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A horizontally layered elastic structure containing a homogeneous porous layer saturated
partly with gas and partly with water is considered. The paper is aimed at studying
of interaction of elastic waves, caused by local pulse source, with the structure. The
boundary-value problem describing the wave dynamics of the structure is formulated. A
mathematical model describing distributions of the gas and water in a pore space of the
porous layer depending of the amount of the gas accumulated in the layer is developed.
The problem is solved with the use of Fourier transform. It was established that wavefield
pattern on the free surface of the structure is dependent on amount of gas accumulated in
the porous layer. Quantitative measures relating the wavefield parameters on the struc-
ture’s free surface and the amount of gas accumulated in the porous layer are introduced.
The obtained results can be used to develop distance methods for accounting of amount
of natural gas accumulated in underground gas storage facilities built in aquifers.
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1. Introduction

Porous stratums of geological structures are often used for construction of underground natural gas
storage facilities [1]. If the storage is developed in an aquifer (a porous medium saturated with water),
the stratum is being saturated partly with gas and partly by water in its operational state. When
the storage is being filled or emptied, the boundary dividing its parts saturated with gas and water is
displacing along the vertical coordinate. As the elastic moduli of saturated porous media are dependent
on physical properties and thermodynamic state of the saturants, the porous layer should be considered
as a heterogeneous two-layer structure. The thicknesses of the layers and their elastic properties are
changed depending on amount of the gas accumulated in the layer. This can be used for developing of
distance methods for accounting of the gas accumulated in the layer with the use of acoustic methods.
So we come to the necessity of mathematical modeling and quantitative studying the interaction of
elastic waves with layered structures containing porous layers saturated with gas and water.

There are various aspects in studying of elastic waves in porous media — modeling of dynamics,
dispersion analysis of wave motion, wave velocity and attenuation, interference of elastic waves etc.

An approach, which is effectively used to describe dynamics of porous medium, is based on homog-
enization of microscopically heterogeneous body. Within this approach Gassmann derived relations [2],
which express the effective elastic properties of the porous saturated medium via the individual elastic
properties of the solid skeleton and the saturant. This approach is valid for sufficiently low frequen-
cies of wave motion, when mutual displacement of the skeleton and the fluid is negligible. Such, for
instance, are seismic waves arising in geological structure [3–5].

120 c© 2016 Lviv Polytechnic National University
CMM IAPMM NASU



Mathematical modeling of elastic disturbance propagation in a structure. . . 121

Many authors studied wave-field pattern in layered structures. Particular interest in these researches
exists in geophysics, where the objects of study are layered rock structures [6]. The interest is stimulated
by practical problems of acoustic logging, detecting and identification of seismic sources, prediction of
tectonic earthquakes etc. To solve such problems in the case of piece-wise homogeneous horizontally-
layered structure so called matrix method was developed [7, 8]. By applying integral transforms, this
method enables to reduce the problem of interaction of elastic waves with the n-layered structure to
boundary value problem for n systems of ordinary differential equations. The systems are coupled via
contact conditions acting on the boundaries which divide adjacent layers.

In spite of large number of publications devoted to problems of wave dynamics in application to
geophysics of layered structures and wide utilization of the matrix method for solving of such problems,
the problems of interaction of elastic wave with layered structure containing porous layers saturated
with different fluids remain unstudied. In this paper we consider such a problem.

This paper is aimed on studying of interaction of elastic disturbances, caused by local pulse source,
with a semi-infinite layered structure containing a porous stratum saturated with gas and water. We
study patterns of wave interference on the free surface of the structure depending on the position of
gas-water interface in the porous layer. Obtained results can be used to develop distance methods
for accounting of amount of natural gas accumulated in underground gas storage facilities build in
aquifers.

2. Problem formulation

We consider the semi-infinite layered structure, consisting of three infinite elastic layers  LI to  LIII and
elastic half-space  LIV :

 LI = {−∞ < x1 <∞, −∞ < x2 <∞, 0 < x3 < L−H},
 LII = {−∞ < x1 <∞, −∞ < x2 <∞, L−H < x3 < L−H + h},
 LIII = {−∞ < x1 <∞, −∞ < x2 <∞, L−H < x3 < L−H + h},

 LIV = {−∞ < x1 <∞, −∞ < x2 <∞, L < x3 <∞}.

Here xi, i = 1, 2, 3 stand for Cartesian coordinates, L > 0 is the depth of the porous stratum,
H > L stands for its thickness, h ∈ [0,H] is the thickness of the layer saturated with gas.

