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1. Introduction

Due to the intensive experimental investigations of surfaces by means of scanning tunneling microscopy,
scanning tunneling spectroscopy, field-ion microscopy, and their modifications [1, 2], the problem of
investigating electron and ion subsystems of a metal under the action of an external electric field takes
on the special actuality.

The density functional theory [3, 4] and its modifications (stabilized jellium) [5] are the first and
most widely used theoretical models to describe the electron properties of simple metal surfaces (with
s− p bonds). These models describe well enough the basic (one-particle) properties of inhomogeneous
electron gas and do not include the impact of both ionic lattice of a metal, and the impact of many-
body effects in inhomogeneous electron gas. Effect of discrete ion density on characteristics of the semi-
infinite jellium by constructing a perturbation theory with pseudopotential of electron-ion interaction
was made in the Refs. [3–9], which however linear response of electron density on the lattice potential
did not take into account effects of heterogeneity of electron subsystem.

A method to calculate the impact of discreteness of ion subsystem on characteristics of inhomo-
geneous electron gas is developed in Refs. [10–12]. The basis of this method is perturbation theory
with pseudopotential of electron-ion interaction taking into account the heterogeneity of electronic
subsystems. In Refs. [10, 12], an effective interionic potential is calculated with the infinite square well
as model of the surface potential.

In the present work, as in Refs. [10, 12], the effective interionic potential is calculated, but we take
into account an external electrostatic field and use the local field correction not only in the Hubbard
form [13] but also in the Ichimaru form [14]. Effects of surface of semi-infinite metal and external
electrostatic field on the effective interionic potential are investigated.

2. Model

We consider a semi-infinite metal with ions having charges Z|e| and Cartesian coordinates R =
(R||j , Zj), R||j = (Xj , Yj), j = 1, 2, . . . , Nion (Nion is a number of ions, e is the charge of the electron).

Ions are located in a half-space Ω =
{

(Xj , Yj, Zj) : −
√
S/2 < Xj , Yj < +

√
S/2,−L/2 < Zj 6 Z0

}
,
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where Z0 = const, z = Z0 is the division plane (surface). Electrons of a semi-infinite metal have
coordinates ri = (r||i, zi), r||i = (xi, yi), i = 1, 2, . . . , N (N is a number of electrons). We assume that
the system is electroneutral, that is ZNion = N , and ions are fixed.

The semi-infinite metal is situated in the external electric field with the strength E. The field is
applied perpendicular to the division surface.

As in Ref. [10], we use the semi-infinite jellium as the reference system for the study of the semi-
infinite metal. Because electrons are in the external electric field, we model the surface potential
Vsurf(z) by such model potential

Vsurf(z) =

{
W + eEz, z > 0,
0, z < 0,

(1)

that enables to solve analytically the Schrödinger equation. The parameter W in Eq. (1) is the barrier
height. Analytical solution of the Schrödinger equation with the potential model (1) is given in Ref. [15].

3. Effective interionic pair potential

In Refs. [10, 12], there is shown that the two-dimensional Fourier transform V (q|Z1, Z2) of the interionic
pair potential has the from

V (q|Z1, Z2) = Z2ν(q|Z1 − Z2) +
β

SL2

∫
dz

∫
dz′ w(q|Z1 − z)M̃(q|z, z′)w(q|z′ − Z2), (2)

where w(q|z) =

∫
eiqr||w

(√
r2|| + z2

)
dr|| is two-dimensional Fourier image of the local pseudo-

potential w, β is the inverse thermodynamic temperature, ν(q|Z1 − Z2) = 2πe2

q exp(−q|Z1 − Z2|)
is the two-dimensional Fourier image of the Coulomb interaction, M̃(q|z, z′) is two-particle correlation
function “density–density”, which is the solution of second order Fredholm integral equation [16],

M̃(q|z1, z2) = M0(q|z1, z2)

+
β

SL2

∫
dz

∫
dz′ M0 (q|z1, z)

[
ν(q|z − z′) − ν(q|z − z′)

]
M̃(q|z′, z2), (3)

Here M0(q|z1, z) is the two-particle correlation function “density–density” without taking into account
the Coulomb interaction between electrons [16], ν(q|z− z′) = 1

L

∑
k e

ik(z−z′)νk(q), νk(q) = Gk(q)νk(q),

Gk(q) is a local-field correction, νk(q) = 4πe2

q2+k2 is the three-dimensional Fourier image of the Coulomb
interaction.

By using the two-dimensional Fourier transform V (q|Z1, Z2) (2), we can find the effective interionic
pair potential in coordinate representation,

V (R||, Z1, Z2) =
1

2π

∞∫

0

q J0(qR||)V (q|Z1, Z2)dq, (4)

where J0(qR||) is the Bessel function of the first kind.

4. Numerical results and conclusions

The numerical calculations of the effective interionic pair potential are performed for the Hartri approxi-
mation (Gk(q) = 0), for the Ichimaru approximation [14], and the modified Hubbard approximation [13]
for homogeneous electron gas,

Gk(q) =
1

2

q2 + k2

q2 + k2 + ξ k2F
, (5)
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where kF =
√

2mµ/~ is the magnitude of the Fermi wave vector, µ is the chemical potential of electronic
subsystem, m is the electron mass. ξ is the parameter, whose value may be the following: ξ = 1 (the
Hubbard approximation), ξ = 2 (the Geldart and Vosko approximation), ξ = 1 + 2

πkFaB
(the Animalu

approximation), ξ = 1 + 4
πkFaB

(the Sham approximation).
As a model of the local pseudo-potential, we use the pseudo-potential of Krasko and Gurskii (see

Refs. [17, 18])

w(r) = −Ze2
r

+
Ze2
r

(
1 + a

r

rc

)
exp

(
− r

rc

)
,

where a and rc are parameters of the pseudo-potential. The two-dimensional Fourier image of this
pseudo-potential has the form

w(q|z) = −2πZe2
q

exp(−q|z|) + 2πZe2
(

a|z|
1 + (qrc)

2 + rc
1 + a+ (qrc)

2

(1 + (qrc)2)3/2

)
exp

(
−
√

1 + (qrc)2
|z|
rc

)
.

