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A system of electrons in a metal slab, which is described by the jellium model, is considered.
The potential that forms a surface of the slab is modeled by the infinite square well
potential. By using some approximations, the analytical expressions for effective inter-
electron interaction inside the slab and outside it are obtained.
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1. Introduction

The development of nanotechnologies involving deposition of metals on substrates requires further
theoretical development and understanding of effects related to the electronic structure of nanoclusters
and nanofilms. If the size of nanostructure is comparable with the corresponding electron Fermi
wavelength, various physical properties are size dependence [1–3]. For metal nanofilms, many physical
quantities, such as thermodynamic stability, electrical resistivity, superconducting critical temperature,
the perpendicular upper critical field, surface adhesion, thermal-expansion coefficient, surface free
energy, surface diffusion barriers, surface adsorption energy, work function, etc., oscillate as a function
of film thickness [4].

The main problem of the statistical theory of such systems is the calculation of thermodynamic and
statistical distribution functions. Using the functional integration method for such calculations allows
us to get expansions for these characteristics, the basis for the construction of which is the effective
interaction potential [5,6]. This potential satisfies the integral equation of convolution, analytical
solving of which is a difficult problem [7].

In Refs. [8–10], the problem of determining screened potentials of electron interaction in such thin
films is considered. This problem is solved with neglecting of frequency dispersion [8] or spatial disper-
sion [9] of screened potential. In Ref. [10], analytical expressions for the screened potentials of classic
systems such as thin films are found within constant density approximation.

In this paper, the problem of determining the effective inter-electron interaction for metal slab in
the quantum case is considered. The analytical expressions for this interaction both in the slab and,
in contrast to Ref. [7], beyond it. In the case of increasing of the slab thickness, obtained results go
over to results of Ref. [12].

2. Model

We consider a metal slab with the thickness L, which is laid along the z axis, and two sides with the
area S (S → ∞) are parallel to the xy plane. We consider that one side of slab coincides with the xy
plane, i.e., is specified by the equation z = 0, and the other parallel side is described by the equation
z = L.
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Fig. 1.

This slab is considered within the jellium model. Then the elec-
tron motion in a plane that is parallel to the xy plane is free, and the
motion along the z axis is determined by the potential V (z), which
depends on the normal to the slab sides coordinate of the electron
only. This potential is modelled by the infinite square well potential
(see Fig. 1):

V (z) =

{
0, 0 < z < L,
∞, z 6 0, z > L.

(1)

The single-particle wave functions and the corresponding energies of
the electron in the field of this potential can be written as

Ψk||,α(r||, z) =
1√
S
eik||r||ϕα(z), Eα(k||) =

~
2k2||
2m

+ εα, (2)

where r|| is the two-dimensional coordinate of the electron in the xy plane, k|| is the wave vector of
the electron in the xy plane. The functions ϕα(z) satisfy the one-dimensional stationary Schrödinger
equation [

− ~
2

2m

d2

dz2
+ V (z)

]
ϕα(z) = εαϕα(z)

and have the form

ϕα(z) =

√
2

L
sin(αz) θ(z) θ(L− z), (3)

where m is the electron mass, θ(z) is the Heaviside step function, εα = ~2α2

2m , α = πn
L , n = 1, 2, . . ..

3. Effective inter-electron interaction

3.1. Integral equation for effective inter-electron interaction

In the case of low temperatures, the two-dimensional Fourier transform of the effective inter-electron
interaction is a solution of the integral equation [11,12]

g(q|z1, z2) = ν(q|z1 − z2) +
β

SL2

+∞∫

−∞

dz

+∞∫

−∞

dz′ν(q|z1 − z)M(q|z, z′)g(q|z′, z2), (4)

where β is the reciprocal of the thermodynamic temperature, ν(q|z1 − z2) =
2πe2

q e−q|z1−z2| is the two-

dimensional Fourier transform of the Coulomb interaction, M(q|z, z′) is the two-particle correlator in
the case of low temperatures,

M(q|z, z′) = L2

β

∑

α1,α2

Λα1,α2
(q)ϕ∗

α1
(z)ϕα2

(z)ϕ∗
α2
(z′)ϕα1

(z′), (5)