Wave field in each layer satisfies three groups of relations of the theory of elasticity [9]:
equations of motion

ρα
∂2uαi
∂t2

=
∂σαij
∂xj

+ ραfαi , j = 1, 2, 3, (1)

elasticity relations
σαij = 2µαe

α
ij + λαe

α
klδklδij , (2)

and compatibility relations (in Cauchy form)

eαij =
1

2

(
∂uαi
∂xi

+
∂uαj
∂xj

)
. (3)

Here ρα is mass density of elastic medium in α-layer (α = I, II, III, IV ), uαi , σαij, e
α
ij stand for Cartesian

components of displacement vector, stress tensor, and strain tensor correspondingly of α-layer, λα and
µα are elastic moduli (Lame coefficients) fαi = fαi (x1, x2, x3, t) stand for i-th Cartesian component of
body force in α-layer.

With the use of the relations (2) and (3) the equation (1) can be reduced to the hyperbolic system
of equations

ρα
∂2uαi
∂t2

= µα
∂2uαi
∂xk∂xl

· δkl + (λα + µα)
∂

∂xi

∂uαk
∂xl

· δkl + fαi . (4)
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The surface x3 = 0 is free of traction

σI31
∣∣
x3=0

= 0, σI32
∣∣
x3=0

= 0, σI32
∣∣
x3=0

= 0. (5)

We consider the interfaces between the layers as the boundary of ideal elastic contact, what can
written as

uIi
∣∣
x3=L−H

= uIIi
∣∣
x3=L−H

, σI3i
∣∣
x3=L−H

= σII3i
∣∣
x3=L−H

, (6)

uIIi
∣∣
x3=L−H+h

= uIIIi

∣∣
x3=L−H+h

, σII3i
∣∣
x3=L−H+h

= σIII3i

∣∣
x3=L−H+h

, (7)

uIIIi

∣∣
x3=L

= uIVi
∣∣
x3=L

, σIII3i

∣∣
x3=L

= σIV3i
∣∣
x3=L

. (8)

According to the relations (2), (3) the stress components σα3i in the relations (6)–(8) are considered
and the function of displacement components uαi .

We suppose additionally that the function uαi = uαi (x1, x2, x3, t) satisfies Sommerfeld radiation
condition [10] at infinitely remote points. When the body forces fαi = fαi (x1, x2, x3, t) are given as a
function of spatial coordinates and time, the problem (4)–(8) describes the wave field in the structure.

3. The method for solving the problem

Let there be an only source, which is localized in the layer  LI at the point (xs1, x
s
2, x

s
3), where

xs3 ∈ [0, L−H]:

f II = ϕ(t)δ(x1 − xs1)δ(x2 − xs2)δ(x3 − xs3), fαi = 0, α = II, III, IV. (9)

Here ϕ(t) is a function determining dependence in time of the source.
Now we can replace the equations (1) with corresponding homogeneous equations in each layer. To

do that we will consider the layer LI as the union of two layers  LI =  LI′
⋃

 LII′ , where

 LI′ = {−∞ < x1 <∞, −∞ < x2 <∞, 0 < x3 < xs3},
 LI′′ = {−∞ < x1 <∞, −∞ < x2 <∞, xs3 < x3 < L−H}.

Now the homogeneous equation of motion acts in each layer α = I ′, I ′′, II, III, IV

ρα
∂2uαi
∂t2

−
∂σαij
∂xj

= 0, j = 1, 2, 3. (10)

The elasticity moduli of layers  LI′ and  LI′′ are defined as

λI′ = λI′′ = λI , µI′ = µI′′ = µI .

To take into account the source, acting in the interface between  LI′ and  LI′′ , we present the contact
conditions on the boundary x3 = xs3 in the form

uI
′

i

∣∣∣
x3=xs

3

= uI
′′

i

∣∣∣
x3=xs

3

= usi , σI
′

3i

∣∣∣
x3=xs

3

= σI
′′

3i

∣∣∣
x3=xs

3

= σsi . (11)

Now instead of relations (6) we have

uI
′

i

∣∣∣
x3=L−H

= uIIi
∣∣
x3=L−H

, σI
′

3i

∣∣∣
x3=L−H

= σII3i
∣∣
x3=L−H

. (12)

We will consider pulse sources fαi which varying in time like a peak shape function, for instance,
like Gaussian ϕ(t) = exp((t− t0)

2/τ20 ). This enables us to apply the Fourier transform to them.

Mathematical Modeling and Computing, Vol. 3, No. 2, pp. 120–134 (2016)



Mathematical modeling of elastic disturbance propagation in a structure. . . 123

Substituting relation (3) into (2), we obtain

µα

(
∂uαi
∂xj

+
∂uαj
∂xi

)
+ λαδij

3∑

k=1

∂uαk
∂xk

− σαij = 0. (13)

So, we have the system (10), (13) of partial differential equations with respect to three component

uαi of displacement vector and 6 components of stress tensor σαij (with accounting of its symmetry).