(6)
The calculation is performed for potassium (the Wigner-Seitz rs = 4.86, the lattice period 5.225 Å or
9.87aB) and the following parameters rc = 0.7777aB, a = 2.0333. The strength of the external electric
field is E = 40 V/nm.
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Fig. 1. The effective interionic pair potential as a function of the distance between two ions in the divi-
son plane at E = 40 V/nm, and the following normal to the division coordinates: Z1 = Z2 = −10 aB (a);

Z1 = Z2 = −5 aB (b); Z1 = Z2 = −3 aB (c); Z1 = Z2 = −1 aB (d).

In Fig. 1, the effective interionic pair potential as a function of the distance between two ions in the
division plane is presented for the same normal to the division plane coordinates (Z1 = Z2). In the
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case Z1 = Z2 = −10 aB (see Fig. 1a), the effective interionic pair potential has the same form as one
in unbounded metal, i.e. the division plane and the external electrostatic field do not affect on this
potential. Using of the Hartri approximation leads to appearance of the potential well at R|| ≈ 18 aB
with very little depth. Taking into account of the local field correction leads to shift to the left and
deepening of the potential well, and the position of this potential is approximately at the lattice period
for potassium. If two ions approach the division plane, the potential well decreases and shifts to the
right (see Fig. 1b). This is a reason of growth of the equilibrium distance between ions in the division
plane. This can lead to a restructuring of the lattice near the metal surface. With further approach of
two ions to the division plane (see Fig. 1c and Fig. 1d) the potential well disappears, interaction between
ions is of repulsive type. Such behavior is physically clear, because effective interionic attraction is
due to screening of electrons, which are located around them. Electron density near the division is less
than that in the depth of the metal. When two ions approach the division plane, number of electrons
around ions becomes less, and the direct repulsion dominates attraction.
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Fig. 2. The effective interionic pair potential as a function of the normal to the division plane coordinate of one
ion at E = 40 V/nm and the distances between two ions in the divison plane is equal to zero, and the following
normal to the division plane coordinates: Z1 = −20 aB (a); Z1 = −10 aB (b); Z1 = −5 aB (c); Z1 = −3 aB (d).

In Fig. 2, the effective interionic pair potential as a function of the normal to the division plane
coordinate of one ion (Z2) (the distances between two ions in the divison plane is equal to zero,
R|| = 0) is presented for different values of the normal to the division plane coordinates of an-
other ion (Z1). In the depth of the metal (see Fig. 2a), the effective interionic pair potential is
symmetric, depth of the potential well and its position are the same as in Fig. 1a, i.e. the effec-
tive interionic pair potential has a cylindrical symmetry in the depth of the metal. With approx-
imation of ion with coordinate Z2 to the division plane, symmetry of potential wells is breaking.
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Fig. 3. The effective interionic pair potential as a func-
tion of the distance between two ions in the division
plane at Z1 = Z2 = −1 aB within the Sham approxima-
tion for the different strengths of the external electro-

static field E = 10, 20, 40 V/nm.

At first, the depth of the potential well in the
area Z2 > Z1 increases (Fig. 2b), and with fur-
ther approach to the division plane this well dis-
appears (Fig. 2c, d). Such a behavior of the ef-
fective interionic potential is caused by the fact
that the electron density is an oscillatory func-
tion of the normal to the division plane coor-
dinate and it vanishes near the division plane.
Due to this, if there are a few electrons near ions,
the depth of the potential well decreases, the di-
rect repulsion between ions increases. If there is
an excess of electrons near ions, the depth of the
potential well increases, the effective attraction
increases. Such a behavior of the effective in-
terionic potential causes a shift of ionic surface
layers towards the normal to the division plane.

In Fig. 3, the effective interionic pair poten-
tial as a function of the distance between two
ions in the division plane (R||) at Z1 = Z2 = −1 aB within the Sham approximation is presented for
the different strengths of the external electrostatic field. Increasing of the electrostatic field strength
leads to the repulsion between ions. This is due to the shift of electrons into the metal, if the external
field is applied. As a result, number of electrons near ions decreases, and the direct repulsion between
ions increases.
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Ефективна мiжiонна взаємодiя в напiвобмеженому металi
за наявностi зовнiшнього електричного поля з урахуванням

поправки на локальне поле

МарковичБ.М., Задворняк I.М.

Нацiональний унiверситет ”Львiвська полiтехнiка”
вул. С. Бандери, 12, 79013, Львiв, Україна

Дослiджено ефективний потенцiал мiжiонної взаємодiї в напiвобмеженому металi,
який мiститься у зовнiшньому електростатичному полi. Дослiджено вплив на ефек-
тивний потенцiал мiжiонної взаємодiї поправки на локальне поле та напруженостi
прикладеного зовнiшнього електростатичного поля.

Ключовi слова: ефективний потенцiал мiжiонної взаємодiї, електростатичне
поле, псевдопотенцiал, напiвобмежений метал.

2000 MSC: 82B24

УДК: 530.145

Mathematical Modeling and Computing, Vol. 3, No. 2, pp. 177–182 (2016)


