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(Received 1 December 2016)

In this article, the dynamic behavior of a moving elongated object is simulated using
the relations for a viscoelastic rod, which moves at a constant speed under the action of
traction force and distributed along its length external forces of resistance. We investigate
the change of displacements and internal forces after the sudden application in the rod
section of the local force directed longitudinally. The correlations of the initial boundary
value problem that describes the dynamic behavior of the rod are written down, and its
solution is obtained in the form of a series expansion in terms of eigenfunctions. For a
viscoelastic rod consisting of three connected uniform rods, the analysis of wave processes
induced by the application to the rod of a sudden concentrated force that resists the
motion is carried out. This affects the motion of the rod as a whole, and induces the
wave processes, the propagation and reflection of waves on the inner surfaces of joints.
The comparison is performed for the behavior of an elastic, piecewise nonuniform rod and
a viscoelastic rod with different mechanical characteristics, where the waves during their
propagation are damped and smoothed.
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1. Introduction

The study of longitudinal vibrations of elastic and viscoelastic rods subjected to an intensive external
loading was dealt with in a number of papers. Without going into a full review, let us indicate the
directions of studies of the longitudinal dynamics of a rod. The theory of elastic waves in rods and
bars is covered in [1]. The collision of uniform elastic rod with an obstacle and further propagation of
elastic waves in it are described in [2]. The arrival of longitudinal elastic waves in a rod as a result of
an impact on one of its ends is shown in [3] and the wave process in a rod with a slow change in its
cross-section is being studied in [4]. The approach proposed in this work can be extended to the case
of viscoelastic rod. Problems, which can be reduced to the solving the equation of nonuniform rod
vibrations, including the variable cross-section and with variable elastic characteristics are considered
in [5–7]. Analytical solutions of the equations to determine the longitudinal vibrations of nonuniform
elastic rod are obtained in [8, 9] and the problem on determination of the optimal regime of longi-
tudinal loading of one-dimensional moving mechanic system that provides the absence of undesired
elastic vibrations caused by traction or braking forces is shown in [10]. The review of theoretical and
experimental works on the investigation and propagation of nonlinear viscoelastic waves in the case of
one-dimensional deformation, as well as the shock waves and accelerated waves are given in [10]. The
longitudinal vibrations of viscoelastic rod with different forms of vibrations depending on its form are
considered in [11], in which also there is given a complete enough overview of articles of this area of
research.
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Studying the dynamics of moving rod is important for safe vehicles operation. For this purpose,
there are determined the longitudinal elastic vibrations of rods, which simulate the motion of a train,
including the rods with nonuniform characteristics [12–14]. The model of viscoelastic rod is more
physically corresponding to the train motion because it consists of both elastic elements and elements,
which are vibration absorbers.

The studies, which used the solutions of the problems for the rod motion, show that the sudden
application of power load to an elastic rod in the direction of its axis, must give rise to the longitudinal
dynamic deformations and stresses that exceed the elastic limit. It should be taken into account that
the increase in the initial velocity of the rod motion in a medium that resists the movement leads to
an increase in the resistances distributed throughout its length, to an elongation, and to the arising of
internal tensile forces.

In this paper, a longitudinally nonuniform, composed of heterogeneous elements viscoelastic rod
is considered, which moves due to the force applied to one of its ends and undergoes the forces from
the external medium resistant to its motion. Provided establishing the constant velocity, the elastic
dynamic effects in the rod do not arise and only an emergence of additional intensive load directed
oppositely to the motion leads to longitudinal dynamic deformations and stresses. Various cases of
changes of external forces based on their laws have been analysed by example of a moving train.

The objective of this work is to construct a mathematical model that allows studying the dynamic
effects caused by the intensive transient regimes of the longitudinal force load of moving viscoelastic
rod, to obtain a solution of the problem based on the data that must indicate the emergence of such
obstacles to a motion of such systems as a rail train, to analyse the development of dynamic process
based on the values of characteristics related to the viscosity influence.