Under taken assumptions about behavior of the functions uαi (x1, x2, x3, t), σ
α
ij(x1, x2, x3, t) and at

infinity when x1 → ±∞ and x2 → ±∞ we can apply Fourier transform to them with respect to special

coordinate x1 and x2. The structure (9) of the source enables to use this integral transform to the

functions usi (x1, x2, x3, t) and σsi (x1, x2, x3, t). And finally, the assumption regarding the function f(t)

enables us to apply the Fourier transform with respect to time to all these functions.

Applying to equations (10) and (13) integral Fourier transform with respect to variables x1, x2 and

t, we can reduce them to the system of 6 ordinary differential equations in independent variable x3
with respect to variables Uα

1 , Uα
2 , Uα

3 , Sα
1 , Sα

2 , Sα
3 . The dependent variables are Fourier transforms of

the functions uα1 , uα2 , uα3 , σα31, σ
α
32, σ

α
33 correspondingly:

Uα
i ≡ F (uαi ) , Sα

i ≡ F (σα3i) . (14)

Here

F (. . .) ≡
∞∫

−∞

∞∫

−∞

∞∫

−∞

exp{−jω(t− x1p1 − x2p2)}dx1 dx2 dt, (15)

where j ≡
√
−1 and p1, p2 are parameters of Fourier transforms with respect to time t and special

variables x1, x2.

We can write the system in matrix form

dBα

dx3
= jωAα ·Bα. (16)

Here Bα stands for column-vector 6 × 1 Bα = (Uα,Sα)T where Uα = (Uα
1 , U

α
2 , U

α
3 )T, Sα =

(−jω)−1 (Sα
1 , S

α
2 , S

α
3 )T, Aα is 6 × 6-matrix

Aα =

(
Aα

11 Aα
12

Aα
21 Aα

22

)
, (17)

where

Aα
11 =




0 0 p1
0 0 p2

λαp1
λα+2µα

λαp2
λα+2µα

0


 , Aα

12 =




1
µα

0 0

0 1
µα

0

0 0 1
λα+2µα


 , Aα

22 = (A11
α)T , (18)

Aα
21 =




−p21
(
λα + 3µα − λ2

α

λα+2µα

)
+ ρα −p1p2

(
λα + 3µα − λ2

α

λα+2µα

)
+ ρα 0

−p1p2
(
λα + 3µα − λ2

α

λα+2µα

)
+ ρα −p22

(
λα + 3µα − λ2

α

λα+2µα

)
+ ρα 0

0 0 ρα


 , (19)

As (16) is a system of ordinary differential equations with constant coefficients, its general solution

can be presented via matrix exponential [11, 12]

Bα = exp (jω (x3 − x0)Aα) ·B0
α. (20)
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The matrix exponential can be easily calculated by reducing the matrix Aα to normal Jordan

form [13]

Aα = Tα · Jα ·T−1
α . (21)

Here Jα is the normal Jordan form of the matrix Aα, Tα is non-singular matrix. Jα is an upper

triangular quasidiagonal matrix: Jα = diag (Jα
0 ,J

α
1 , · · · , · · · ,Jα

K). Block Jα
0 is the diagonal matrix

built of distinct eigenvalues λα1 , λ
α
2 , · · · , λαM of the matrix Aα : Jα

0 = diag (λα1 , λ
α
2 , · · · , λαM ), where

M ∈ N is the number of distinct eigenvalues (real and complex). Each block Jα
k, k = 1, 2, · · · ,K

corresponds to a repeated eigenvalue λαk . If rk ∈ N is the number of multiplicity of the eigenvalue λαk ,

then Jα
k is rk×rk-matrix Jα

k = diag (λαk , · · · , λαk )+Hα
k, where rk×rk-matrix which first upper diagonal

contains ones, all other its entries are zeros.

If matrix Aα do not have repeated eigenvalues, then solution (20) can be presented in the form

Bα = Tα · (diag (exp (jω (x3 − x0)λ
α
1 ) , · · · , exp (jω (x3 − x0)λ

α
6 ))) ·T−1

α ·B0
α, (22)

where Tα is 6 × 6-matrix, the columns of which are eigenvectors of the matrix Aα. Applying to

relations (11), (12), (7), (8) Fourier transform (15) we obtain

BI′ |x3=xs
3
− BI′′ |x3=xs

3
= F, BI′′ |x3=L−H − BII|x3=L−H = 0,

BII|x3=L−H+h − BIII|x3=L−Hh
= 0, BIII|x3=L − BIV|x3=L = 0,

(23)

where

F = (Us,Ss) , Us = (U s
1 , U

s
2 , U

s
3 ) , Ss = (Ss

1, S
s
2 , S

s
3) , U s

i = F (uss) , Ss
i = F (σss) . (24)

The components Fβ, β = 1, 2, . . . , 6 of the source vector F can be expressed via the components

Mβγ of tensor of seismic moment M [7]:

F1 = −M13

µI
, F2 = −M23

µI
, F3 = − M33

λI + 2µI
, F4 = p1

(
M11 −

λI
λI + 2µI

M33

)
+ p2M12,

F5 = p1M21 + p2

(
M22 −

λI
λI + 2µI

M33

)
, F6 = p1 (M31 −M13) + p2 (M32 −M23) .

