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A horizontally layered elastic structure containing a homogeneous porous layer saturated
partly with gas and partly with water is considered. The paper is aimed at studying
of interaction of elastic waves, caused by local pulse source, with the structure. The
boundary-value problem describing the wave dynamics of the structure is formulated. A
mathematical model describing distributions of the gas and water in a pore space of the
porous layer depending of the amount of the gas accumulated in the layer is developed.
The problem is solved with the use of Fourier transform. It was established that wavefield
pattern on the free surface of the structure is dependent on amount of gas accumulated in
the porous layer. Quantitative measures relating the wavefield parameters on the struc-
ture’s free surface and the amount of gas accumulated in the porous layer are introduced.
The obtained results can be used to develop distance methods for accounting of amount
of natural gas accumulated in underground gas storage facilities built in aquifers.
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1. Introduction

Porous stratums of geological structures are often used for construction of underground natural gas
storage facilities [1]. If the storage is developed in an aquifer (a porous medium saturated with water),
the stratum is being saturated partly with gas and partly by water in its operational state. When
the storage is being filled or emptied, the boundary dividing its parts saturated with gas and water is
displacing along the vertical coordinate. As the elastic moduli of saturated porous media are dependent
on physical properties and thermodynamic state of the saturants, the porous layer should be considered
as a heterogeneous two-layer structure. The thicknesses of the layers and their elastic properties are
changed depending on amount of the gas accumulated in the layer. This can be used for developing of
distance methods for accounting of the gas accumulated in the layer with the use of acoustic methods.
So we come to the necessity of mathematical modeling and quantitative studying the interaction of
elastic waves with layered structures containing porous layers saturated with gas and water.

There are various aspects in studying of elastic waves in porous media — modeling of dynamics,
dispersion analysis of wave motion, wave velocity and attenuation, interference of elastic waves etc.

An approach, which is effectively used to describe dynamics of porous medium, is based on homog-
enization of microscopically heterogeneous body. Within this approach Gassmann derived relations |2],
which express the effective elastic properties of the porous saturated medium via the individual elastic
properties of the solid skeleton and the saturant. This approach is valid for sufficiently low frequen-
cies of wave motion, when mutual displacement of the skeleton and the fluid is negligible. Such, for
instance, are seismic waves arising in geological structure [3-5].
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Many authors studied wave-field pattern in layered structures. Particular interest in these researches
exists in geophysics, where the objects of study are layered rock structures [6]. The interest is stimulated
by practical problems of acoustic logging, detecting and identification of seismic sources, prediction of
tectonic earthquakes etc. To solve such problems in the case of piece-wise homogeneous horizontally-
layered structure so called matrix method was developed |7, 8|. By applying integral transforms, this
method enables to reduce the problem of interaction of elastic waves with the n-layered structure to
boundary value problem for n systems of ordinary differential equations. The systems are coupled via
contact conditions acting on the boundaries which divide adjacent layers.

In spite of large number of publications devoted to problems of wave dynamics in application to
geophysics of layered structures and wide utilization of the matrix method for solving of such problems,
the problems of interaction of elastic wave with layered structure containing porous layers saturated
with different fluids remain unstudied. In this paper we consider such a problem.

This paper is aimed on studying of interaction of elastic disturbances, caused by local pulse source,
with a semi-infinite layered structure containing a porous stratum saturated with gas and water. We
study patterns of wave interference on the free surface of the structure depending on the position of
gas-water interface in the porous layer. Obtained results can be used to develop distance methods
for accounting of amount of natural gas accumulated in underground gas storage facilities build in
aquifers.

2. Problem formulation

We consider the semi-infinite layered structure, consisting of three infinite elastic layers L to Ly and
elastic half-space Ly :

Lr={-0c0o<z; <00, —00<x9<00, 0<23<L—H},
Lip={-00o <2 <00, —oo<wy<oo, L—H<wx3<L—H+h},
Lrrr={-0c0<z1 <00, —co<zy<oo, L—H<x3<L—H+h},

Liv ={-c0 <21 <00, —00< a9 <00, L <3< 00}

Here z;, i = 1,2,3 stand for Cartesian coordinates, L > 0 is the depth of the porous stratum,
H > L stands for its thickness, h € [0, H] is the thickness of the layer saturated with gas.
Wave field in each layer satisfies three groups of relations of the theory of elasticity [9]:
equations of motion
— = < ) =1,2,3 1
Pagp3 8xj+pz,y (1)

elasticity relations
05 = 21a€f; + Al 0k10ij, (2)

and compatibility relations (in Cauchy form)

oL (0w O
=35 +87> )

Here p,, is mass density of elastic medium in a-layer (o« = I, II,111,1IV), uf, o5 €75 stand for Cartesian
components of displacement vector, stress tensor, and strain tensor correspondingly of a-layer, A\, and
e are elastic moduli (Lame coefficients) f& = f&(z1,x2, x3,t) stand for i-th Cartesian component of
body force in a-layer.