2. Problem formulation

Let us consider a thin viscoelastic longitudinally nonuniform rod of the given length L. Direct the
x-axis along the rod so that the rod domain is determined by the condition x ∈ (0;L). At the end
x = L, to the rod there is applied the variable in time t force F0(t), and the end x = 0 is free of load.

Along the rod, there act the distributed forces ̟(x, t) directed in the opposite to the force F0(t)

direction so that the forces applied to the rod are balanced, F0(t) =
L∫
0

̟(x, t)dx and under the action

of forces F0(t) and ̟(x, t), the rod is in a state of strain.
At the instant t = 0 at the point x = x∗, to the strained rod a concentrated force P∗(t) is suddenly

applied. This leads to arriving of a longitudinal wave and to a change of the displacement of the rod
as a whole.

The equation to determine the displacements of the points of the nonuniform rod, following [12]
and using the generalized function δ(x) to set a point of application of concentrated force P∗(t), is
written as follows

ρ(x)
∂2u(x, t)

∂t2
− ∂

∂x

(
k(x)

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

))
= −̟(x, t) − δ(x− x∗)P∗(t), (1)

where is a coordinate along the axis, t is time, u(x, t) is a displacement of the rod particles, ρ(x) =
ρV (x)S(x) is the rod density reduced to the axis, where ρV (x) is the density function, S(x) is the
cross-sectional area of the rod, k(x) = E(x)S(x) is a reduced modulus of elasticity, E(x) is a modulus
of elasticity, µu is a coefficient of material inelastic resistance for longitudinal vibrations. Note that µu
also can depend on the coordinates , but such detail is not regarded in this investigation.

Eq. (1) is considered with the boundary conditions corresponding to the absence of external force
at the end x = 0 and to the imposing the force F0(t) at the border x = L, namely

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

)∣∣∣∣
x=0

= 0, and k(x)

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

)∣∣∣∣
x=L

= F0(t), t > 0. (2)
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The initial conditions for the motion and the relative velocity are the following

u(x, t)|t=0 = f0(x),
∂u(x, t)

∂t

∣∣∣∣
t=0

= f1(x), x ∈ (0;L). (3)

The function f0(x) sets the initial displacement of the rod and f1(x) is the velocity distribution at
the initial time.

In order to convert the conditions (2) into uniform ones, the force F0(t) is included into the motion
equation and written as follows

ρ(x)
∂2u(x, t)

∂t2
− ∂

∂x

(
k(x)

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

))
= δ(x− L)F0(t) −̟(x, t) − δ(x − x∗)P∗(t),

x ∈ (0;L), t > 0. (4)

Then Eq. (4) is considered with the uniform boundary conditions

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

)∣∣∣∣
x=0

= 0,

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

)∣∣∣∣
x=L

= 0, t > 0 (5)

and with the initial conditions (3).
From the solution of the initial boundary value problem (4), (5), and (3) we determine the rod

particles displacement. With this, the change of the longitudinal force in the rod can be expressed in
terms of displacement as follows

Φ(x, t) = k(x)

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

)
. (6)

Note that the motion of the rod as a whole due to, in particular, the initial conditions (3) does not
affect the longitudinal force obtained by the formula (6). The internal longitudinal forces depend only
on the rod deformation caused by the external forces.

3. Problem solution representation

Since the problem (4), (5), and (3) is linear, we can decompose its solution and present it as a sum of so-
lution of the homogeneous equation corresponding to (4) with the inhomogeneous initial conditions (3)
and the heterogeneous equation (4) with homogeneous initial conditions.

To find a solution of the homogeneous equation

ρ(x)
∂2u(x, t)

∂t2
− ∂

∂x

(
k(x)

(
∂u(x, t)

∂x
+ µu

∂2u(x, t)

∂x∂t

))
= 0, (7)

we apply the method of separation of variables. Represent u(x, t) = X(x) Θ(t) and substitute it into
Eq. (7).

ρ(x)X(x) Θ̈(t) − d

dx

(
k(x)X ′(x)

(
Θ(t) + µuΘ̇(t)

))
= 0.