(25)

Application of Fourier transform to the relations (5) yields

SI′ |x3=0 = 0. (26)

To find Bα (x3, p1, p2, ω) ∀α = I ′, I ′′, II, · · · , IV , we should determine values of unknown vectors

B0
I′ to B0

IV. Each vector has 6 scalar constants. But because of radiation condition at x3 → ∞
only three components of vector B0

IV are independent. So, the whole number of scalar unknowns is

27. Substituting (20) into relations (23), we obtain 24 scalar equations. Relation (26) gives three

equations. So, totally we have 27 equations.

To find components uαi (x1, x2, x3, t) of displacement vector in the layers  Lα, α = I ′, I ′′, II, · · · , IV ,

we apply to corresponding Uα
1 (x3, p1, p2, ω) the inverse Fourier transform

uαi = F−1 (Uα
i ) , F−1 (· · · ) =

1

8π3

∫∫∫
(· · · )ω2ejω(t−p1x1−p2x2)dp1 dp2 dω. (27)

Further we use this method to study wave field interference of the free surface x3 = 0 .
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4. Depth-velocity model of the structure

We will consider the layers  LI and  LIV as massive (monolithic) elastic mediums with identical elastic

properties. Suppose λ and µ are known Lame constants of this layers. As to layers  LII and  LIII ,

which are porous mediums, their properties are dependent on properties of materials they are built of,

their porosity, properties of fluids they are saturated, and fluid’s distributions in the porous spaces of

the layers. So, to apply developed theory we need to determine elastic properties of porous layers  LII

and  LIII . To do this, we apply the theory of effective elastic moduli of porous media developed by

Gassmann [2].

5. Gassmann’s model for effective elastic moduli of porous medium

In concordance with Gassmann’s model [2], the bulk K and the shear G moduli of porous media

saturated with a fluid can be determined as

K = Kdry +

(
1 − Kdry

Km

)2

m
Kf

+ 1−m
Km

− Kdry

K2
m

, G = Gdry, (28)

where Kdry and Km are bulk moduli of the dry skeleton and of the solid substance what the skeleton

is built of, Kf stands for bulk modulus of the fluid, saturating the porous media, m is porosity, and

Gdry stands for shear modulus of dry skeleton.

The moduli of dry skeleton Kdry and Gdry of sandstone can be expressed via moduli Km and Gm

of the solid substance, what the skeleton is built of, and porositym [Goldberg and Gurevich, 1998,

Carcione, 2000]:

Kdry = Km (1 −m)1+
A

1−m , Gdry = Gm (1 −m)1+
A

1−m . (29)

Here A is a dimensionless coefficient depending on geometry of the pore space and other skeleton’s

characteristics. In paper [14] parameter A was evaluated between 2 and 4.

When effective elastic moduli are known we can determine Lame coefficient for saturated porous

medium [9]

λ = K − 2

3
G, µ = G. (30)

The effective mass density ρ of the saturated porous medium is determined as

ρ = ρm (1 −m) + ρfm, (31)

where ρm is the mass density of the solid substance, what the skeleton is built of, and ρf is the mass

density of the saturant.

Phase velocities of longitudinal Cp and transversal Cs elastic waves can be expressed via effective

elastic moduli K and G, and mass density ρ [9]:

Cp =

√(
K + 4

3G
)

ρ
, Cs =

√
G/ρ. (32)

To use the formulae (28)–(31) for calculation elastic property of layers  LII and  LIII , we should

determine distributions of density of the saturants in the layers and their bulk moduli.
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6. Saturants distrubution in the porous layer

In the equilibrium conditions distributions of the saturants in the layers  LII and  LIII are defined by

the equations

−∂pg
∂z

+ gρg = 0, −∂pw
∂z

+ gρw = 0, (33)

where ρg and ρw are the pressure and specific weight of gas in the layer  LII , pw and ρw are the pressure

and specific weight of water. The density the fluids ρg and ρw are dependent on their pressures:

ρg =
µg

Z(p1, T )RT
pg, ρw = ρ0

(
1 +

1

αw
(pw − p0)

)
. (34)

Here µg is the molar mass of the gas, T is absolute temperature, Z (pg, T ) is the compressibility factor

of gas that takes into account the departure of true gas from ideal gas behavior, R stands for universal

gas constant, αw is the water’s compressibility factor, p0 stands for pressure on the ground-water level,

ρ0 is water’s density at pressure p0.