Λα1,α2
(q) =

∑

k||

Πα1,α2
(k||,q),

Πα1,α2
(k||,q) =

θ
(
µ− Eα1

(k||)
)
− θ
(
µ− Eα2

(k|| − q)
)

Eα1
(k||)− Eα2

(k|| − q)
,

µ is the chemical potential.
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In the mirror electron scattering approximation [12] Λα1,α2
(q) ≈ Λα1,α1

(q), taking the summation
over α2 we get

M(q|z, z′) = −L
2

β

2m

~2

S

2π

∑

α

|ϕα(z)|2

×


1−

√

1− 4
k2F − α2

q2
θ
(
1− 4

k2F − α2

q2

)
 θ(kF − α) δ(z − z′), (6)

where kF is the magnitude of the Fermi wave vector, kF =
√
2mµ
~

.
For further simplify the expression (6), we use the constant density approach [12]. Then the integral

equation (4) is greatly simplified,

g(q|z1, z2) = ν(q|z1 − z2)−
κ
2(q)

4πe2

L∫

0

dz ν(q|z1 − z)g(q|z, z2), (7)

where

κ
2(q) = 4πe2

2m

~2

1

2πL

∑

α


1−

√

1− 4
k2F − α2

q2
θ
(
1− 4

k2F − α2

q2

)
 θ(kF − α).

3.2. Analytical solution of integral equation for effective inter-electron interaction

The integral equation (7) can be solved analytically. For this purpose, we reduce this integral equation
to a boundary value problem. Let us differentiate twice this integral equation with respect to variable
z1. Taking into account that

dν(q|z1 − z2)

dz1
= −q ν(q|z1 − z2) sign(z1 − z2),

d2ν(q|z1 − z2)

dz21
= q2 ν(q|z1 − z2)− 4πe2δ(z1 − z2),

we get

dg(q|z1, z2)
dz1

= −q ν(q|z1 − z2) sign(z1 − z2)

+
κ
2(q)

4πe2
q

L∫

0

dz ν(q|z1 − z) sign(z1 − z) g(q|z, z2), (8)

[
d2

dz21
− q2 − κ

2(q)θ(z1)θ(L− z1)

]
g(q|z1, z2) = −4πe2δ(z1 − z2). (9)

For solving the differential equation (9), we divide the domain of normal coordinates of two electrons
z1z2 into nine domains, as it is shown in Fig. 2, and consistently we find solution in the each domain.

In the domain I, the differential equations (9) takes the form

(
d2

dz21
−Q2

)
g(q|z1, z2) = −4πe2δ(z1 − z2), 0 < z1 < L, 0 6 z2 6 L, (10)
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Fig. 2.

where Q2 = q2 + κ
2(q). From Eq. (8) we obtain two following boundary conditions

(
d

dz1
− q

)
g(q|z1, z2)

∣∣∣∣
z1=0

= 0, 0 6 z2 6 L, (11)

(
d

dz1
+ q

)
g(q|z1, z2)

∣∣∣∣
z1=L

= 0, 0 6 z2 6 L. (12)

A solution of the boundary value problem (10)–(12) is found analytically and it has the form

g(q|z1, z2) =
2πe2

Q

1

1−
(
Q−q
Q+q

)2
e−2QL

[
e−Q|z1−z2| +

(
Q− q

Q+ q

)2

e−Q(2L−|z1−z2|)

+
Q− q

Q+ q

(
e−Q(z1+z2) + e−Q(2L−z1−z2)

)]
. (13)

In the domain II, the differential equation (9) has the form

(
d2

dz21
− q2

)
g(q|z1, z2) = −4πe2δ(z1 − z2), z1 < 0, z2 6 0. (14)

From Eq. (8) we get the boundary condition

(
d

dz1
− q

)
g(q|z1, z2)

∣∣∣∣
z1=0

= −4πe2eqz2 , z2 6 0. (15)