Hence we obtain
Θ̈(t)

Θ(t) + µuΘ̇(t)
=

1

ρ(x)X(x)

d

dx

(
k(x)

dX(x)

dx

)
= −λ2,

or an equation to determine X(x)

d

dx

(
k(x)

dX(x)

dx

)
= −λ2ρ(x)X(x) (8)
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and the function Θ(t)
d2Θ(t)

dt2
+ λ2µu

dΘ(t)

dt
+ λ2Θ(t) = 0. (9)

After substitution u(x, t) = X(x)Θ(t) into the boundary conditions (5) we obtain

dX(x)

dx
Θ(t) + µu

dX(x)

dx

dΘ(t)

dt
= 0, at x = 0 and x = L.

Whence it follows that
dX(x)

dx
= 0 at x = 0 and x = L. (10)

Nonzero solutions of Eq. (8) with the conditions (10) we obtain only for the eigenvalues λ = λn
(n = 0, 1, 2 . . .) (note that λ0 = 0 for n = 0, λn > 0 for others n). Let denote them Xn(x). The

functions Xn(x) are orthogonal over the interval (0, L) with the weight factor ρ(x), i.e. they satisfy

the conditions

1

L

L∫

0

ρ(x)Xn(x)Xm(x)dx =

{
6= 0 n = m,

= 0 n 6= m.

We can normalize them and obtain an orthonormal system of eigenfunctions

Zn(x) =
Xn(x)

‖Xn‖
, where ‖Xn‖ =


 1

L

L∫

0

ρ(x)X2
n(x)dx




1

2

, n = 0, 1, 2 . . . . (11)

Find the appropriate λ = λn of the function Θn(t). For λ = λ0 = 0 this function is linear

Θ0(t) = a+ bt. (12)

For n = 1, 2, . . . respectively,

Θn(t) = e−αnt (a cos(βnt) + b sin(βnt)) , (13)

wherе αn = Re(κ), βn = Im(κ), and κ is a solution of the quadratic equation κ2 + λ2nµuκ + λ2n = 0,

namely

αn = −1

2
λ2nµu, βn =

√
−
(
λ4nµ

2
u

4
− λ2n

)
. (14)

The constants a and b serve to satisfy the initial conditions for the further use of the functions

Θn(t) to represent the solution of the initial boundary-value problem.

The functions, which depend on x, over the interval [0, L] can be represented as series of expansions

in terms of Zn(x). A solution of Eq. (4) we also try in the form of expansion

u(x, t) = w0(t)Z0(x) +

∞∑

n=1

wn(t)Zn(x), (15)

where wn(t) are time components of the solution, which provide the satisfaction of the initial conditions,

and their form for different values of λn is determined by the formulae (12) or (13).

Substitute this representation of u(x, t) into Eq. (4) with the initial conditions (3) (boundary

conditions (5) are satisfied as they satisfy the function). Multiply the equation by Zm(x)
L dx and integrate
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over [0, L]. Based on the formula (12), for n = 0 we obtain

w̄0(t) =
Z0(L)

L

t∫

0

(t− τ)F0(τ)dτ − 1

L

t∫

0

(t− τ)




L∫

0

Z0(x)̟(x, τ)dx


 dτ

− Z0(x∗)
L

t∫

0

(t− τ)P∗(τ)dτ (16)

is a solution for zero initial conditions,

¯̄w0(t) = f10t+ f00 (17)

is a solution of the homogeneous equation with conditions (3). Eventually, w0(t) = w̄0(t)+ ¯̄w0(t). Here
f00, f10 are the coefficients of the expansions of the function f0(x) and f1(x), which are the components
of the initial condition (3), into series over the orthogonal functions Zn(x)

f0n =
1

L

L∫

0

ρ(x)Zn(x)f0(x)dx, f1n =
1

L

L∫

0

ρ(x)Zn(x)f1(x)dx. (18)

For n = 1, 2, . . . using (13) we obtain respectively

w̄n(t) =
Zn(L)

Lβn

t∫

0

eαn(t−τ) sin(βn(t− τ))F0(τ)dτ

− 1

βn

t∫

0

eαn(t−τ) sin(βn(t− τ))