We take Z (p1, T ) in the form

Z (pg, T ) = Z
(
p̄g, T̄

)
≡ 1 −A(T̄ )p̄g +B(T̄ )p̄2g, (35)

where A(T̄ ) = 3.52 exp(−2.260T̄ ), B(T̄ ) = 0.274 exp
(
−1.878T̄

)
, p̄g = pg/pc, T̄ = T/Tc, pc and Tc are

critical pressure and temperature of the gas.

If to eliminate variables ρg, ρw from equations (33) using relations (34), we obtain

∂p̄g
∂ζ

− 1

Z(p̄1, T̄ )
p̄g = 0, 0 < ζ < h̄, (36a)

p̄w − p̄0
∂ζ

− z0
z1

(p̄w − p̄0) = ρ̄0, h̄ < ζ < H̄. (36b)

Here we have introduced the dimensionless coordinate ζ = (x3 − L+H) /z0, where z0 = RT/ (gµg),

and used the denotations h̄ = h/z0, H̄ = H/z0, z1 = αw/ (gρ0), p̄0 = p0/pc, ρ̄0 = ρ0/ρc, ρc =

µgpc/ (RT ).

As the pressure on the bottom ζ = H̄ of the porous stratum is formed by water head of height L,

we have

p̄w|ζ=H̄ = ρ̄0
z1
z0

(
exp

(
z0
z1
L̄

)
− 1

)
+ p̄0. (36)

On the boundary between the layers  LII and  LIII we have the condition

p̄g|ζ=H̄ = p̄w|ζ=H̄ . (37)

(36b) is a linear equation. Integrating it with boundary conditions (37), we obtain

p̄w (ζ) = ρ̄0
z1
z0

(
exp

(
z0
z1
ζ + L̄− H̄

)
− 1

)
+ p̄0, h̄ < ζ < H̄. (38)

The formula (39) determines pressure of water in the layer  LIII . Using it we can determine the

right hand side in (38)

p̄w|ζ=H̄ = p̄w
(
h̄
)

= ρ̄0
z1
z0

(
exp

(
z0
z1
L̄+ h̄− H̄

)
− 1

)
+ p̄0 (39)

and obtain boundary condition for (36a).
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(36a) is a separable equation. Integrating it with accounting (38), (40), we obtain

ln
pg (ζ)

pw (ζ)
−A

(
T̄
)

(pg (ζ) − pw (ζ))

+
1

2
B
(
T̄
) (
pg (ζ)2 − pw (ζ)2

)
+ C

(
T̄
) (
ζ − h̄

)
/T̄ = 0, 0 6 ζ 6 h̄, (40)

where C
(
T̄
)
≡ 1 −A

(
T̄
)

+B
(
T̄
)
.

Solving nonlinear equation (41) with respect to pg (ζ) for each ζ ∈ (0, h̄), we can determine gas
pressure in the layer  LII as a function of its thickness coordinate.

To determine the densities pg (ζ) and pw (ζ) of the fluids in layers  LII and  LIII we use the equations
of state (34).

It should be stressed that, when parameters L̄ and H̄ are given, the function pg (ζ), determining
by solving equation (9), is depended on parameterh̄: pg = pg

(
ζ, h̄
)
, which, in turn, is dependent on

the amount of the gas accumulated in the layer.
Let M [kg/m2] be the mass of the gas accumulated in the porous space of  LII referred to unit area

of its middle surface, and m is the porosity of the layer. Then we have the relation

h̄∫

0

pg
(
ζ, h̄
)

dζ =
1

m
M̄, (41)

where M̄ = M/z0.
The relation (42) establishes interdependence between the amount M of gas accumulated in the

layer  LII on the one hand and its thickness h, thickness H of the whole porous layer  L = LII
⋃

 LIII

and its depth L on the other hand.

Fig. 1. Distribution of porous
pressure in the layer  L.

Fig. 2. Dependence between the
amount of accumulated gas and
the thickness h, of the layer  LII

for porous layer  L of thickness
H̄ = 0.03.

Solving the equation (42) with respect to h̄ at fixed H and L, we
can determine the thickness h of the layer  LII , saturated with gas,
depending on the amount of the gas accumulated in it.

Mass capacity of the layer is determined by its surface mass den-
sity that is attained at h = H (when the whole porous layer L is
saturated with gas):

M̄max = m

H̄∫

0

pg
(
ζ, H̄

)
dζ. (42)

Fig. 1 illustrates how porous pressure p̄ (ζ) in the layer  L changes
depending on amount of gas stored in the stratum. We define p̄ (ζ)
as

p̄ (ζ) =

{
pg (ζ) , 0 < ζ < h̄,

pw (ζ) , h̄ < ζ < H̄.
(43)

Curves 1, 2 and 3 in the figure correspond to different values of
dimensionless parameter: h̄ = 0.01, 0.02 and 0.03.

