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1. Introduction

The fractional derivatives and integrals [1–5] are widely used to study anomalous diffusion in porous
media [5–19], in disordered systems [20–31], in plasma physics [32–37], in turbulent [38–40], kinetic
and reaction-diffusion processes [40–48], etc. [5, 49]

Currently, together with phenomenological approaches for constructing of the Fokker-Planck equa-
tion, the diffusion equation and its generalization — the Cattaneo equation with fractional derivatives,
there are two methods of constructing such equations, namely, (1) probabilistic method, which is based
on the Chapman-Kolmogorov equation in the stochastic theory of random processes [5, 40, 50], and
(2) statistical approach, which is based on the projection operator method (memory functions) [22–28,
44], as well as on the Liouville equation with fractional derivatives [51–64]. In particular, by using this
method, the BBGKY hierarchy equations with fractional derivatives [52, 53, 59], transport equation,
diffusion equation, and the Heisenberg equation with fractional derivatives [55–57] are obtained. This
approach is formulated for non-Hamiltonian systems. If the Helmholtz conditions for coordinate and
momentum derivatives of fields of velocities and forces, which act on particles, are fulfilled, the Hamil-
tonian systems with the time-reversible Liouville equation with fractional derivatives are obtained from
non-Hamiltonian systems. In Ref. [65], time-irreversible equations of motion of Hamilton and Liouville
for dynamic of classical particles in space with multifractal time are offered. By using the definition
of fractional derivative and the Riemann-Liouville integral, the time-irreversible Liouville equation
with fractional derivatives (where the time is given on multifractal sets with fractional dimensions)
is obtained. In Refs. [66, 67], kinetic equations for systems with fractal structure (in particular, for
description of diffusion processes in space of coordinates and momenta) are obtained within the Klimon-
tovich approach. A similar approach for constructing of time fractional generalization for the Liouville
equation and the Zwanzig equation (within projection formalism) is proposed in Ref. [68]. An approach
with the method of projection operators (memory functions), which is developed in Refs. [22–29, 44],
is based on modeling of an frequency dependence of memory functions with using fractional derivatives
and integrals [1–5]. For the first time, in Refs. [22–24], Nigmatullin received diffusion equation with
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fractional derivatives in time for the mean spin density [22], the mean polarization [23], and the charge
carrier concentration [24]. In Ref. [25], justification of equations with fractional derivatives is given,
and the time irreversible Liouville equation with the fractional time derivative is provided. Within
this approach, important results, including microscopic model of a non-Debye dielectric relaxation,
which generalizes the Cola-Cola law [28] and the Cola-Davidson law [26], are obtained. In Ref. [29], by
using the fractal nature of transport processes of charge carriers, it is studied low-frequency behavior
of conductivity with taking into account polarization effects of electrode, which is in good agreement
with experimental data.

In our recent work [69], by using the Zubarev nonequilibrium statistical operator method [70–73]
and the maximum entropy principle for the Renyi entropy, we consider a way of obtaining generalized
(non-Markovian) diffusion equation with fractional derivatives. The use of the Liouville equation with
fractional derivatives proposed by Tarasov in Refs. [51–54] is an important and fundamental step for
obtaining this equation.

By using the Zubarev nonequilibrium statistical operator method and the maximum entropy prin-
ciple for the Renyi entropy, we found a solution of the Liouville equation with fractional derivatives
at a selected set of observed variables, we chose nonequilibrium average values of particle density as a
parameter of reduced description, and then we received a generalized (non-Markovian) diffusion equa-
tion with fractional derivatives. In the next section by using [69], new non-Markovian electrodiffusion
equations for ions in spatially heterogeneous environment with fractal structure are obtained. Different
models of frequency dependence of memory functions are considered, and the electrodiffusion equations
with fractality of space-time are obtained.

2. Generalized electrodiffusion equations with fractional derivatives

To describe the electrodiffusion processes of ions in heterogeneous environments with fractal structure,
one of main parameters of the reduced description is the nonequilibrium density of ion numbers of
corresponding sort b, nb(r; t) = 〈n̂b(r)〉tα, where n̂b(r) =

∑Nb

j=1 δ(r− rj) is the microscopic ion density
of the sort b. The corresponding generalized electrodiffusion equation for nb(r; t) can be obtained on
base of approach [69], by using the Zubarev nonequilibrium statistical operator method within the
Renyi statistics for solution of the Liouville equations with fractional derivatives,

∂

∂t
〈n̂a(r)〉tα =

∂α

∂rα
·
∑

b

∫
dµα(r

′
)

t∫

−∞

eε(t
′−t)Dab

q (r, r
′
; t, t

′
) · ∂α

∂r′α
βν∗b (r′; t′)dt′, (1)

where a and b are sorts of positive and negative ions,

Dab
q (r, r′; t, t′) = 〈v̂a(r)T (t, t′)v̂b(r

′)〉tα,rel (2)

is the generalized coefficient of mutual ion diffusion of the corresponding sorts a and b within the Renyi
statistics, averaging of which is performed with a power-law Renyi distribution.