With the use of the relations (2) and (3) the equation (1) can be reduced to the hyperbolic system

of equations

82uf‘ 82uf‘ 0 oup
Pagm = Maaxkaxl Ok + (Ao + “O‘)a—xia—xl

O+ i (4)
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The surface x3 = 0 is free of traction

I _ I _ I _
037 23=0 0, 039 23=0 — 0, 039 23=0 0. (5)

We consider the interfaces between the layers as the boundary of ideal elastic contact, what can
written as

I I I T

U; ‘zg:LfH = U |13:L7H’ O3ilga=r—H — 93ilgg=L—H" (6)
1 o qII 1 T

U ‘zg,:L—H-i—h =Y ‘zg,:L—H-l—h’ O3 |ps=L—H+h — 93i |m3:L—H+h’ (7)
111 v 111 %

Ui |y, = Ui |y O3 |y, = O3i |pger, - (®)

According to the relations (2), (3) the stress components o§; in the relations (6)—(8) are considered
and the function of displacement components u'.

We suppose additionally that the function u$ = u$(x1,x2,x3,t) satisfies Sommerfeld radiation
condition [10] at infinitely remote points. When the body forces f* = f*(z1,x2,x3,t) are given as a
function of spatial coordinates and time, the problem (4)—(8) describes the wave field in the structure.

3. The method for solving the problem

Let there be an only source, which is localized in the layer L; at the point (zf,x3, %), where
x5 €[0,L— HJ:

F = o(0d(@1 —a3)5(ws — 03)0(ws —a5),  fE=0, a=I1IIL1V. (9)

(2

Here ¢(t) is a function determining dependence in time of the source.
Now we can replace the equations (1) with corresponding homogeneous equations in each layer. To
do that we will consider the layer L; as the union of two layers Ly = L/ JL;/, where
Ly ={-0c0o <z <00, —00 <23 <00, 0< 23 <23},
L ={—0c0o <z <00, —00< w3 <00, 23 <w3<L—H}.

Now the homogeneous equation of motion acts in each layer o« = I', 1", I1,111,IV

p 8211,? _ aaf‘j
o 8t2 axj

=0, j=123. (10)

The elasticity moduli of layers L» and L~ are defined as

)\I/ = )\I// = )\Ia /’LI/ = MI// = ,LLI-

To take into account the source, acting in the interface between L and Lj», we present the contact
conditions on the boundary x3 = x5 in the form

!

_ I// _ s _ I// _ s
u; L= L= U, 03 03 L =0 (11)
x3=1} r3=1} x3=1} r3=1}
Now instead of relations (6) we have
r 1 r 1
i ws=L—H % |13=L7H’ 3i wa=L—H 3t |gs=L—H ( )

We will consider pulse sources f* which varying in time like a peak shape function, for instance,
like Gaussian () = exp((t — t9)?/72). This enables us to apply the Fourier transform to them.
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Substituting relation (3) into (2), we obtain

dug | Ouf S oup

So, we have the system (10), (13) of partial differential equations with respect to three component
iC;'
Under taken assumptions about behavior of the functions u(x1, x2, z3,1), o (z1,x9,23,t) and at

ug' of displacement vector and 6 components of stress tensor of: (with accounting of its symmetry).
infinity when x1 — £o00 and 9 — +00 we can apply Fourier transform to them with respect to special
coordinate x; and xy. The structure (9) of the source enables to use this integral transform to the
functions uf(z1, x2,x3,t) and o} (z1, 2, x3,t). And finally, the assumption regarding the function f(t)
enables us to apply the Fourier transform with respect to time to all these functions.