With this condition, the finiteness condition of solution, and the continuity condition of solution at
the origin, the solution of the boundary value problem (14), (15) is found analytically,

g(q|z1, z2) =
2πe2

q

(
e−q|z1−z2| − eq(z1+z2)

)
+

+
4πe2

Q+ q

1 + Q−q
Q+q e

−2QL

1−
(
Q−q
Q+q

)2
e−2QL

eq(z1+z2). (16)
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In the domain III, the differential equations (9) takes the form

(
d2

dz21
− q2

)
g(q|z1, z2) = −4πe2δ(z1 − z2), z1 > L, z2 > L. (17)

From Eq. (8) we obtain the boundary condition

(
d

dz1
+ q

)
g(q|z1, z2)

∣∣∣∣
z1=L

= −4πe2eq(L−z2), z2 > L. (18)

With this condition, the finiteness condition of solution, and the continuity condition of solution at
the point (L,L), the solution of the boundary value problem (17), (18) is found analytically,

g(q|z1, z2) =
2πe2

q

(
e−q|z1−z2| − e−q(z1+z2−2L)

)
+

+
4πe2

Q+ q

1 + Q−q
Q+qe

−2QL

1−
(
Q−q
Q+q

)2
e−2QL

e−q(z1+z2−2L). (19)

In the domain IV, the differential equation (9) has the form

(
d2

dz21
− q2

)
g(q|z1, z2) = 0, z1 < 0, 0 6 z2 6 L. (20)

From Eq. (8) we get the boundary condition

(
d

dz1
− q

)
g(q|z1, z2)

∣∣∣∣
z1=0

= 0, 0 6 z2 6 L, (21)

which is satisfied automatically for all solutions of the differential equations (20). With the finiteness
condition of solution, and the continuity condition of solution at z1 = 0, the solution of Eq. (20) is
found analytically,

g(q|z1, z2) =
4πe2

Q+ q

1

1−
(
Q−q
Q+q

)2
e−2QL

[
eqz1−Qz2 +

Q− q

Q+ q
eqz1−Q(2L−z2)

]
. (22)

In the domain V, the differential equations (9) takes the form

(
d2

dz21
− q2

)
g(q|z1, z2) = 0, z1 > L, 0 6 z2 6 L. (23)

From Eq. (8) we obtain the boundary condition

(
d

dz1
+ q

)
g(q|z1, z2)

∣∣∣∣
z1=L

= 0, 0 6 z2 6 L, (24)

which is satisfied automatically for all solutions of the differential equations (23). With the finiteness
condition of solution, and the continuity condition of solution at z1 = L, the solution of Eq. (23) is
found analytically,

g(q|z1, z2) =
4πe2

Q+ q

1

1−
(
Q−q
Q+q

)2
e−2QL

[
e−q(z1−L)−Q(L−z2) +

Q− q

Q+ q
e−q(z1−L)−Q(L+z2)

]
. (25)
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In the domain VI, the differential equation (9) has the form

(
d2

dz21
−Q2

)
g(q|z1, z2) = 0, 0 < z1 < L, z2 > L. (26)

From Eq. (8) we get two following boundary conditions

(
d

dz1
− q

)
g(q|z1, z2)

∣∣∣∣
z1=0

= 0, z2 > L, (27)

(
d

dz1
+ q

)
g(q|z1, z2)

∣∣∣∣
z1=L

= 2q ν(q|L− z2), z2 > L. (28)

A solution of the boundary value problem (26)–(28) is found analytically and it has the form

g(q|z1, z2) =
4πe2

Q+ q

1

1−
(
Q−q
Q+q

)2
e−2QL

[
e−Q(L−z1)−q(z2−L) +

Q− q

Q+ q
e−Q(L+z1)−q(z2−L)

]
, (29)

and it is continuous at the point z1 = L.
In the domain VII, the differential equations (9) takes the form

(
d2

dz21
− q2

)
g(q|z1, z2) = 0, z1 < 0, z2 > L. (30)

From Eq. (8) we obtain the boundary condition

(
d

dz1
− q

)
g(q|z1, z2)