 1

L

L∫

0

̟(x, τ)Zn(x)dx


 dτ

− Zn(x∗)

Lβn

t∫

0

eαn(t−τ) sin(βn(t− τ))P∗(τ)dτ, (19)

¯̄wn(t) = f0ne
αnt cos(βnt) +

1

βn
(f1n − αnf0n)eαnt sin(βnt). (20)

Thus wn(t) = w̄n(t) + ¯̄wn(t) (n = 1, 2, . . .). Substitute w0(t) and wn(t) into (15), and obtain the
formula for calculating the displacements in the longitudinal vibrations of the rod.

4. Eigenfunctions for the case of piecewise nonuniform rod

To use the formula (15) for displacements, we need to know the eigenfunctions Xn(x) (n = 0, 1, 2, . . .),
satisfying Eq. (8). Let us obtain such eigenfunctions for a rod (Fig. 1), which consists of three uniform
parts (0, x1), (x1, x2), (x2, L), assuming conditions of ideal elastically deformed contact between them.

*
x     

ϖ  

v0 

L 0 2
x  

1
x  

х 0
F  

P
*
 

Fig. 1. Piecewise nonuniform rod under the action of external forces.
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We obtain solutions of Eq. (8) with the conditions (10) for the eigenvalues λ = λn (n = 0, 1, 2, . . .)
in the form

Xn(x) =

[
cos

(
λn
γ2
γ1

(ξ2 − ξ1)

)
cos

(
λn
γ3
γ1

(1 − ξ2)

)

− k3
k2

γ3
γ2

sin

(
λn
γ2
γ1

(ξ2 − ξ1)

)
sin

(
λn
γ3
γ1

(1 − ξ2)

)]
cos (λnx/L)

cos(λnξ1)
Ξ−1 for 0 < x < x1,

Xn(x) =

[
cos

(
λn
γ2
γ1

(
ξ2 −

x

L

))
cos

(
λn
γ3
γ2

(1 − ξ2)

)

− k3
k2

γ3
γ2

sin

(
λn
γ2
γ1

(
ξ2 −

x

L

))
sin

(
λn
γ3
γ1

(1 − ξ2)

)]
Ξ−1 for x1 < x < x2,

Xn(x) = cos

(
λn
γ3
γ1

(
1 − x

L

))
Ξ−1 for x2 < x < L,

where

Ξ = cos

(
λn
γ2
γ1
ξ2

)
cos

(
λn
γ3
γ1

(1 − ξ2)

)
− k3
k2

γ3
γ2

sin

(
λn
γ2
γ1
ξ2

)
sin

(
λn
γ3
γ1

(1 − ξ2)

)
,

ξ1 = x1

L , ξ2 = x2

L , γi =
√

ρi
ki

, ρi is a linear density, ki is the reduced modulus of elasticity of the i-th

part of the rod i = 1, 2, 3. The eigenvalues λn we obtain by solving the characteristic equation

sin(λγ1x1)

[
cos (λγ2(x2 − x1)) cos (λγ3(L− x2)) −

k3
k2

γ3
γ2

sin (λγ2(x2 − x1)) sin (λγ3(L− x2))

]

+ cos(λγ1x1)

[
k2
k1

γ2
γ1

sin (λγ2(x2 − x1)) cos (λγ3(L− x2)) −
k3
k1

γ3
γ1

cos (λγ2(x2 − x1)) sin (λγ3(L− x2))

]

= 0.

It is obvious that λ0 = 0, X0(x) = 1 and according to (11) Z0(x) =
√

L
M ≡ const. Here M is the

rod weight, L is its length. Then the displacement w0(t)Z0(x) in the formula (15) is the displacement
of the mass center of the rod under the influence of external forces. This component of the total
displacement (15) does not affect the change in time of the internal longitudinal force.

To calculate the displacement u(x, t) and the force Φ(x, t) by the formula (6), let us determine the
orthonormal function Zn(x) n = 1, 2, . . . by the formulae (11).