Applying to equations (10) and (13) integral Fourier transform with respect to variables x1, x2 and
t, we can reduce them to the system of 6 ordinary differential equations in independent variable xj
with respect to variables U, U, US', ST, S§, S§. The dependent variables are Fourier transforms of
the functions uf, ug, ug, 05y, 05, 053 correspondingly:

U =F(uy), S5

K3 3

= F(0%5;) . (14)

Here
o0 o0 [oe)

Fez [ [ [ ewl-gott - o - vap)ldo et (15)

where j = v/—1 and p1,py are parameters of Fourier transforms with respect to time ¢ and special
variables 1, xo.
We can write the system in matrix form

dB,
d.Tg

= jwA, - B,. (16)

Here B, stands for column-vector 6 x 1 B, = (UO[,SOZ)T where U, = (Uf‘,Uf‘,Ug‘)T, S, =
(—jw) (S, S, 89)F, A% is 6 x 6-matrix

ACM ACV
A — (11 12> ’ (17)
“ (A% A2,
where
0 0 m = 0 0
11 = 0 0 P2 |, 2= 0 ;%a 0 . A% =(AnY)", (18)
AaP1 AaP2 0 0 1
)\a+2/»lo¢ Aa+2/»la )\a+2ﬂa
2 A 3 A2 A 3 Xa 0
=Pt (Ao + 310 = 535 ) +Pa P2 (Aa + 3a — 3355 ) + Pa
a — | \ 3 . A2 2 A 3 _ L 0 (19)
21 P1P2 (Ao Sfa = X350 | T Pa —Py \Aa ¥ Sla = X350 ) T Pa ’
0 0 Pa

As (16) is a system of ordinary differential equations with constant coefficients, its general solution
can be presented via matrix exponential |11, 12]

B, = exp (Jw (x3 — x9) Ay) - BY. (20)

«
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The matrix exponential can be easily calculated by reducing the matrix A, to normal Jordan
form [13]

A,=T, - J, T, (21)
Here J, is the normal Jordan form of the matrix A,, T, is non-singular matrix. J, is an upper
triangular quasidiagonal matrix: J, = diag (Jg,J¢, - ,--- ,Jg). Block J§ is the diagonal matrix
built of distinct eigenvalues A, Ag,---,A§; of the matrix A, : Jg = diag (A{, AS, - ,A},), where

M € N is the number of distinct eigenvalues (real and complex). Each block J{,k = 1,2,--- | K
corresponds to a repeated eigenvalue M. If v, € N is the number of multiplicity of the eigenvalue Af,
then J§ is r x rp-matrix J§ = diag (A}, -+, A}) + Hy, where rj, x rp-matrix which first upper diagonal
contains ones, all other its entries are zeros.

If matrix A, do not have repeated eigenvalues, then solution (20) can be presented in the form

B, = T, - (diag (exp (jw (x5 — 20) A}) .-+ ,exp (jw (z3 — 20) AY))) - T - BY, (22)

where T, is 6 X 6-matrix, the columns of which are eigenvectors of the matrix A,. Applying to
relations (11), (12), (7), (8) Fourier transform (15) we obtain

BI/’zg:zg - BI”’zg:xg =F, BI//"'L‘g:L*H - BH‘:):g:LfH =0, (23)
Buly,—p—gin — Butly—p—g, =0, Bmily,—p — Brv,—p =0,
where
F= (US’SS)’ Us = (Uls’UQS’U;)’ Ss = (Sfasg"g?f)’ szg :F(Ui)’ st :F(US)' (24)
The components Fg, 3 = 1,2,...,6 of the source vector F can be expressed via the components
Mg, of tensor of seismic moment M [7]:
M M. M. A
Pil=-=2, B=-"2 FB=-—"—" F=p (Mn - 7IM33> + p2 Mo,
I 13 A+ 2ur Ar+2ur (25)
A
Fs =p1Moy + po <M22 - ;Mgss) , Fo = p1 (Ms1 — Miz) + p2 (M3 — Mas).
A1+ 2ur
Application of Fourier transform to the relations (5) yields
SI”zg:O = 0. (26)
To find By, (z3,p1,p2,w) Yoo = I', 1" I1,--- IV, we should determine values of unknown vectors

B?, to B?V. Each vector has 6 scalar constants. But because of radiation condition at z3 — 00
only three components of vector B?V are independent. So, the whole number of scalar unknowns is
27. Substituting (20) into relations (23), we obtain 24 scalar equations. Relation (26) gives three
equations. So, totally we have 27 equations.

To find components u* (z1, z2, x3,t) of displacement vector in the layers Lo, a = I', 1", II,--- | IV,
we apply to corresponding U{¥ (3, p1,p2,w) the inverse Fourier transform

w = FU) . P = o [[[ e e dpy e, (27)

Further we use this method to study wave field interference of the free surface 3 =0 .
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4. Depth-velocity model of the structure

We will consider the layers L; and Ly as massive (monolithic) elastic mediums with identical elastic
properties. Suppose A and p are known Lame constants of this layers. As to layers L;; and bLjjy,
which are porous mediums, their properties are dependent on properties of materials they are built of,
their porosity, properties of fluids they are saturated, and fluid’s distributions in the porous spaces of
the layers. So, to apply developed theory we need to determine elastic properties of porous layers Ly
and Li;;. To do this, we apply the theory of effective elastic moduli of porous media developed by
Gassmann |[2].