ρrel(t) =
1
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q
β
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H −
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where

ZR(t) = Îα(1, . . . , N)T̂ (1, . . . , N)

(
1 − q − 1

q
β

(
H −

∑

b

∫
dµα(r)ν∗b (r; t)n̂b(r)

)) 1

q−1

(4)
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is the partition function of the relevant distribution function, H is a Hamiltonian of system, 0 < q 6 1,
q is the Renyi parameter.

ν∗b (r; t) =
νb(r; t)

1 +
q − 1

q

∑

b

∫
dµα(r)νb(r; t) 〈n̂b(r)〉tα

,

T (t, t′) = exp+

(
−
∫ t
t′(1 − Prel(t

′))iLαdt
′
)

is the evolution operator in time containing the projection;

exp+ is the ordered exponentia, Prel(t
′) is the generalized Kawasaki-Gunton projection operator de-

pended on a structure of the relevant statistical operator (distribution function), ρrel(x
N ; t′). iLα is

the Liouville operator for a system of ions in heterogeneous environment with fractal structure. Pa-
rameter νb(r; t) = γb(r; t) + Zbeϕ(r; t) is the electrochemical potential of ions with valence Zb, which
is determined from the self-consistency condition,

〈n̂b(r)〉tα = 〈n̂b(r)〉tα,rel . (5)

γb(r; t) is the chemical potential of ions of the sort b, ϕ(r; t) is the scalar potential of electromagnetic
field of ion system in a heterogeneous environment with fractal structure; β = 1/kBT , kB is the
Boltzmann constant, T is the equilibrium value of temperature; v̂a(r) =

∑Na

j=1 vjδ(r−rj) is microscopic
ion flux density of the sort a. The average values in Eq. (2) are calculated by (see Ref. [69])

〈(. . .)〉tα,rel = Îα(1, . . . , N)T̂ (1, . . . , N)(. . .)ρrel(x
N ; t),

where Îα(1, . . . , N) for system of N particles has the form

Îα(1, . . . , N) = Îα(1), . . . , Îα(N), Îα(j) = Îα(rj)Î
α(pj)

and defines the integration operation,

Îα(x)f(x) =

∞∫

−∞

f(x)dµα(x), dµα(x) =
|x|α
Γ(α)

dx. (6)

The operator T̂ (1, . . . , N) = T̂ (1), . . . , T̂ (N) defines the operation

T̂ (xj)f(xj) =
1

2

(
f(. . . , x′j − xj, . . .) + f(. . . , x′j + xj , . . .)

)
.

In the generalized electrodiffusion equation (1), dα is a fractional differential [74] that is defined by

dαf(x) =

2N∑

j=1

Dα
xj
f(x)(dxj)

α,

where

Dα
xf(x) =

1

Γ(n− α)

x∫

0

f (n)(z)

(x− z)α+1−n
dz (7)

is the Caputo fractional derivative [1, 2, 75, 76], n− 1 < α < n, f (n)(z) = dn

dzn f(z) with the properties
Dα

xj
1 = 0 and Dα

xj
xl = 0, (j 6= l).

At q = 1, the generalized electrodiffusion equation within the Renyi statistics goes into the gen-
eralized electrodiffusion equation within the Gibbs statistics with fractional derivatives. If q = 1
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and α = 1, we obtain the generalized electrodiffusion equation within the Gibbs statistics. In the
Markov approximation, the generalized coefficient of mutual diffusion in time and space has the form
Dab

q (r, r′; t, t′) ≈ Dab
q δ(t − t′)δ(r − r

′), by excluding the parameter ν∗a(r′; t′) via the self-consistency
condition, we obtain the electrodiffusion equation with fractional derivatives from Eq. (1)

∂

∂t
〈n̂a(r)〉tα =

∑

b

Dab
q

∂2α

∂r2α
ν∗b (r′; t′). (8)