∣∣∣∣
z1=0

= 0, z2 > L, (31)

which is satisfied automatically for all solutions of the differential equations (30). With the finiteness
condition of solution, and the continuity condition of solution at z1 = 0, the solution of Eq. (30) is
found analytically,

g(q|z1, z2) =
4πe2

Q+ q

2Q
Q+qe

−QL

1−
(
Q−q
Q+q

)2
e−2QL

eqz1−q(z2−L). (32)

In the domain VIII, the differential equation (9) has the form

(
d2

dz21
−Q2

)
g(q|z1, z2) = 0, 0 < z1 < L, z2 6 0. (33)

From Eq. (8) we get the boundary condition

(
d

dz1
− q

)
g(q|z1, z2)

∣∣∣∣
z1=0

= −2q ν(q| − z2), z2 6 0, (34)

(
d

dz1
+ q

)
g(q|z1, z2)

∣∣∣∣
z1=L

= 0, z2 6 0. (35)

A solution of the boundary value problem (33)–(35) is found analytically and it has the form

g(q|z1, z2) =
4πe2

Q+ q

1

1−
(
Q−q
Q+q

)2
e−2QL

[
e−Qz1+qz2 +

Q− q

Q+ q
eQ(z1−2L)+qz2

]
, (36)
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and it is continuous at the point z1 = 0.
In the domain IX, the differential equations (9) takes the form

(
d2

dz21
− q2

)
g(q|z1, z2) = 0, z1 > L, z2 6 0. (37)

From Eq. (8) we obtain the boundary condition

(
d

dz1
+ q

)
g(q|z1, z2)

∣∣∣∣
z1=L

= 0, z2 6 0, (38)

which is satisfied automatically for all solutions of the differential equations (37). With the finiteness
condition of solution, and the continuity condition of solution at z1 = L, the solution of Eq. (37) is
found analytically,

g(q|z1, z2) =
4πe2

Q+ q

2Q
Q+qe

−QL

1−
(
Q−q
Q+q

)2
e−2QL

e−q(z1−L)+qz2 . (39)

It should be noted that increasing the thickness of the slab to infinity leads to disappearance of the
domains III, V, VI, VII, and IX, and the effective inter-electron interaction in the domains I, II, IV,
and VIII are transformed to the well-known expressions [12],

g(q|z1 > 0, z2 > 0) =
2πe2

Q

[
e−Q|z1−z2| +

Q− q

Q+ q
e−Q(z1+z2)

]
,

g(q|z1 6 0, z2 6 0) =
2πe2

q

[
e−q|z1−z2| − Q− q

Q+ q
eq(z1+z2)

]
,

g(q|z1 6 0, z2 > 0) =
4πe2

Q+ q
eqz1−Qz2 ,

g(q|z1 > 0, z2 6 0) =
4πe2

Q+ q
e−Qz1+qz2 .

4. Conclusion

The problem of finding of the effective inter-electron interaction for the metallic slab is considered.
This interaction is a solution of the integral equation, which in general should be solved numerically.
However, by using the constant density approach for |ϕα(z)|2, the integral equation can be reduced
to nine boundary value problems that can be solved analytically. In the paper, these boundary value
problems are solved analytically, and the obtained solutions are continuous at the boundary edges of
the domains. Forms of these solutions shows that the image forces relative the planes, which limit the
metallic slab, z = 0, and z = L, are taken into account in the effective inter-electron interaction.
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Ефективний потенцiал мiжелектронної взаємодiї для металевої
плiвки

КостробiйП.П., МарковичБ.М.

Нацiональний унiверситет «Львiвська полiтехнiка»
вул. С. Бандери, 12, Львiв, 79013

Розглянуто систему електронiв у металевiй плiвцi, яка описується моделлю «желе».
Потенцiал, який формує поверхнi плiвки, змодельовано безмежно високою прямоку-
тною потенцiальною ямою. Використовуючи деякi наближення, отримано аналiтичнi
вирази для ефективного потенцiалу мiжелектронної взаємодiї як всерединi плiвки,
так i поза нею.

Ключовi слова: плiвка, ефективний потенцiал, кореляцiйна функцiя
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