5. Gassmann’s model for effective elastic moduli of porous medium

In concordance with Gassmann’s model [2], the bulk K and the shear G moduli of porous media
saturated with a fluid can be determined as

| _ Kay)?
K = Ky + o
- dry m 1—-m Kdry ’

K; T Kn = K2,

G = Gy, (28)

where K4, and K,, are bulk moduli of the dry skeleton and of the solid substance what the skeleton
is built of, K stands for bulk modulus of the fluid, saturating the porous media, m is porosity, and
Gry stands for shear modulus of dry skeleton.

The moduli of dry skeleton K., and Gg.,, of sandstone can be expressed via moduli K, and Gy,
of the solid substance, what the skeleton is built of, and porositym |[Goldberg and Gurevich, 1998,
Carcione, 2000]:

_A _A
Koy = K (1 =m)" "0 | Ggpy = G (1 —m)' T Tom (29)

Here A is a dimensionless coefficient depending on geometry of the pore space and other skeleton’s
characteristics. In paper [14] parameter A was evaluated between 2 and 4.

When effective elastic moduli are known we can determine Lame coefficient for saturated porous
medium 9]

2

The effective mass density p of the saturated porous medium is determined as

p = pm (1 —m)+psm, (31)

where py, is the mass density of the solid substance, what the skeleton is built of, and py is the mass
density of the saturant.

Phase velocities of longitudinal C), and transversal C elastic waves can be expressed via effective
elastic moduli K and G, and mass density p [9]:

K+ 4
c, = %, C, = /CJp. (32)

To use the formulae (28)—(31) for calculation elastic property of layers L;; and Ljr7, we should
determine distributions of density of the saturants in the layers and their bulk moduli.
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6. Saturants distrubution in the porous layer

In the equilibrium conditions distributions of the saturants in the layers L;; and Ljj; are defined by

the equations
Ipg Ipw
_— = 0’ — = O’ 33
5, 9P 5, T 9Pw (33)
where p, and p,, are the pressure and specific weight of gas in the layer L;;, p,, and p,, are the pressure
and specific weight of water. The density the fluids p, and p,, are dependent on their pressures:

w

Hg 1
= - g 1 _— — . 4
Py 70T wpPe Pu po( +— (Pw p0)> (34)

Here 114 is the molar mass of the gas, T" is absolute temperature, Z (py,T') is the compressibility factor
of gas that takes into account the departure of true gas from ideal gas behavior, R stands for universal
gas constant, , is the water’s compressibility factor, pg stands for pressure on the ground-water level,
po is water’s density at pressure pg.

We take Z (p1,T) in the form

Z (pg,T) = Z (g, T) = 1 — A(T)py + B(T)p, (35)

where A(T) = 3.52exp(—2.260T), B(T) = 0.274exp (—1.878T), Py = pg/Pe; T =TT, p. and T, are
critical pressure and temperature of the gas.
If to eliminate variables pg, p, from equations (33) using relations (34), we obtain

0P, 1 _

=0~ p.=0, 0<(<h, 36a

o¢ ~ Zpi, )™ ‘ (362)
Pw—Do 20 ,_ _ _ = =

— 2 (Bw—P0) =P, h H. b

ac - (Pw — Do) = po <(< (36b)

Here we have introduced the dimensionless coordinate ( = (x5 — L + H) /2y, where 29 = RT'/ (gtiq),
and used the denotations h = h/zg, H = H/z, 21 = aw/(9p0), Do = Po/Pes Po = Po/Pe, Pe =

tgpe/ (RT). )
As the pressure on the bottom ¢ = H of the porous stratum is formed by water head of height L,
we have
_ _ 2 20 = _
pw’(:H = po— <exp (—L) — 1> + Pg. (36)
20 Z1

On the boundary between the layers L;; and Lj;; we have the condition

Pole—g = Puwle=p - (37)

(36b) is a linear equation. Integrating it with boundary conditions (37), we obtain
_ _ 21 20 — — B _ _
pu@ = (o (D¢ L) 1) o, h<c<H, (38)

The formula (39) determines pressure of water in the layer L;;;. Using it we can determine the
right hand side in (38)

_ _ - _Z 20 # T — _
Pwle—iy = Pw (h) = poz—; <eXP (Z—TL+ h—H> - 1) + Do (39)

and obtain boundary condition for (36a).
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(36a) is a separable equation. Integrating it with accounting (38), (40), we obtain

Py () -
In pi—(o —A (T) (pg (C) — Pw (C))

+3B(T) (5 (07~ 2 (0?) + C (D) (C~B) /T =0, 0<C<h (40)

whereC(T) El—A(T) —i—B(T).