The generalized electrodiffusion equation takes into account spatial fractality of system and memory
effects in the generalized coefficient of mutual ion diffusion Dab

q (r, r′; t, t′) within the Renyi statistics.
Obviously, spatial fractality of system influences on ion transport processes that may manifest as mul-
tifractal time with characteristic relaxation times. It is known that the nonequilibrium correlation
functions Dab

q (r, r′; t, t′) can not be exactly calculated, therefore the some approximations based on
physical reasons are used. In the time interval −∞÷ t, ion transport processes in spatially heteroge-
neous system can be characterized by a set of relaxation times that are associated with the nature of
interaction between ions and particles of environment with fractal structure associated with polarizing
effects and influence of electromagnetic field. In particular, in a recent Ref. [29], authors took into
account polarization effects of electrode during investigation of frequency dependence of conductiv-
ity, correct behavior of which is received with taking into account fractality of transfer processes of
charge carriers by modeling of memory functions. For opening of multifractal time in the generalized
electrodiffusion equation, we use the following approach for the generalized coefficient of mutual ion
diffusion

Dab
q (r, r′; t, t′) = Wa(t, t′)D

ab
q (r, r′), (9)

where Wa(t, t′) can be defined as the time memory function. In view of this, Eq. (1) can be represented
as

∂

∂t
〈n̂a(r)〉tα =

t∫

−∞

eε(t
′−t)Wa(t, t′)Ψa(r; t′)dt′, (10)

where

Ψa(r; t′) =
∑

b

∫
dµα(r′)

∂α

∂rα
·Dab

q (r, r′) · ∂α

∂r′α
βν∗b (r

′
; t′). (11)

Further we apply the Fourier transform to Eq. (10), and as a result we get in frequency represen-
tation

iωna(r;ω) = Wa(ω)Ψa(r;ω). (12)

We can represent frequency dependence of the memory function in the following form

Wa(ω) =
(iω)1−ξ

1 + iωτa
, 0 < ξ 6 1, (13)

where the introduced relaxation time τa characterizes ion transport processes in system. Then Eq. (12)
can be represented as

(1 + iωτa)iωna(r;ω) = (iω)1−ξΨa(r;ω). (14)

Further we use the Fourier transform to fractional derivatives of functions,

L
(
0D

1−ξ
t f(t); iω

)
= (iω)1−ξL(f(t); iω). (15)
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By using it, the inverse transformation of Eq. (14) to time representation gives the Cattaneo-type
generalized electrodiffusion equation with taking into account spatial fractality,

τa
∂2

∂t2
na(r; t) +

∂

∂t
na(r; t) =0D

1−ξ
t Ψa(r; t) =

∂1−ξ

∂t1−ξ
Ψa(r; t), (16)

or in the expanded form

τa
∂2

∂t2
na(r; t) +

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

∫
dµα(r′)

∂α

∂rα
·Dab

q (r, r′) · ∂α

∂r′α
βν∗b (r

′
; t), (17)

is the new Cattaneo-type generalized equation within the Renyi statistics with multifractal time and
spatial fractality. At q = 1 from Eq. (17), we get the Cattaneo-type generalized equation within the
Gibbs statistics with multifractal time and spatial fractality,

τa
∂2

∂t2
na(r; t)+

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

∫
dµα(r′)

∂α

∂rα
·Dab

q (r, r′) · ∂
α

∂r′α
β
(
γb(r

′; t) + Zbeϕ(r′; t)
)
, (18)

It should be noted that the right side of Eqs. (16), (18) has fractional derivative of the scalar potential of
electromagnetic field ∂α

∂r′αβZbeϕ(r′; t), that indicates the need to take into consideration the Maxwell
equations with fractional derivatives for systems with spatial fractality for a full description of ion
transfer processes in such environment. Eqs. (16), (18) contain significant spatial heterogeneity in

D
ab
q (r, r′). If we neglect spatial heterogeneity,

D
ab
q (r, r′) = D

ab
q δ(r − r

′), (19)

we get the Cattaneo-type diffusion equation with fractality of space-time and constant coefficients of
mutual diffusion within the Renyi statistics

τa
∂2

∂t2
na(r; t) +

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

D
ab
q

∂2α

∂r2α
βν∗b (r; t), (20)

or in the expanded form

τa
∂2

∂t2
na(r; t) +

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

D
ab
q

∂2α

∂r2α
β

νa(r; t)

1 +
q − 1

q

∑

a

∫
dµα(r)νa(r; t) 〈n̂a(r)〉tα

, (21)

and at q = 1 we get the Cattaneo-type diffusion equation with fractality of space-time and constant
coefficients of mutual diffusion within the Gibbs statistics,