5. Data formation of the problem

To carry out the numerical calculations, we need to write down the form of distributed forces of
resistance, initial conditions, and to determine the coefficients of the problem. Let us obtain the initial
data by example of a moving train consisting of locomotive and n railway freight wagons, moving at a
coqnstant speed v0.

The train may include unequally loaded freight wagons of various types and so the value of main
resistivity for them will be different. The masses of the locomotive m0 and loaded freight wagons mi

(i = 1;n) when the train starts moving are given. The total length of the train L = l0 +
∑n

i=1 li is
represented as a sum of lengths of the locomotive l0 and freight wagons li. We assume that the origin
is at the tail end of the train. Then the density function ρ(x) on the intervals that occupies each unit
of the rolling stock is obtained in the form ρ(x) = ρi ≡ mi

li
, for x ∈ (xn−i, xn−i+1), i = 0;n x0 = 0,

xn+1 = L. The total mass of the train-rod is calculated according to the formula M =
L∫
0

ρ(x)dx or

M =
n∑

i=0
ρili.
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Writing the function ̟(x, t) of distributed resistance to motion, we ignore its changes in time
because just after applying the additional force P∗(t), the general speed of the train v0 does not have
time to change significantly. The dependence ̟(x) on the main resistivity to motion and other types
of resistance for different speeds v0 and for different types of the moving set of the train can be written
as polynomials with coefficients values found experimentally. Formulae of resistance to motion for
different types of freight wagons and locomotives in the quadratic approximation can be found in a
number of works and in the Rules of traction calculations [16–18].

Distributed along the length of the rod, the power resistance to motion is determined by the formula

̟(x) =
ϑ0i
li
mig, x ∈ (xn−i, xn−i+1) (i = 0;n), (21)

where ϑ0i is the general main resistivity of the i-th unit of the train including the locomotive (i = 0).
Due to this definition the function ̟(x) is piecewise continuous on the interval (0, L) and is inde-

pendent on t when the train is moving at the constant speed v(t) = v0.
If on the straight section under the force F (t) = F0 ≡ const the train is moving at a constant

speed, the traction force and the resistance force are balanced with each other, i.e. F0 =
L∫
0

̟(ξ)dξ.

Moreover, the elastically deformed state of the rod under the action of external forces corresponds to
the stationary state. If at the initial time of observation the dynamic components of displacement
are absent, the train-rod will be strained. Let denote u0(x) the rod particle displacement. Then

ε(x) = du0(x)
dx is its longitudinal deformation, and k(x)du0(x)

dx = F (x) is the internal force reduced to
the axis. Since this force is balanced with distributed forces of resistance, here we obtain the equation

k(x)
du0(x)

dx
=

x∫

0

̟(ξ)dξ (22)

and the formula to calculate displacements

u0(x) =

x∫

0


 1

k(x)

x∫

0

̟(ξ)dξ


 dx. (23)

Taking this state to be an initial state, we write down the functions f0(x) and f1(x) for the initial
conditions in the form

f0(x) = u0(x), f1(x) = v0. (24)

The numerical values of a number of parameters needed for input data are obtained from the reference
books and documents on transportations [16]. The evaluation of the coefficient of inelastic resistance
µu can be performed according to the dynamic behaviour of the rod, the propagation, and the form of
the elastic wave.

6. The calculation and analysis of dynamic behavior of moving rod

Let us carry out control calculations for the rod (Fig. 1), which consists of three connected uniform
parts. The traction force F0 and the distributed resistance forces ̟(x) are balanced and the strained
by them rod at the initial time is moving uniformly with the speed v0.

If at the time t = 0 when x = x∗ the additional force of resistance P∗ suddenly emerges, which
acts in the opposite direction to the traction F0, in the core the wave processes arrive due to a sudden
application of the force, the nature of which depends on its magnitude as well as on the parameters
and characteristics of the rod. We assume that the distributed forces of resistance ̟(x) immediately
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after application P∗ do not change in time because they depend on the speed and we assume that the
speed of the rod as a whole in a short period of time has not changed significantly.