The calculations were made at temperature T = 340 K for layer
 L with dimensionless thickness H̄ = 0.03 and depth L̄ = 0.3. The
following values for parameters were taken for gas: µ = 16.043, pc =
4.649 MPa, Tc = 190.9 K, characteristic length was z0 ≈ 2926.35 m.
For water we took ρ0 = 103 kg/m3, p0 = 105 Pa, αw = 2.4 GPa,
characteristic length was z1 = 2/45 · 105 m.
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As we can see the pore pressure changes in the layer  L on about 8%.
Fig. 2 shows how the boundary dividing the part of the layer  L saturated with gas and other one

saturated with water is moving when the amount of stored gas is varying. Curves 1, 2 and 3 correspond
to different values of depth L̄ = 0.1, 0.3 and 0.6 correspondingly.

7. Stadying the effective elastic moduli and phase velocities of plane waves in the
porous layer

Now we can define the bulk modulus Kf for fluid which appears in the formula (28) for effective bulk
modulus of the saturated porous medium.

Bulk modulus for gas is defined as

αg = ρg
∂pg
∂ρg

. (44)

Applying (44) to the state equation (34)1 and using relation (33) we obtain

αg =
Z
(
p̄g, T̄

)
pg(

1 −B(T̄ )p̄g2
) . (45)

As we can see bulk modulus of gas increases with it pressure. Unlike gas, the compressibility of
water almost doesn’t depend on the pressure. We can take it constant αw (see equation (34)2).

So the bulk modulus of the fluid Kf in the layer  L is dependent on the coordinate ζ ∈ (0, H̄) and
defined by the piecewise continuous function with the point of discontinuity ζ = H̄:

Kf (ζ) =

{
αg (ζ) , 0 < ζ < h̄,

αw (ζ) , h̄ < ζ < H̄.
(46)

where αg (ζ) is defined according to (45). With the use (34), (35), (39), (41) we can calculate, applying
the formula (31), the effective mass density ρ of the saturated porous medium. Value ρf in this formula
is changing along the transversal coordinate ζ and can be defined by the piecewise continuous function
with the point of discontinuity ζ = h̄ :

ρf (ζ) =

{
ρg (ζ) , 0 < ζ < h̄,

ρw (ζ) , h̄ < ζ < H̄.
(47)

Fig. 3 shows dependence of effective mass density of the saturated porous layer on the coordinate
ζ at two different values of gas amount stored in it: a) −h̄ = 0.01 and b) −h̄ = 0.02.

The layer’s thickness and depth are H̄ = 0.03 and L̄ = 0.3.

a b

Fig. 3. Dependence of the effective mass density reffered to ρm on coordinate = ζ at two values of h̄ = 0.01, 0.02.
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So, as we can see, in spite of that ρf is changing in  L on about 8%, layer  L itself can be considered
as piece-wise homogeneous one with respect to its effective mass density. With the use (34), (35),
(39), (41), (45), (46) we can calculate, applying formulas (28), (29) the effective elastic moduli K and
G of saturated porous layer as function of its transversal coordinate depending on amount of the gas
accumulated in the layer, and parameters L and H. As the effective modulus K is depended on bulk
modulus of fluid, its value is changing with the thickness coordinate ζ. It can be represented by a
piecewise continuous function with the point of discontinuity ζ = h̄. Applying formulas (32) we can
calculate the phase velocities of longitudinal CP and transversal CS elastic waves in the layer  L.

Figs. 4 and 5 show the dependences of the phase velocities of longitudinal CP and transversal
CS acoustic waves in the saturated porous layer  L on the coordinate ζ at two different values of gas
amount stored in it: a) −h̄ = 0.01 and b) −h̄ = 0.02. The layer’s  L thickness and depth are H̄ = 0.03
and L̄ = 0.3.

a b

Fig. 4. Longitudinal wave phase velocity in the porous layer at two values of h̄ = 0.01, 0.02.

a b

Fig. 5. Transversal wave phase velocity in the porous layer at two values of h̄ = 0.01, 0.02.

The calculations presented in this section were made under the next values of parameters: Km =
3.9 · 1010 Pa, Gm = 3.3 · 1010 Pa, ρm = 2650 kg/m3, A = 3.

As we can see the layer L itself can be considered as piece-wise homogeneous one with respect to
phase velocities of longitudinal and transversal elastic plane waves.

So, in this section we calculated elastic properties of porous layer, saturated with gas and water,
and justified possibility to apply the model of piece-wise homogeneous elastic layered structure for
describing elastic waves interaction with the layer.

8. Studying wave interference patterns on the free surface

We applied the approach developed in the sections 2 and 3 to study a wave interference pattern on
free surface of the layered structure. We also interested how the pattern is changing with variation the
amount of gas accumulated in the porous layer.
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The calculations were made for depth L = 1000 m and thickness H = 200 m of the layer  L. The
properties of the layers  LI to  LIV , which have been used in calculations, are presented in the table 1.

Table 1. The properties of the layers.