Solving nonlinear equation (41) with respect to p, (¢) for each ¢ € (0,h), we can determine gas
pressure in the layer L;; as a function of its thickness coordinate.

To determine the densities pg (¢) and py, (¢) of the fluids in layers L and L we use the equations
of state (34).

It should be stressed that, when parameters L and H are given, the function pg (€), determining
by solving equation (9), is depended on parameterh: Dg = Dg (C , B), which, in turn, is dependent on
the amount of the gas accumulated in the layer.

Let M [kg/m?| be the mass of the gas accumulated in the porous space of Ly referred to unit area
of its middle surface, and m is the porosity of the layer. Then we have the relation

h
_ 1 _
[ cihyac= -, (41)
m

0
where M = M/ z.

The relation (42) establishes interdependence between the amount M of gas accumulated in the
layer L;; on the one hand and its thickness h, thickness H of the whole porous layer L. = Ly |JLsss
and its depth L on the other hand.

Solving the equation (42) with respect to h at fixed H and L, we E I I
can determine the thickness h of the layer Lj;, saturated with gas,
depending on the amount of the gas accumulated in it. 185
Mass capacity of the layer is determined by its surface mass den-
sity that is attained at h = H (when the whole porous layer L is 1E
saturated with gas): 175
7 17 | |
Myaw = m/pg (C7 [f[) dc¢. (42) "o 0.01 a0z g
0 Fig.1. Distribution of porous

. . . pressure in the layer L.
Fig. 1 illustrates how porous pressure p (¢) in the layer L changes

depending on amount of gas stored in the stratum. We define p ({) M ' '
as

5(0) = {pg ©, 0<C<h (43)

pw(¢), h<(<H.

Curves 1, 2 and 3 in the figure correspond to different values of
dimensionless parameter: h = 0.01,0.02 and 0.03.

The calculations were made at temperature 7' = 340 K for layer 0 oo 0oz [
L with dimensionless thickness H = 0.03 and depth L = 0.3. The Fig. 2. Dependence between the
following values for parameters were taken for gas: p = 16.043, pc = 1 0unt of accumulated gas and
4.649 MPa, T, = 190.9 K, characteristic length was zp ~ 2926.35 m.  the thickness h, of the layer L;;
For water we took pg = 10% kg/m3, pg = 10° Pa, oy, = 2.4 GPa, for porous layer L of thickness
characteristic length was z; = 2/45 - 10° m. H =0.03.
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As we can see the pore pressure changes in the layer L on about 8 %.

Fig. 2 shows how the boundary dividing the part of the layer L saturated with gas and other one
saturated with water is moving when the amount of stored gas is varying. Curves 1, 2 and 3 correspond
to different values of depth L = 0.1,0.3 and 0.6 correspondingly.

7. Stadying the effective elastic moduli and phase velocities of plane waves in the
porous layer

Now we can define the bulk modulus Ky for fluid which appears in the formula (28) for effective bulk
modulus of the saturated porous medium.
Bulk modulus for gas is defined as

Opy
= p,—2. 44
Qg = Pyg dpg (44)
Applying (44) to the state equation (34)1 and using relation (33) we obtain
Z (pg, T
(p97 ) Dy (45)

As we can see bulk modulus of gas increases with it pressure. Unlike gas, the compressibility of
water almost doesn’t depend on the pressure. We can take it constant o, (see equation (34)3).

So the bulk modulus of the fluid K in the layer L is dependent on the coordinate ¢ € (0, H) and
defined by the piecewise continuous function with the point of discontinuity ¢ = H:

Jag(©), 0<(¢<h,
Kf(o_{aw(g), h<(¢<H. (46)

where oy (¢) is defined according to (45). With the use (34), (35), (39), (41) we can calculate, applying
the formula (31), the effective mass density p of the saturated porous medium. Value p; in this formula
is changing along the transversal coordinate ¢ and can be defined by the piecewise continuous function
with the point of discontinuity ¢ = h :

_ Pg (C) 0<(¢<h,
pf<<>—{pw(07 o (47)

Fig. 3 shows dependence of effective mass density of the saturated porous layer on the coordinate
¢ at two different values of gas amount stored in it: a) —h = 0.01 and b) —h = 0.02.
The layer’s thickness and depth are H = 0.03 and L = 0.3.