Parameters and characteristics of the rod are the following: x1 = 400 m, x2 = 800 m, L = 1000 m;
the linear density of the parts ρ1 = 6000 kg/m, ρ2 = 4000 kg/m, ρ3 = 7000 kg/m; the reduced modulus
of elasticity k1 = 4 · 106 N, k2 = 3 · 106 N, k3 = 9 · 106 N; the traction force F0 = 1.8 · 105 N. The
distributed force of resistance on the rod parts ̟1 = 200 N/m, ̟2 = 100 N/m, ̟1 = 300 N/m;
v0 = 20 m/s; the additional force of resistance P∗ = 1.8 · 105 N applied to the section x∗ = 700 m.

The initial displacements due to the strain by the given forces F0 and ̟(x) are obtained by the
formula (23). Write them as follows

u(x, 0) =





k−1
0 ω0

x2

2
, 0 < x < x1,

k−1
0 ω0

x21
2

+ k−1
1

(
ω0x1(x− x1) + ω1

(x− x1)
2

2

)
, x1 < x < x2,

k−1
0 ω0

x21
2

+ k−1
1

(
ω0x1(x2 − x1) + ω1

(x2 − x1)
2

2

)

+k−1
2

(
ω0x1(x− x2) + ω1(x2 − x1)(x− x2) + ω2

(x− x2)
2

2

)
, x2 < x < L

(25)

and use then in solving problems for the initial conditions.

� ��� ���
 ��� �

 (s)
4 

3 

2 

1 

�
 

1 4

�
 (m) 

2 3 

Fig. 2. Longitudinal vibrations in the middle part of
the rod x = 500 m. Curves 1–4 correspond to the
different values of the coefficient of inelastic resistance

µu = 0.05; 0.25; 0.5; 1 s.

Calculate the deformation displacements ac-
cording to the formula (15) for some values of
µu, excluding the motion of the rod as a whole.

In Fig. 2 there are shown the displacements
in the middle part of the rod (x = 500) µu =
0.05; 0.25; 0.5; 1 s. The displacements are sensi-
tive to changes of the coefficient of inelastic re-
sistance at µu < 0.5. This gives grounds to ob-
tain values of µu if to obtain data on the change
of the parameters of vibration. For the greater
values of µu the sensitivity decreases. The same
happens with the increasing time of the observa-
tion, because eventually vibrations are damped.

With increasing viscosity of the rod, the vibrations are damped significantly faster. Then the accuracy
requirements for the input µu are lower.

Let us give for some values of µu the graphs of changes of the function of the force Φ(x, t) (6) along
the length x of the rod at t = 5 s (Fig. 3a), and at t = 25 s (Fig. 3b). Parameters and characteristics of
the rod are those that have been given above. Curves 1–5 in these figures correspond to the following
values µu = 0; 0.05; 0.1; 0.25; 0.5. As the force P∗ is applied suddenly at the initial time t = 0 and then
remains constant, at the point of force application x∗ the function fΦ(x, t) for t > 0 has the jump of
the magnitude of P∗. From this point, the disturbance extends in both directions. In the case of an
elastic rod µu = 0, the wave has a spasmodic form and is not damped, but partially passes through the
inner surface of the rod material changes, and partly is reflected from them, and also is reflected from
the ends of the rod. The superposition of the reflected waves and waves that passed the inner borders
forms a complex picture of changes of the elastically deformed state of the rod. If the rod is viscoelastic,
the wave front is smoothed (curves 2–5), and the more it is smoothed, the more the value of µu is.
During passing and being reflected from the inner surface (x = 800) the viscosity causes the distortion
of the waves. This is observed in Fig. 3a) (t = 5 s). Note that for the rod under consideration, for
µu > 0.5 the curves in the graphs differ slightly. That confirms the decrease of sensitivity to changes
of this parameter.
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Fig. 3. Change of the inner longitudinal force Φ(x, t) (N) with respect to rod length at the moment t = 5 s
(Fig. 3a) and at t = 25 s (Fig. 3b) for different values of µn. Curves 1–5 correspond to the values µn =

0; 0.05; 0.1; 0.25; 0.5.