τa
∂2

∂t2
na(r; t) +

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

D
ab ∂2α

∂r2α
νa(r; t), (22)

It should be noted that if we put α = 1 in Eqs. (20)–(22), i.e. we have neglected spatial fractality, we
get the Cattaneo-type diffusion equations, which were obtained in Refs. [9, 18],

τa
∂2

∂t2
na(r; t) +

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

D
ab ∂2

∂r2
νa(r; t). (23)
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At τa = 0, we get an important particular case — the generalized electrodiffusion equation of ions
with taking into account fractality of space-time,

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

∫
dµα(r′)

∂α

∂rα
·Dab

q (r, r′) · ∂α

∂r′α
βν∗b (r

′
; t), (24)

and by neglecting spatial heterogeneity of mutual diffusion coefficients D
ab
q (r, r′), we also get the

electrodiffusion equation with constant coefficients of mutual diffusion with fractional derivatives within
the Renyi statistics,

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

D
ab
q

∂2α

∂r2α
βν∗b (r; t), (25)

At α = 1, τa = 0, we get the electrodiffusion equation with constant coefficients of mutual diffusion
without spatial fractality within the Renyi statistics

∂

∂t
na(r; t) =0D

1−ξ
t

∑

b

D
ab
q

∂2

∂r2
βν∗b (r; t), (26)

At α = 1, τa = 0, q = 1, ξ = 1, we get the usual electrodiffusion equation for ions within the Gibbs
statistics,

∂

∂t
na(r; t) =

∑

b

D
ab ∂2

∂r2
βνb(r; t). (27)

Let us consider another model of the memory function

Wa(ω) =
(iω)1−ξ

1 + (iωτa)γ−1
, (28)

then in frequency representation we get

(
1 + (iωτa)γ−1

)
iωna(r;ω) = (iω)1−ξΨa(r;ω). (29)

By using Eq. (15) and inverse transformation of Eq. (29) to the time t, we get the generalized Cattaneo-
type electrodiffusion equation with taking into account multifractal time and spatial fractality,

τγ−1
a

∂γ

∂tγ
na(r; t) +

∂

∂t
na(r; t) =0D

1−ξ
t Ψa(r; t) =

∂1−ξ

∂t1−ξ
Ψa(r; t) (30)

which has a similar structure to the Cattaneo equation of Ref. [77].
In the case of such model for the memory function

Wa(ω) =
(iω)1−ξ

(iωτa)γ−1
, (31)

we get the generalized electrodiffusion equation of ions with fractality of space-time within the Renyi
statistics,

τγ−1
a

∂γ

∂tγ
na(r; t) =0D

1−ξ
t Ψa(r; t) =

∂1−ξ

∂t1−ξ
Ψa(r; t). (32)

At ξ = 1, this equation has the form

τγ−1
a

∂γ

∂tγ
na(r; t) = Ψa(r; t), (33)
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and in the case of neglecting the spatial dependence of mutual diffusion coefficient, we get

τγ−1
a

∂γ

∂tγ
na(r; t) =

∑

b

D
ab
q

∂2α

∂r2α
βν∗b (r; t). (34)

Solutions of Eq. (34) are studied in Ref. [78].

3. Conclusions

By using approach of Ref. [69], the new non-Markovian electrodiffusion equations of ions in spatially
heterogeneous environment with fractal structure are obtained. By using approaches for the memory
functions and fractional calculus [1–5], the generalized Cattaneo-type diffusion equations with taking
into account fractality of space-time are obtained. It is considered the different models for the frequency
dependence of the memory functions, which lead to the known diffusion equations with the fractality
of space-time [9, 18, 24, 77, 78] and their generalizations.
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Узагальненi рiвняння електродифузiї з просторово-часовою
фрактальнiстю

Костробiй П. П.1, Маркович Б. М.1, Вiзнович О. В.1, Токарчук М. В.1,2
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Отримано новi немарковськi рiвняння електродифузiї iонiв у просторово неоднорi-
дному середовищi з фрактальною структурою та узагальненi рiвняння дифузiї типу
Кеттано з врахуванням просторово-часової фрактальностi. Розглянуто рiзнi моделi
частотної залежностi для функцiй пам’ятi, якi приводять до вiдомих рiвнянь дифузiї
з просторово-часовою фрактальнiстю, а також їх узагальнень.

Ключовi слова: узагальнене рiвняння дифузiї, нерiвноважний статистичний
оператор, статистика Ренi, часова мультифрактальнiсть, просторова фракталь-
нiсть, просторово-часова фрактальнiсть.
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