PRy | . RéR,,, ' |
02r — naefF ]
0.75r - 0.75F -
0.7F - 0.7F -
D'ﬁjn n.lm n.lnz £ " D.IDI D.Inz £
a b

Fig. 3. Dependence of the effective mass density reffered to p,, on coordinate = ¢ at two values of h = 0.01, 0.02.
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So, as we can see, in spite of that p; is changing in L on about 8 %, layer L itself can be considered
as piece-wise homogeneous one with respect to its effective mass density. With the use (34), (35),
(39), (41), (45), (46) we can calculate, applying formulas (28), (29) the effective elastic moduli K and
G of saturated porous layer as function of its transversal coordinate depending on amount of the gas
accumulated in the layer, and parameters L and H. As the effective modulus K is depended on bulk
modulus of fluid, its value is changing with the thickness coordinate . It can be represented by a
piecewise continuous function with the point of discontinuity ¢ = h. Applying formulas (32) we can
calculate the phase velocities of longitudinal C'p and transversal Cg elastic waves in the layer L.

Figs. 4 and 5 show the dependences of the phase velocities of longitudinal C'p and transversal
Cys acoustic waves in the saturated porous layer L on the coordinate ( at two different values of gas
amount stored in it: a) —h = 0.01 and b) —h = 0.02. The layer’s L thickness and depth are H = 0.03
and L =0.3.

Z Z

_F T T _F T T
ch CPm

0.5F - 0.5k -
043r . 042 -
0.4ar . 0.4sF -

1 I I I
1] 0.01 0.0z C 1] 0.0 .oz G

a b

Fig. 4. Longitudinal wave phase velocity in the porous layer at two values of h = 0.01,0.02.

% T T C_ I I
C.S'm C.S'm
046k = 044l .
0.44F = 0.44f .
0.42 ' L 0.42 ! L
0 0.01 002 ¢ 0 0.01 002 £
a b

Fig. 5. Transversal wave phase velocity in the porous layer at two values of h = 0.01,0.02.

The calculations presented in this section were made under the next values of parameters: K, =
3.9-10' Pa, G,, = 3.3-10'° Pa, p,, = 2650 kg/m3, A = 3.

As we can see the layer L itself can be considered as piece-wise homogeneous one with respect to
phase velocities of longitudinal and transversal elastic plane waves.

So, in this section we calculated elastic properties of porous layer, saturated with gas and water,
and justified possibility to apply the model of piece-wise homogeneous elastic layered structure for
describing elastic waves interaction with the layer.

8. Studying wave interference patterns on the free surface

We applied the approach developed in the sections 2 and 3 to study a wave interference pattern on
free surface of the layered structure. We also interested how the pattern is changing with variation the
amount of gas accumulated in the porous layer.
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The calculations were made for depth L = 1000 m and thickness H = 200 m of the layer L. The
properties of the layers L to Ly, which have been used in calculations, are presented in the table 1.

Table 1. The properties of the layers.

Layer 1% Lir | B | bgv
A, kg/(s? m), -10'0 | 8.298 | 1.279 | 1.776 | 8.298
w, kg/(s? m), -1019 | 3.300 | 0.514 | 0.500 | 3.300

p, kg/m? 2650 | 1887 | 2156 | 2650
Cp, m/s 5596 | 2593 | 2870 | 5596
Cg, m/s 3529 | 1630 | 1524 | 3529
The pulse source of uniform extension was situated at the point S with coordinates 1 = 0,

xo = 0, 2§ = 250 m. Its seismic moment was determined as My = Mop(t), M;j = 0, i # j, where
My =9.3-10'% Nm, ¢(t) = exp (t*/73), 7 = 0.1 s.

To study how the wave-field pattern varies, when thickness h of the sublayer saturated with gas
is changing, we solved the problem several times — each time at another value of thickness h. Let
u{/ (z1,x9,x3,t;h) be wave field in layer L calculated for case, when the thickness of the layer Ly
is equal h, and P be a point on the free surface (point of sight) with coordinate z; = xf , Ty =
x3 = 0. Time dependences of tangential Uy = (t,h) = u{/ (xf,0,0,t; h) and normal Us = (t,h) =
ul’ (xf, 0,0,t; h) components of displacement vector at the point P with coordinates xf = 2000 m,
xo = 0, z3 = 0 are shown on the figure 6 and 7. Each curve on the figures corresponds to specific value
of thickness h of the layer Lj;.
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Fig.6. The time dependences of the tangential com- Fig.7. The time dependences of the normal compo-

ponent of displacement vector at point of sight on the nent of displacement vector at point of sight on the free

free surface for different values of thickness h of the surface for different values of thickness h of the layer
1ayer L]]. L[[.

