—@zqu;

4. Conclusion

The problem of finding of the effective inter-electron interaction for the metallic slab is considered.
This interaction is a solution of the integral equation, which in general should be solved numerically.
However, by using the constant density approach for |¢,(2)|?, the integral equation can be reduced
to nine boundary value problems that can be solved analytically. In the paper, these boundary value
problems are solved analytically, and the obtained solutions are continuous at the boundary edges of
the domains. Forms of these solutions shows that the image forces relative the planes, which limit the
metallic slab, z = 0, and z = L, are taken into account in the effective inter-electron interaction.
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