Show the change of the stress state of the rod at its various points for several moments of time. In
Fig. 4a, b, the graphics are presented for changes along the rod length of the inner longitudinal force
calculated at µu = 0.5 for some moments of time immediately after applying the force P∗.
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Fig. 4. Function of inner longitudinal force Φ(x, t): a) curves 1–5 correspond to moments t = 0; 1; 2; 3; 5 s;
b) curves 1–5 correspond to moments t = 0; 10; 20; 30; 40 s.

The elastic wave propagating in both directions from the point of application of P∗, and the caused
by it force lay over the initial distribution of forces emerged under the action of traction force F0 and
the resistance force to motion ̟(x) (curve 1). As a result, the tensile force in the domain x < x∗ is
reduced, while for x > x∗ it increases and may exceed the value of F0. Over time, when x < x∗ the
deformation forces are compressive and inner forces have the negative values (Fig. 4b).

Especially significant deformations and the caused by them stresses occur at the time just after the
sudden application of the force P∗. With the increase of time, due to scattering of vibrational energy,
the rod should transit slowly into the steady state. Note that for objects that have a different resistance
to motion at different speeds, we must also take into account the dependence of the force ̟(x, t) on
time t. The performed calculations do not provide for such a dependence, but the mathematical model
allows us to consider such problems.
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7. Conclusions

The problem describing the dynamic behavior of longitudinally nonuniform viscoelastic rod that moves
under the action of traction force and in the presence of the distributed forces of resistance is formulated.
The obtained solution of the considered problem allows writing down the mathematical formulae for
dynamic displacements, deformations and longitudinal forces for a sudden application of a local force
directed against the motion. The proposed approach gave us the opportunity to analyse the dynamic
process development in the rod depending on its parameters and mechanical characteristics. The values
of the coefficient of material inelastic resistance are of a particular interest. The performed calculations
showed that in the first seconds after a sudden application of a force directed against the motion, the
dynamic effects lead to a local increase in the internal tensions. Taking into account the viscosity does
not lead to their values substantial decrease. It leads to smoothing the wave front and to its distortion
as a result of reflections from the inner surfaces when considering a piecewise nonuniform rod. An
intensive force localized within the rod causes the strain increase of its parts where the traction force
is applied, and a significant increase of the inner forces within it. With this, in the running over part
of the rod, the compressive deformations and negative forces that can be evaluated in each particular
case.
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Поздовжнi коливання в’язко-пружного поздовжньо неоднорiдного
стрижня пiд дiєю розподiленого по його довжинi силового

навантаження

Гера Б.1, Сiтаж M.2, Болжеларський Я.1

1Днiпропетровський нацiональний унiверситет залiзничного транспорту iменi академiка В. Лазаряна
вул. Iванни Блажкевич, 12a, 79052, Львiв, Україна
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Динамiчну поведiнку рухомого видовженого об’єкта змодельовано з використанням
спiввiдношень для в’язко-пружного стрижня, котрий рухається зi сталою швидкiстю
пiд дiєю сили тяги та розподiлених по його довжинi сил зовнiшнього опору. Дослiдже-
но змiну перемiщень i внутрiшнiх сил пiсля раптового прикладання в його перерi-
зi локальної сили у поздовжньому напрямку. Записано спiввiдношення початково-
крайової задачi, що описує динамiчну поведiнку стрижня, та отримано її розв’язок
у виглядi розвинення в ряд за власними функцiями. Для в’язко-пружного стрижня,
що складається з трьох з’єднаних однорiдних стрижнiв, проведено аналiз хвильо-
вих процесiв, викликаних раптовим прикладанням в областi стрижня зосередженої
сили, що чинить опiр руховi. Це впливає на рух стрижня як цiлого, а також ви-
кликає хвильовi процеси, проходження i вiдбивання хвиль на внутрiшнiх поверхнях
з’єднань. Приведено порiвняння поведiнки пружного кусково-неоднорiдного стрижня
та в’язко-пружного стрижня з рiзними механiчними характеристиками, де хвилi пiд
час поширення загасають i згладжуються.
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