As we can see, within the interval (0.3...0.6) s all curves are identical — they do not change with
h. The first two peaks on the curves correspond to P- and S-waves which came to the point P directly
from the source. The next peak at ¢t £ 0.8 s correspond to a wave reflected by the boundary between
L; and L;;. It doesn’t move along time axis with changing h, but its shape and amplitude change
with h. Next peaks correspond waves reflected by boundaries between layers L;; and Ljr; and between
L7 and Lyy.

We can receive evidence of this by comparing the curves of figures 6 and 7 with those shown on the
figures 8 and 9 correspondingly. There the time dependences of tangential and normal displacements
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at the point of sight are shown on these figures. The curves 1 on the figures 8 and 9 were calculated
for two-layered structure consisting of bulk layer L; and porous half-space saturated with gas. The
curves 2 on these figures were calculated for three-layered structure consisting of bulk layer L;, porous
layer of thickness H, saturated with gas, and porous half-space, saturated with water.
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Fig.8. The time dependences of the tangential com- Fig.9. The time dependences of the normal compo-

ponents of displacement vector at the point of sight nents of displacement vector at the point of sight on

on the free surface for two-layered structure (1) and the free surface for two-layered structure (1) and three-
three-layered structure (2). layered structure (2).

Analyzing the time dependences, shown on the figures 6 and 7, we can conclude, that at ¢ > 0.6
the curves, calculated for different thickness h, are differ. So, the curves contain information about the
structure of porous layer L.

To establish a quantitative relationship between thickness h and the time dependences of dis-
placements U; (¢, h) of free surface, calculated at this h, we used correlation coefficients Ry, and R%i,
1=1,2,3:

/2 (Ui (t, k) — U; (h)) (Ui (t,0) — U_?) dt
bo=—2 - . ,
\/(mUi = i(h)ydt\/(Ui (t’o)_Uz‘O)zdt (48)
/ (Ui (t,h) — U; (h)) (Ui (t,H) — U;H) dt
RI —_ 1 '
) Jwih -0, (h))zdt\/(Ui (t, H) — U’ZH>2dt
Here
Ui (h) = t2it1t/Ui (t,h)dt, U = 5 _tlt/Ui (t,0)dt, UF = t2—t1t/Ui (t, H)dt.  (49)

Measure Ry (h) define deviation of curve U (¢, h) from the curve U; (t,0) which corresponds the
case when the whole porous layer L has been saturated with water (the storage facility is empty).
Measure RgUi(h) define deviation of curve U; (¢, h) from the curve Uj; (¢, H), which corresponds the case
when the whole porous layer L has been saturated with gas (the storage facility is empty).

On Figs. 10 the dependences of introduced measures RlU”i(h) and Rf’]i(h) for tangential (i = 1)
and transversal (i = 3) displacements are presented. Different curves on the plots correspond to
different ranges of integration, which have been used in formula (47): (0...2.5) s, (0.6...2.5) s, and
(0.6...1.6) s. The curves R (h) and Rf; (h) corresponding to these time intervals are marked on the
plots by squares, triangles and circles respectively.

As we can see there one-to-one correspondences exist between Rf (h) and h as well as between
RgUi(h) and h. This means that if we know Ry (h) or RgUi(h) we can determine h. It was shown in
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Fig. 10. Dependeces of the measures R, RY on thickness h of the layer L;;.
section IV, that one-to-one correspondence exists between h and amount M of gas accumulated in the
porous layer (see Fig.2). So, we can also determine M.

We can see that the measures Ry (h) and R, (h) calculated for interval (0...2.5) s possess the
greatest self-descriptiveness because the slopes of the lines calculated for this time interval are the
greatest. We can also conclude that measures Ry (h) and R%i(h), calculated for transversal displace-
ment Us (t, h), are more informative as compared to those Ry} (h) and R, (h), calculated for tangential
displacement Uy (t, h). This appears from the fact that Ry (k) and Ry, (h) are varied between 1.0 and
0.35, when h changes in interval [0, H], whereas R{; (h) and R{; (h) are varied between 1.0 and 0.55.