Layer  LI  LII  LIII  LIV

λ, kg/(s2 m), ·1010 8.298 1.279 1.776 8.298

µ, kg/(s2 m), ·1010 3.300 0.514 0.500 3.300

ρ, kg/m3 2650 1887 2156 2650

CP , m/s 5596 2593 2870 5596

CS, m/s 3529 1630 1524 3529

The pulse source of uniform extension was situated at the point S with coordinates x1 = 0,
x2 = 0, xs3 = 250 m. Its seismic moment was determined as Mii = M0ϕ(t), Mij = 0, i 6= j, where
M0 = 9.3 · 1016 Nm, ϕ(t) = exp

(
t2/τ20

)
, τ = 0.1 s.

To study how the wave-field pattern varies, when thickness h of the sublayer saturated with gas
is changing, we solved the problem several times — each time at another value of thickness h. Let
uI

′

i (x1, x2, x3, t;h) be wave field in layer  LI′ calculated for case, when the thickness of the layer  LII

is equal h, and P be a point on the free surface (point of sight) with coordinate x1 = xP1 , x2 =
x3 = 0. Time dependences of tangential U1 = (t, h) = uI

′

1

(
xP1 , 0, 0, t;h

)
and normal U3 = (t, h) =

uI
′

3

(
xP1 , 0, 0, t;h

)
components of displacement vector at the point P with coordinates xP1 = 2000 m,

x2 = 0, x3 = 0 are shown on the figure 6 and 7. Each curve on the figures corresponds to specific value
of thickness h of the layer  LII .

Fig. 6. The time dependences of the tangential com-
ponent of displacement vector at point of sight on the
free surface for different values of thickness h of the

layer  LII .

Fig. 7. The time dependences of the normal compo-
nent of displacement vector at point of sight on the free
surface for different values of thickness h of the layer

 LII .

As we can see, within the interval (0.3 . . . 0.6) s all curves are identical — they do not change with
h. The first two peaks on the curves correspond to P - and S-waves which came to the point P directly
from the source. The next peak at t 6= 0.8 s correspond to a wave reflected by the boundary between
 LI and  LII . It doesn’t move along time axis with changing h, but its shape and amplitude change
with h. Next peaks correspond waves reflected by boundaries between layers  LII and  LIII and between
 LIII and  LIV .

We can receive evidence of this by comparing the curves of figures 6 and 7 with those shown on the
figures 8 and 9 correspondingly. There the time dependences of tangential and normal displacements
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at the point of sight are shown on these figures. The curves 1 on the figures 8 and 9 were calculated
for two-layered structure consisting of bulk layer  LI and porous half-space saturated with gas. The
curves 2 on these figures were calculated for three-layered structure consisting of bulk layer  LI , porous
layer of thickness H, saturated with gas, and porous half-space, saturated with water.

Fig. 8. The time dependences of the tangential com-
ponents of displacement vector at the point of sight
on the free surface for two-layered structure (1) and

three-layered structure (2).

Fig. 9. The time dependences of the normal compo-
nents of displacement vector at the point of sight on
the free surface for two-layered structure (1) and three-

layered structure (2).

Analyzing the time dependences, shown on the figures 6 and 7, we can conclude, that at t > 0.6
the curves, calculated for different thickness h, are differ. So, the curves contain information about the
structure of porous layer  L.

To establish a quantitative relationship between thickness h and the time dependences of dis-
placements Ui (t, h) of free surface, calculated at this h, we used correlation coefficients Rw

Ui
and Rg

Ui
,

i = 1, 2, 3:

Rw
Ui

=

t2∫

t1

(
Ui (t, h) − Ūi (h)

) (
Ui (t, 0) − Ū0

i

)
dt

√(
Ui (t, h) − Ūi (h)

)2
dt

√(
Ui (t, 0) − Ū0

i

)2
dt

,

Rg
Ui

=

t2∫

t1

(
Ui (t, h) − Ūi (h)

) (
Ui (t,H) − ŪH

i

)
dt

√(
Ui (t, h) − Ūi (h)

)2
dt

√(
Ui (t,H) − ŪH

i

)2
dt

.

(48)

Here

Ūi (h) =
1

t2 − t1

t2∫

t1

Ui (t, h) dt, Ū0
i =

1

t2 − t1

t2∫

t1

Ui (t, 0) dt, ŪH
i =

1

t2 − t1

t2∫

t1

Ui (t,H) dt. (49)

Measure Rw
Ui

(h) define deviation of curve Ui (t, h) from the curve Ui (t, 0) which corresponds the
case when the whole porous layer  L has been saturated with water (the storage facility is empty).
Measure Rg

Ui
(h) define deviation of curve Ui (t, h) from the curve Ui (t,H), which corresponds the case

when the whole porous layer  L has been saturated with gas (the storage facility is empty).
On Figs. 10 the dependences of introduced measures Rw