9. Conclusions

Underground gas storage facilities, which are built in aquifer, can be considered as a layered structure
containing a porous layer L saturated partly with gas and partly with water. The boundary, which
divides these two parts, is displacing when amount of the gas stored in the layer is changing. The
analytical relations establishing distributions of gas and water in porous space of the layer L have been
obtained. On this basis the direct relationship between the amount of gas accumulated in porous layer
and thickness h of the sublayer saturated with gas, has been established.

With the use of the relations, determining distributions of fluids in the porous space, and of Grass-
mann’s model for dynamics of porous media, the effective elastic moduli and the phase velocities of
elastic waves in the sublayers saturated with gas and water have been calculated. As a result it was es-
tablished that layer L, saturated with the two fluids (gas and water), can be considered as a piece-wise
homogeneous structure.
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In concordance with this, the semi-infinite horizontally-layered elastic structure containing a porous
layer, saturated partly with gas and partly with water, has been considered as a model of the under-
ground gas storage facility. The mathematical model describing interaction of elastic waves excited in
the structure by a point pulse source, situated in the layer covering the porous layer L, has been built
and corresponding boundary-value problem formulated.

The problem was being solved with the use of Fourier transform. Time dependences of tangential
and normal displacements in the point of sight, situated on the free structure’s surface, have been
studied depending on the amount of gas accumulated in the layer.

Direct relationship between the thickness h of sublayer, saturated with gas, and wave-field pattern,
calculated for this thickness h, has been established. Numeric measures which establish a relation
between the thickness h and calculated at this h time dependences have been introduced. It was
shown that these measures are almost linearly depend on h. This result can be useful for development
of distant methods for operative a posteriori determination of amounts of natural gas accumulated in
underground storage facilities.
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MaTtemaTuiHe MoAeNtOBaHHSI MOLIVPEHHSI NPY>XXHUX 30ypeHb
Yy CTPYKTYPpi, sika MICTUTb NOPUCTUIA Wap, HACMYEHNA ra3om i BOAOHO

Yexypin B. ©.12, ITasnosa A. 0.3

! Inemumym npukaadnus npobaem mevanixy i mamemamusy im. . C. ITidempuzava HAH Yrpainu
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HociizKeHo B3a€MOJTII0 TPYKHUX XBUJIb, 3y MOBJIEHUX JIOKAJILHUM IMITYJILCHUM JI?KEPEJIOM,
i3 miBOE3MEKHOI0 TOPU30HTAJIBHO-IIIAPYBATOI0 CTPYKTYPOIO, IO MiCTHUTD MOPUCTHI Iap,
HACHYECHMIT Ta30M 1 BOIOI0. 3aIllPOITOHOBAHO MATEMATHYHY MOJEJb, KA OIMUCYE PO3MOILIT
ra3y i BOAW B IOPOBOMY IIPOCTOPI MapPy 3aJIE2KHO BiJl KIIBKOCTI HAKOIIITYEHOTO B HHOMY Ta-
3y. B mexkax mozesni obuncieHi edpeKTUBHI IIPY2KHI MO/ 006J1acTeil IOpUcToro mapy, Ha-
cuyeHuX ra3oM i Bojow. ChopMyIb0BAHO TOYATKOBO-KPAoBy 3a/1a49y JIMHAMIKA TPy KHIX
XBWJIb Y CTPYKTYPI Ta i3 3acTrocyBaHHsM reperBoperHst @yp’e orpumano i1 po3s’s30k. 13
BUKOPUCTAHHAM OTPUMAHOTO PO3B 3Ky JOCJIPKEHO KAPTUHY XBUJIBOBOTO TOJIs HA BIIbHIM
IOBEPXHI CTPYKTYPHU 3aJIE€KHO BiJl KIBKOCTI ra3y, HArpoMa/[2KEHOTO B MOPUCTOMY Iapi.
BBejieHo Ta unceIbHO JIOCTIPKEHO XapaKTEPUCTUKHY, SKi ITOB’sI3yI0Th [IapaMeTPy XBUJIbO-
BOTO TIOJIS HA, BiJIbHIN MOBEpxXHI 13 KiMBKICTIO Ta3y, HArPOMAPKEHOT'O B TIOPUCTOMY IaPi.
OTrpumasi pe3y/ibraTi MOXKHA 3aCTOCYBATH JJIsl PO3POOJIEHHS] JUCTAHIIIHHUX METOJIIB 00JIi-
Ky KUIBKOCTI IPUPOTHOTO Ta3y B MIJIBEMHUX CXOBHUINAX a3y, CHOPYZKEHNX Y BOJOHOCHUX
TOPU30HTAX.
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