Ui
(h) and Rg

Ui
(h) for tangential (i = 1)

and transversal (i = 3) displacements are presented. Different curves on the plots correspond to
different ranges of integration, which have been used in formula (47): (0 . . . 2.5) s, (0.6 . . . 2.5) s, and
(0.6 . . . 1.6) s. The curves Rw

Ui
(h) and Rg

Ui
(h) corresponding to these time intervals are marked on the

plots by squares, triangles and circles respectively.
As we can see there one-to-one correspondences exist between Rw

Ui
(h) and h as well as between

Rg
Ui

(h) and h. This means that if we know Rw
Ui

(h) or Rg
Ui

(h) we can determine h. It was shown in
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Fig. 10. Dependeces of the measures Rw
i , R

g
i on thickness h of the layer  LII .

section IV, that one-to-one correspondence exists between h and amount M of gas accumulated in the
porous layer (see Fig. 2). So, we can also determine M .

We can see that the measures Rw
Ui

(h) and Rg
Ui

(h) calculated for interval (0 . . . 2.5) s possess the
greatest self-descriptiveness because the slopes of the lines calculated for this time interval are the
greatest. We can also conclude that measures Rw

Ui
(h) and Rg

Ui
(h), calculated for transversal displace-

ment U3 (t, h), are more informative as compared to those Rw
Ui

(h) and Rg
Ui

(h), calculated for tangential
displacement U1 (t, h). This appears from the fact that Rw

Ui
(h) and Rg

Ui
(h) are varied between 1.0 and

0.35, when h changes in interval [0,H], whereas Rw
Ui

(h) and Rg
Ui

(h) are varied between 1.0 and 0.55.

9. Conclusions

Underground gas storage facilities, which are built in aquifer, can be considered as a layered structure
containing a porous layer  L saturated partly with gas and partly with water. The boundary, which
divides these two parts, is displacing when amount of the gas stored in the layer is changing. The
analytical relations establishing distributions of gas and water in porous space of the layer  L have been
obtained. On this basis the direct relationship between the amount of gas accumulated in porous layer
and thickness h of the sublayer saturated with gas, has been established.

With the use of the relations, determining distributions of fluids in the porous space, and of Grass-
mann’s model for dynamics of porous media, the effective elastic moduli and the phase velocities of
elastic waves in the sublayers saturated with gas and water have been calculated. As a result it was es-
tablished that layer  L, saturated with the two fluids (gas and water), can be considered as a piece-wise
homogeneous structure.
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In concordance with this, the semi-infinite horizontally-layered elastic structure containing a porous
layer, saturated partly with gas and partly with water, has been considered as a model of the under-
ground gas storage facility. The mathematical model describing interaction of elastic waves excited in
the structure by a point pulse source, situated in the layer covering the porous layer  L, has been built
and corresponding boundary-value problem formulated.

The problem was being solved with the use of Fourier transform. Time dependences of tangential
and normal displacements in the point of sight, situated on the free structure’s surface, have been
studied depending on the amount of gas accumulated in the layer.

Direct relationship between the thickness h of sublayer, saturated with gas, and wave-field pattern,
calculated for this thickness h, has been established. Numeric measures which establish a relation
between the thickness h and calculated at this h time dependences have been introduced. It was
shown that these measures are almost linearly depend on h. This result can be useful for development
of distant methods for operative a posteriori determination of amounts of natural gas accumulated in
underground storage facilities.
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Математичне моделювання поширення пружних збурень
у структурi, яка мiстить пористий шар, насичений газом i водою
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2Куявсько-Поморський унiверситет, вул. Торунська, 55-57, 85-023, Бидгощ, Польща
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Дослiджено взаємодiю пружних хвиль, зумовлених локальним iмпульсним джерелом,
iз пiвбезмежною горизонтально-шаруватою структурою, що мiстить пористий шар,
насичений газом i водою. Запропоновано математичну модель, яка описує розподiл
газу i води в поровому просторi шару залежно вiд кiлькостi накопиченого в ньому га-
зу. В межах моделi обчисленi ефективнi пружнi модулi областей пористого шару, на-
сичених газом i водою. Сформульовано початково-крайову задачу динамiки пружних
хвиль у структурi та iз застосуванням перетворення Фур’є отримано її розв’язок. Iз
використанням отриманого розв’язку дослiджено картину хвильового поля на вiльнiй
поверхнi структури залежно вiд кiлькостi газу, нагромадженого в пористому шарi.
Введено та чисельно дослiджено характеристики, якi пов’язують параметри хвильо-
вого поля на вiльнiй поверхнi iз кiлькiстю газу, нагромадженого в пористому шарi.
Отриманi результати можна застосувати для розроблення дистанцiйних методiв облi-
ку кiлькостi природного газу в пiдземних сховищах газу, споруджених у водоносних
горизонтах.

Ключовi слова: шаруватi структури; пористi середовища; пружнi збурення.
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